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ABSTRACT

Skin cancer is a common, low-grade cancerous (malignant) growth of the skin. 
It starts from cells that begin as normal skin cells and transform into those with the 
potential to reproduce in an out-of-control manner. Cancer develops when DNA, the 
molecule found in cells that encodes genetic information, becomes damaged and 
the body cannot repair the damage. A DNA walk of a genome represents how the 
frequency of each nucleotide of a pairing nucleotide couple changes locally. In this 
research in order to diagnose the skin cancer, first DNA walk plots of genomes of 
patients with skin cancer were generated. Then, the data so obtained was checked 
for complexity by computing the fractal dimension. Furthermore, the Hurst exponent 
has been employed in order to study the correlation of damaged DNA. By analysing 
different samples it has been found that the damaged DNA sequences are exhibiting 
higher degree of complexity and less correlation compared to normal DNA sequences. 
This investigation confirms that this method can be used for diagnosis of skin cancer. 
The method discussed in this research is useful not only for diagnosis of skin cancer 
but can be applied for diagnosis and growth analysis of different types of cancers.

INTRODUCTION

Skin cancer is a type of cancer that arises from 
skin. It is the most common form of cancer, globally 
accounting for at least 40% of cases [1]. It is especially 
common among people with light skin. Skin cancer is 
due to the development of abnormal cells that have the 
ability to invade or spread to other parts of the body. 
There are three main types: basal cell cancer (BCC), 
squamous cell cancer (SCC) and melanoma. The most 
common type is non-melanoma skin cancer, which occurs 
in at least 2–3 million people per year. Of non-melanoma 
skin cancers, about 80% are basal cell cancers and 20% 
squamous cell cancers. Basal cell and squamous cell 
cancers rarely result in death [2].

One of the main reasons that skin cancer develops 
is because the DNA is damaged. DNA is the master 
molecule that controls and directs every cell in the body. 
Damage to DNA is one of the ways that cells lose control 

of growth and become cancerous. DNA mutations can also 
be inherited.

During years few methods have been investigated 
in order to diagnose the skin cancer. These methods are 
mainly categorized in two types which are skin biopsy, 
and image analysis [3]. In case of skin biopsy doctor takes 
a sample of skin from the suspicious area to be looked at 
under a microscope. Different methods can be used for a 
skin biopsy. The doctor will choose one based on the size 
of the affected area, where it is on the patient’s body, and 
other factors.

In case of image analysis of damaged skin using 
computers, special features, like particular colours, 
colour variation and texture are analysed to search for 
the sign of cancer. In fact, image analysis methods 
are based on mathematics. For instance, Segura et al. 
performed a systemic analysis of melanocytic and non-
melanocytic skin tumors, using dermatoscopy, RCM, 
and histopathology to develop a two-step method for 
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melanoma diagnosis based on RCM features for use as 
an adjuvant to dermatoscopy [4]. In another extensive 
work Stoecker et al. analyzed asymmetry, as a critical 
feature in the diagnosis of malignant melanoma, using 
a new algorithm to find a major axis of asymmetry and 
calculate the degree of asymmetry of the tumor outline 
[5]. See also [6–9].

Thermal image analysis of damaged skin can be 
stated as a special type of image analysis. In this category 
limited works have been reported in literatures. Flores-
Sahagun et al. proposed a structured methodology for 
analysis and diagnosis of basal cell carcinoma (BCC) 
via infrared imaging temperature measurements. They 
concluded that their conjugated gradients method was 
efficient to identify lesioned tissue (which was associated 
to basal cell carcinoma through a clinical exam together 
with skin biopsies) in all patients studied even with the use 
of a camera of low optical resolution (160 × 120 pixels) 
and thermal resolution of 0.1 °C [10]. Poljak-Blazi et al. 
also employed infrared thermal imaging for evaluation 
of the tumour development and discrimination of cancer 
from inflammation and haematoma [11]. See also [12].

