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Abstract: Iron oxides are potential electrode materials for lithium-ion batteries because of their high
theoretical capacities, low cost, rich resources, and their non-polluting properties. However, iron
oxides demonstrate large volume expansion during the lithium intercalation process, resulting in the
electrode material being crushed, which always results in poor cycle performance. In this paper, to
solve the above problem, iron oxide/carbon nanocomposites with a hollow core–shell structure were
designed. Firstly, an Fe2O3@polydopamine nanocomposite was prepared using an Fe2O3 nanocube
and dopamine hydrochloride as precursors. Secondly, an Fe3O4@N-doped C composite was obtained
by means of further carbonization treatment. Finally, Fe3O4@void@N-Doped C-x composites with
core–shell structures with different void sizes were obtained by means of Fe3O4 etching. The effect
of the etching time on the void size was studied. The electrochemical properties of the composites
when used as lithium-ion battery materials were studied in more detail. The results showed that the
sample that was obtained via etching for 5 h using 2 mol L−1 HCl solution at 30 ◦C demonstrated
better electrochemical performance. The discharge capacity of the Fe3O4@void@N-Doped C-5 was
able to reach up to 1222 mA g h−1 under 200 mA g−1 after 100 cycles.

Keywords: hollow core–shell structure; iron oxide; lithium-ion batteries

1. Introduction

With the rapid development of the global economy, the shortage of fossil fuels and the
worsening of environmental pollution have become a great threat to mankind. Therefore,
people must develop green and environmentally friendly clean energy to replace traditional
fossil fuels [1–4]. Solar, wind, and tidal energy are renewable and result in lower levels
of pollution, making electricity generated from them a good alternative [5–8]. However,
these sources are often intermittently limited. Electrochemical energy storage provides a
feasible way to store electric energy [9–12]. On the one hand, it can solve the intermittence
problem of the above energy sources. On the other hand, this allows the mobile storage of
energy. Among various electrochemical energy storage devices, lithium-ion batteries have
attracted more and more attention because of their high energy density, long life cycle, and
environmental friendliness [13–17].

As an important branch of anode materials for lithium-ion batteries, transition metal
oxides (MxOy, M = Fe, Co, Ni, Cu, Mn, etc.) have attracted more and more attention. The
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conversion reaction between transition metal oxides and lithium ion means that they have
a high lithium storage capacity [18–22]: MxOy + 2yLi+ + 2ye− = yLi2O + xM. In general,
transition metal oxides have a significantly higher theoretical specific capacity than graphite
when used as anode materials for lithium-ion batteries [23–25]. However, it is inevitable
that transition metal oxides will experience large volume deformation during the cycling
process, which leads to the pulverization of the electrode materials and also results in
serious capacity fading [26–29]. Researchers have started to pay a great deal of attention to
one of the transition metal oxides, iron oxide (FeOx). Compared to other metal oxides, such
as CoOx and NiO, FeOx has the advantages of being a cheap and abundant resource that
is also environmentally friendly [30–32]. However, the volume expansion effect and low
electrical conductivity limit the application of FeOx in production [30,33–35].

Forming composite materials with a carbon coating is an effective way to improve
the performance of iron oxides [36,37]. On the one hand, carbon coating can improve the
electrical conductivity of electrode materials. On the other hand, it can alleviate the volume
expansion effect of iron oxides during the cycling process [36,37]. The conductivity of
carbon materials obtained via the carbonization of common carbon sources is usually not
good. By doping carbon with nitrogen, the conductivity of carbon materials can be greatly
improved in order to better improve the electrochemical performance of iron oxides [38–46].
In addition, relevant studies show that the nano-cavity structure can accommodate the vol-
ume deformation of the electrode material well during the cycling process, thus improving
the cycling performance of the material [47,48]. In this work, Fe2O3 cubes with uniform size
are prepared by means of the hydrothermal method. Then, polydopamine is coated on the
surface of Fe2O3 cubes. After carbonization, Fe3O4@nitrogen-doped carbon (N-doped C)
composites are formed (Scheme 1). The composite is further etched with hydrochloric acid
to prepare the core-shell Fe3O4@void@N-doped C nanocomposites (Scheme 1). The void
size of the nanocomposites can be regulated via controlling the etching time, improving the
performance of FeOx so that it can be used as the electrode material in lithium-ion batteries.
A series of Fe3O4@void@N-doped C-x nanocomposites (x is 2, 5, and 10, representing the
etching time of 2 h, 5 h and 10 h, respectively) were obtained by etching the carbonized
product in acid different numbers of times.
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Scheme 1. Schematic illustration of the fabrication of Fe3O4@void@N-doped C.

2. Results and Discussion

Figure S1a (see Supplementary Materials) shows the X-ray diffraction (XRD) pattern
of the Fe2O3 precursor. Compared to the standard cards, the characteristic peaks of the
Fe2O3 cube samples are consistent with the standard peaks of α-Fe2O3 (JCPDS:33-0664).
Figure S1b shows the XRD pattern of an Fe3O4@void@N-doped C-2 composite. Compared
to the standard card (JCPDS:19-0629), it can be seen that the main characteristic peaks
of Fe3O4@void@N-doped C-2 are consistent with the standard peaks of Fe3O4, and the
impurity peaks of FeO also appear. This shows that during the carbonization process, most
of the Fe2O3 is converted into Fe3O4 and that some of it is converted into FeO.

Figure 1a,b and Figure S2a are scanning electron microscope (SEM) and transmission
electron microscope (TEM) images of an Fe2O3 precursor. A large area of cubes with an
average size of about 600 nm can be clearly observed. Figures 1c and S3a,b are SEM images
of an Fe2O3@PDA composite material. It can be observed that the Fe2O3 cube is coated
with a dopamine nanolayer. Figure 1d is a TEM image of the Fe2O3@PDA cube. It is
more obvious that the Fe2O3 cube is coated with a dopamine nanolayer, and the average
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thickness of the coated PDA layer is about 25 nm. Figures 1e,f and S4a,b are SEM and
TEM images of the heat-treated Fe3O4@N-doped C sample. It can also be clearly observed
from Figure 1e and Figure S5a,b that voids appear in each cube. This is because the Fe2O3
cube is converted into Fe3O4 and FeO under the reductive atmosphere that is generated by
dopamine in the process of high temperature carbonization, resulting in volume shrinkage.
From the TEM image in Figure 1f, the carbon layer structure and hollow groove structure
on the surface of the cube can be observed more clearly.
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Figure 1. (a,b) SEM and TEM images of Fe2O3 precursor; (c,d) SEM and TEM images of cube
Fe2O3@PDA; (e,f) SEM and TEM images of Fe3O4@N-doped C sample.

Figure 2a,b are the SEM and TEM images of Fe3O4@void@N-doped C-2. It can be
seen that the void in the cube is obviously larger than the carbonization product before
treatment. After 5 h of etching under the same conditions, it can be observed that the
void in the cube becomes larger, that some Fe3O4 particles present a hollow structure, and
that the core–shell structure is more obvious (Figure 2c,d). After 10 h of etching, it can be
observed from Figure 2e,f that the void in the cube continued to grow. This shows that
the longer the etching time in hydrochloric acid is at a certain concentration, the larger the
corresponding void will be. In addition, Figure 2g,h show that the internal Fe3O4 of the
Fe3O4@N-doped C composite has been completely etched after 2 h of etching with 4 mol
L−1 hydrochloric acid at 30 ◦C, forming a hollow carbon cube structure. The above results
show that the overall morphology of the material basically does not change before and
after heat treatment, and the external carbon layer can still cover the Fe3O4 particle. After a
certain etching period, the core–shell structure is formed. Thermogravimetric analysis (TG)
was used to detect the carbon content of the composites (Figure S5). It can be seen from the
test results that the mass increases from about 225 ◦C. This is because Fe3O4 is gradually
oxidized into Fe2O3 as the temperature increases. The apparent subsequent weightlessness
corresponds to the oxidation of carbon to CO2. After the calculation, the carbon contents of
the Fe3O4@void@N-doped C-x composites (x = 2, 5 and 10) were determined to be 6.3%,
11.7%, and 20.0%, respectively.
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(g,h) the product of 4 mol L−1 hydrochloric acid etching for 2 h.