Fractals are defined to be scale-invariant (self-
similar or self-affine) geometric objects. A geometric 
object is called self-similar if it may be written as a union 
of rescaled copies of itself, with the rescaling isotropic 
or uniform in all directions. Regular fractals display 
exact self-similarity. Random fractals display a weaker, 
statistical version of self-similarity or, more generally, 
self-affinity. Although virtually all natural fractals are 
random, the concept of self-similarity is best first explored 
through the study of regular fractals.

The class of regular fractals includes many familiar 
simple objects such as line intervals, solid squares, 
and solid cubes, and also many irregular objects. The 
scaling rules are characterized by “scaling exponents” 
(dimension). “Simple” regular fractals have integer 
scaling dimensions. Complex self-similar objects have 
non-integer dimension. Therefore, it is completely 
incorrect to define fractals as geometric objects having 
“fractional” (non-integer) dimension. Fractals may be 
defined as geometric objects whose scaling exponent 
(dimension) satisfies the Szpilrajn inequality:

DT (1) ≤ א

where א is the scaling exponent (dimension) of the object 
and DT  is its topological dimension, i.e., Euclidean 
dimension of units from which the fractal object is built. 
For example, in case of Brownian motion: the path of a 
particle, a line of dimension one, traveling for a long time 
over a plane region, eventually covers the entire plane, an 
entity of dimension two [13].

A multi-fractal system is a generalization of a 
fractal system in which a single exponent (the fractal 
dimension) is not enough to describe its dynamics; 

instead, a continuous spectrum of exponents (the so-called 
singularity spectrum) is needed.

There are limited works which have employed fractal 
dimension under image analysis techniques in order to 
analyse the skin cancer. Mastrolonardo et al. introduced 
the new technique of the variogram and of fractal analysis 
extended to the whole regions of interest of skin in order 
to obtain parameters able to identify the malignant lesion 
[14]. In another work Hall calculated fractal dimensions to 
represent border irregularity for early detection of melanoma 
[15]. In a similar work Piantanelli et al. investigated the 
fractal properties of skin pigmented lesion boundaries 
[16]. Ng and Coldman focused on using fractal concept in 
measuring the fuzziness of a mole. In order to overcome the 
problem of separation of a mole from its surrounding skin in 
application of variation method and the correlation method, 
they employed two different methods which manipulated 
the intensities around the border of a mole. The first one 
calculated the size of the intensity surface area at different 
scales and the second method used the average absolute 
intensity difference of pixel pairs to obtain normalized 
fractional feature vectors [17]. See also [18].

In spite of all of these works, no work has been 
reported which analyses the complexity and correlation 
of damaged DNA through analysis of DNA walks. In this 
paper we use the concept of fractal dimension and the 
Hurst exponent in order to analyse the DNA sequences. In 
order to do this task we illustrate DNA walk as a random 
walk and by introducing the fractal dimension and Hurst 
exponent we compute these parameters for DNA walks 
which extracted from DNA sequences of healthy subjects 
and patients with skin cancer. The complexity and 
correlation of patients’ DNA walk are discussed in details.

RESULTS

In this section we compute the Hurst exponent 
and fractal dimension for DNA walks in case of healthy 
subjects and subjects with skin cancer, and then compare 
the results for diagnosis of skin cancer.

In order to make a clear comparison, the grand 
average of the Hurst exponent plots for all of 60 healthy 
subjects versus the grand average for all of 60 subjects 
with skin cancer is shown in Figure 1.

As it can be seen in this figure, the overall behaviour 
of the Hurst exponent variations in case of healthy subjects 
and also subjects with skin cancer is decreasing behaviour 
as its value tend to H  = 0.5. This behaviour stands for 
the fact that memory of DNA walk is decreasing in the 
genome. But as it is clear, in case of damaged DNA, 
variations of the Hurst exponent show steeper behaviour 
than variations belong to normal DNA walks.

The small upward deflections seen in both curves 
stand for the small increases in the genome’s memory. 
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It is clear that by decreasing the value of H  (getting 
closer to 0.5) and accordingly the memory of genome, the 
predictability of DNA walk is decreasing. But in case of 
skin cancer DNA walk, the memory and predictability of 
DNA walks is decreasing faster than normal DNA walks 
which stands for the fact that the damaged DNA is less 
able to store information and increases its memory.