Figure 3 shows the energy dispersive spectroscopy (EDS) element mapping anal-
ysis results for the Fe3O4@void@N-doped C-5 composite. The results show that the
Fe3O4@void@N-doped C-5 composite contains four elements: Fe, O, N, and C. Figure 3d–i
show that the carbon layer completely wraps the inner Fe3O4, which is also effective in
proving the existence of the core-shell structure. There is an obvious gap between the
core and the shell, which is consistent with previous SEM and TEM results. In addition,
Figure 3e,f show that N is evenly distributed in the carbon shell, which indicates that
nitrogen doping is achieved when PDA is used as a carbon source. In addition, the electron
diffraction image (Figure 3c) shows that the Fe3O4 core has a single crystal structure.

Figure 4a shows the Raman spectra of the Fe3O4@void@N-doped C-x composite.
Raman peaks appear at the positions at about 1300 and 1580 cm−1. The peak around
1300 cm−1 is known as the D peak for carbon, which is caused by atomic lattice defects on
the surface of the carbon material. The peak at about 1580 cm−1 is known as the G peak of
carbon, which is formed by the graphitization of carbon material. The appearance of the
D peak and the G peak shows that the carbon materials that were formed by dopamine
carbonization have internal defects and a certain degree of graphitization. The strength
ratio (ID:IG) of the two peaks of the three composite materials was about 0.65. Because the
three composite materials were formed via the etching of Fe3O4@N-doped C samples at
different times, the strengths of peak D and peak G is not affected. In addition, very weak
Raman characteristic peaks of Fe3O4 also appear at about 200 and 300 cm−1.

Figure 4b–f show the X-ray photoelectron spectroscopy (XPS) analysis results of the
Fe3O4@void@N-doped C-5 composite. The presence of Fe, O, C, and N can be observed
from Figure 4b, which proves that the sample is composed of Fe, O, C, and N elements. Two
characteristic peaks of Fe 2p can be clearly observed at 711.1 eV and 724.5 eV, respectively
(Figure 4c). By calculating the peak area in the spectrogram, it can be known that the ratio
of Fe3+ to Fe2+ is about 2:1, which is in agreement with the ratio of ferric iron to ferrous
iron in Fe3O4. For the O 1s spectrogram (Figure 4d), there are three obvious characteristic
peaks in the spectrogram at about 530.4, 532.3 and 533.7 eV, respectively, which correspond
to the XPS peak of O2−. For the C 1s spectrogram (Figure 4e), the three smooth peaks at
about 284.9, 286.6, and 289.1 eV correspond to C-C, C-N and C=O bonds, respectively. The
characteristic peaks of graphite nitrogen and pyridine nitrogen can be clearly observed
in the N 1s spectrogram (Figure 4f) and correspond to 400.8 eV and 398.5 eV, respectively.
Through XPS analysis, it can be further proven that nitrogen-doped carbon is formed after
the carbonization of PDA.
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Figures 5a and S6a, S7a, S8a show the cyclic voltammetry (CV) curves of the Fe2O3
and Fe3O4@void@N-doped C-x composite materials (x = 2, 5 and 10) with a voltage range
of 0.01–3.0 V and a voltage scanning speed of 0.5 mV S−1. In Figure S6a, there is an obvious
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reduction peak at 0.43 V in the first cycle of the CV curve. The reduction peak here is due to
the reduction of Fe2O3 to Fe and the formation of Li2O (Fe2O3 + 6Li+ + 6e−→2Fe + 3Li2O).
Due to the solid electrolyte interface (SEI) membrane formed by some of the materials and
some of the electrolytes at the same time, the position and intensity of the reduction peak
in the following two cycles demonstrate obvious changes [49–51]. In the CV curve, the
oxidation peak appears at 1.72 V, where the oxidation process is the oxidation of Fe to Fe3+.
In the following two cycles, the oxidation peak appears to have been obviously attenuated,
indicating that the cycling performance of the Fe2O3 cube sample is poor. Figures 5a and
S7a, S8a show the CV curves of the composites of the Fe3O4@void@N-doped C-x. The
main active material in the three composites is Fe3O4, and the reduction reaction that
takes place during the first cycling is Fe3O4 + 8Li+ + 8e− →3Fe + 4Li2O. The difference
between the three samples is only the void size of the core–shell structure. Therefore, their
CV curves are basically same. The reduction peak of the Fe3O4@void@N-doped C-2 in
the first cycle is at 0.36 V and tends to be stable after shifting to 0.8 V in the subsequent
cycle. The corresponding oxidation peak is at 1.82 V and tends to be stable after shifting
to 2 V in the subsequent cycle. In addition, the change trend in the redox peak in the
Fe3O4@void@N-doped C-5 and Fe3O4@void@N-doped C-10 cycles is similar to that of
Fe3O4@void@N-doped C-2.
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Figure S6b shows the charge–discharge curve of the cubic Fe2O3. The current density
is 200 mA g−1, and the tested charge–discharge voltage range is 0.01–3 V. It can be observed
that the specific capacities of the first discharge and charge cycle of the cubic Fe2O3 are
1064.8 mA h g−1 and 690.7 mA h g−1, indicating that the cubic Fe2O3 material has a large
irreversible capacity for the first cycle. At the 2nd, 10th, and 50th cycles, the discharge
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specific capacities are 72.6.4, 373.9, and 143.5 mA h g−1, respectively. The cycle capacity
decreases rapidly, indicating that the cycle performance of the cubic Fe2O3 is very poor.
Figure 5b and Figures S7b, S8b show the representative charge–discharge curves of the first
50 cycles of the Fe3O4@void@N-doped C-x (x = 2, 5, 10) at a 200 mA g−1 current density.
It can be observed that the first discharge platform of the three materials is about 0.75 V,
which corresponds to the position of a reduction peak in the CV curve. The initial specific
discharge capacities of the Fe3O4@void@N-doped C-2, Fe3O4@void@N-doped C-5, and
Fe3O4@void@N-doped C-10 are 1155.8, 1302.4, and 1185.9 mA h g−1, respectively. The
specific charging capacities are 827.3, 903.6 and 807.8 mA h g−1, respectively, which are
lower than the corresponding specific discharge capacities, indicating that the composite
also has a specific first irreversible capacity. Relative to the specific initial discharge capacity,
the irreversible capacity loss is mainly due to the formation of SEI films. Through the
comparison of the four samples, it can be seen that the initial discharge capacity of the
composite materials is higher than that of the pure cubic Fe2O3, which is due to the nitrogen-
doped carbon significantly improving the conductivity of the composite materials. After
50 cycles, the charge–discharge capacity of the cubic Fe2O3 is significantly lower than that
of the Fe3O4@void@N-doped C-x composite, and the capacity fading phenomenon is very
serious. However, Fe3O4@void@N-doped C-x still maintains a high specific capacity after
50 cycles, indicating that the cycling performance of the inner Fe3O4 core is significantly
improved under the protection of the carbon shell. Moreover, after the same 50 cycles,
the specific discharge capacities of Fe2O3, Fe3O4@void@N-doped C-2, Fe3O4@void@N-
doped C-5, and Fe3O4@void@N-doped C-10 are 143.5, 825.8, 1132.9, and 730 mA h g−1,
respectively. With the increase in void size, the specific capacity of the composites does
not increase correspondingly, and the Fe3O4@void@N-doped C-5 material with a suitable
core–shell void size shows the maximum specific capacity. The specific capacity of the
Fe3O4@void@N-doped C-10 is lower than that of Fe3O4@void@N-doped C-5. This is
probably due to the fact that the relative content of active Fe3O4 in Fe3O4@void@N-doped
C-10 is lower than that of the Fe3O4@void@N-doped C-5 sample. For Fe3O4@void@C-2,
although its Fe3O4 content is very high, the high Fe3O4 content will result in the composite
having low overall conductivity. Therefore, its specific capacity is also lower than that of
Fe3O4@void@N-doped C-5.

Figure 5c shows the cycle performance diagram of the cube Fe2O3 and the Fe3O4@void@N-
doped C-x. The specific discharge capacities of the cubic Fe2O3, Fe3O4@void@N-doped C-2,
Fe3O4@void@N-doped C-5, and Fe3O4@void@N-doped C-10 are 143.3, 601.4, 1222, and
802.9 mA h g−1 after 100 cycles, respectively, when the current density is 200 mA g−1 and
when the charge and discharge voltage range is 0.01–3V. Comparing the four materials, the
specific capacity of the carbon-coated composites is significantly higher than that of the
simple Fe2O3 material. Among them, Fe3O4@void@N-doped C-5 has the highest specific
capacity, and its capacity continues to increase during the cycle, which is mainly caused by
the decomposition of electrolyte. After 60 cycles, the capacity of the Fe3O4@void@N-doped
C-2 gradually decreases. This is probably due to the small size of the void between the
core and shell of the composite material, which cannot completely alleviate the volume
deformation of the Fe3O4 core during the charging and discharging process. With the
increasing number of cycles, the ability of the shell to control the volume deformation
of Fe3O4 gradually weakens. However, Fe3O4@void@N-doped C-5 and Fe3O4@void@N-
doped C-10 show good cyclic stability due to their large internal void size.

The rate performance of the cubic Fe2O3 and Fe3O4@void@N-doped C-x (x = 2, 5 and
10) composites were further tested (Figure 5d). At the current densities of 100, 200, 400,
800, 1000, and 1600 mA g−1, the discharge specific capacities of Fe3O4@void@N-doped C-5
were determined to be 1010.2, 955.3, 889.6, 823.6, 833, and 735.5 mA h g−1, respectively.
Although the specific capacity of the Fe3O4@void@N-doped C-5 composite decreased as the
current density increased, it still showed a high specific capacity at 1600 mA g−1, indicating
that the composite has a good rate performance. When the current density decreased to
100 mA g−1 again, the specific discharge capacity was able to increase to 1165.8 mA h g−1.
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In addition, cyclic tests were also carried out for the Fe2O3 and Fe3O4@void@N-
doped C-x composites at 800 mA g−1 (Figure S10). After 100 cycles, the specific discharge
capacities of the cubic Fe2O3, Fe3O4@void@N-doped C-2, Fe3O4@void@N-doped C-5, and
Fe3O4@void@N-doped C-10 materials were 67.8, 188, 602.5 and 506.6 mA h g−1, respectively.
Compared to the cycle diagram at 200 mA g−1, the cycle performance at the high current
density of 800 mA g−1 is inferior to that at the low current density of 200 mA g−1. In general,
lithium-ion battery electrode materials often show better cycle performance at high current
densities. However, for the Fe3O4@void@N-doped C-x composite materials, an abnormal
phenomenon occurs. This is probably because the active material in the composite system
is a single Fe3O4 crystal material with large particles, which is not suitable for charging and
discharging with large currents. The electrochemical performance of the Fe3O4@void@N-
doped C-5 was compared to the results from reports that have previously been published in
the literature. The specific capacity and cycling performance of the Fe3O4@void@N-doped
C-5 at 200 mA g−1 reached the level of other similar Fe3O4-based anode materials [52,53].

By comparing the related electrochemical test data above, among all of the composites,
the Fe3O4@void@N-doped C-5 composite has the best cycling performance and rate perfor-
mance. This is directly related to the appropriate acid etching time. The proper pore size
between the carbon shell and the Fe3O4 core in the Fe3O4@void@N-doped C-5 material
(larger than Fe3O4@void@N-doped C-2) can effectively alleviate the volume expansion of
Fe3O4 during the cycle and can also facilitate electrolyte diffusion and the transmission
of lithium ions. In addition, the relatively high content of the Fe3O4 active substance in
the material (more than in Fe3O4@void@N-doped C-10) ensures its large specific capacity.
After 100 cycles, the electrode based on Fe3O4@void@N-doped C-5 was characterized via
SEM and TEM (Figures S11 and S12). The results show that the structure is essentially
retained after 100 cycles. This indicates the good structural stability of the material during
the charge/discharge process.

The electrochemical impedance spectroscopy (EIS) of the assembled lithium-ion bat-
tery was also measured in more detail. As shown in Figure S13, the EIS curves of the cube
Fe2O3 and the Fe3O4@void@N-doped C-x composite are composed of a small semicircle
and a straight line. The small semicircle in the high frequency region is related to the charge
transmission process of the electrons and lithium ions at the conductive junction. The lines
in the low-frequency region are related to the solid diffusion process of the lithium ions
in the active material. It can be observed that the diameter of the small semicircular cube
Fe2O3 is larger than that of the Fe3O4@void@N-doped C-x composite, indicating that its
electrical conductivity is worse than that of the Fe3O4@void@N-doped C-x composite. The
good conductivity of the composites can be attributed to the carbon coating formed by
dopamine, which contains many unsaturated bonds (such as C=N and C=C bonds) that
are able to provide a large number of excellent conductive matrices for Fe3O4. In addition,
the lines in the low-frequency region are all close to 45o, indicating that the lithium ions
have good diffusion ability in the active materials.

3. Conclusions

In this work, PDA was used as a carbon source to coat Fe2O3 cubes to form a nitrogen-
doped carbon coating layer. Further, the acid etching method was used to prepare compos-
ite materials with a core–shell structure and with different void sizes to act as the electrode
materials in a lithium-ion battery. The electrochemical test results show that the specific
capacity of the composites did not increase as the void size increased. Among all of the
samples, the Fe3O4@void@N-doped C-5 with the appropriate void size showed the largest
specific capacity, the best cycling performance, and the best rate performance. At a current
density of 200 mA g−1, the discharge capacity of the Fe3O4@void@N-doped C-5 was able
to reach 1222 mA h g−1 after 100 cycles, which is much higher than the levels achieved by
the cubic Fe2O3. The appropriate size of the void between the carbon shell and the Fe3O4
core is not only beneficial to alleviate the volume expansion of Fe3O4 during the cycle, but
also to electrolyte diffusion and the transmission of lithium ions.
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Supplementary Materials: The following supporting information can be downloaded via the
following, Figure S1. (a) XRD patterns of cubic Fe2O3 and standard card; (b) XRD patterns of
Fe3O4@void@N-Doped C-2 composite and standard card; Figure S2. (a,b) SEM images of cubic Fe2O3
at different magnification; Figure S3. (a,b) SEM images of cubic Fe2O3@PDA at different magnifica-
tion; Figure S4. (a,b) SEM images of cubic Fe3O4@N-Doped C at different magnification; Figure S5.
The thermogravimetric analysis curves of Fe3O4@void@N-doped C-x composite (x = 2, 5 and 10);
Figure S6. (a) Cyclic voltammetry curves of the first three cycles of cubic Fe2O3; (b) Representative
charge-discharge curves of cubic Fe2O3; Figure S7. (a) Cyclic voltammetry curves of Fe3O4@void@N-
Doped C-2 composite; (b) Representative charge-discharge curves of Fe3O4@void@N-Doped C-2
composite; Figure S8. (a) Cyclic voltammetry curves of Fe3O4@void@N-Doped C-10 composites;
(b) Representative charge-discharge curves of Fe3O4@void@N-Doped C-10 composites; Figure S9.
dQ/dV curves of all samples for C/D profiles during the second cycling; Figure S10. 100 cycle
diagrams of cubic Fe2O3 and Fe3O4@void@N-Doped C-x (x = 2, 5 and 10) composites at 800 mA g−1

current density; Figure S11. SEM images of Fe3O4@void@N-doped C after 100 cycles; Figure S12.
TEM images of Fe3O4@void@N-doped C after 100 cycles; Figure S13. EIS curves of cubic Fe2O3 and
Fe3O4@void@N-Doped C-x composites; Figure S14. Field-dependent magnetization curve of Fe2O3
measured at room temperature
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