Another difference between two curves in Figure 1 
can be seen in the values of the Hurst exponent, where 
in average the Hurst exponent in case of damaged cells 
has smaller values that are closer to H = 0.5 compared 
to normal DNA. This stands for the fact that there is less 
correlation in the damaged DNA walk compared to normal 
DNA walk. The averaged value of the Hurst exponent 
variations for subjects with skin cancer was computed 
as 0.579 which is smaller than the computed value for 
healthy subjects which is 0.715.

In order to compare mean of the Hurst exponent 
values in case of each sample we compute 95% confidence 
intervals in case of healthy subjects and subjects with skin 
cancer and then determine whether the intervals overlap. 
As it is known when 95% confidence intervals for the 
means of two independent populations don’t overlap, there 
will indeed be a statistically significant difference between 
the means (at the 0.05 level of significance). Figure 2 
shows the computed confidence intervals.

In order to analyse the complexity of DNA walk 
in case of normal and damaged DNA walks, the fractal 
dimension spectra of DNA walks are discussed here. The 
grand average of the spectra of fractal dimension plots for 
all of 60 healthy subjects versus the grand average for all 
of 60 subjects with skin cancer is shown in Figure 3.

As it can be seen in this figure, the overall behaviour 
of the Fractal dimension variations in case of healthy 
subjects and subjects with skin cancer is increasing 

behaviour. This behaviour stands for the fact that 
complexity of DNA walk is increasing in the genome. But 
as it is clear, in case of damaged DNA, variations of the 
fractal dimension show steeper behaviour than variations 
belong to normal DNA walks.

The small downward deflections seen in both 
curves stand for the small decreases in complexity 
of DNA because of small increases in the genome’s 
memory. By increasing the fractal dimension’s value, the 
predictability of DNA walk is decreasing as the DNA 
is getting more complex. But in case of damaged cells, 
the complexity of DNA walks is increasing faster than 
normal DNA walks.

Another difference between two curves can be seen 
in the values of the fractal dimension, where in case of 
damaged DNA the fractal dimension has bigger values 
compared to normal DNA and this stands for the fact 
that the damaged DNA walk is more complex compared 
to normal DNA walk. The averaged value of the fractal 
dimension variations for 60 subjects with skin cancer was 
computed as 1.417 which is bigger than the computed 
value for healthy subjects which is 1.278.

In order to compare the mean of fractal dimension 
values in case of each sample we compute 95% confidence 
intervals in case healthy subjects and subjects with skin 
cancer and then determine whether the intervals overlap. 
Figure 4 shows the computed confidence intervals.

As it is clear in the Figure, confidence intervals 
in case of healthy subjects (red bar) with the variation 
1.2768 ≤ Y ≤ 1.2792  and subjects with skin cancer 
(green bar) with the variation 1.4155 ≤ Y ≤ 1.4185  don’t 
overlap, which means they are necessarily significantly 
different. So this result stands for the significant difference 
between the fractal dimensions values in case of two 
groups of subjects.

Figure 1: Grand average of the Hurst exponent plots for DNA walks of all healthy subjects (black curve) versus grand 
average of the Hurst exponent plots for damaged DNA walks of all subjects with skin cancer (red curve). 
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All the analyses which have been done in this 
research showed that by computing the values of the Hurst 
exponent and fractal dimension we are able to diagnose 
the damaged DNA’s as they show more complexity and 
less correlation compared to normal DNA’s.

DISCUSSION

In this paper we worked on diagnosis of skin cancer 
by analysing the damaged DNA. By defining the Hurst 
exponent and fractal dimension we talk about correlation 

Figure 2: Comparison of confidence interval for means of the Hurst exponent. As it is clear in the figure, confidence intervals 
in case of healthy subjects (red bar) with the variation 0.7138 ≤ X ≤ 0.7162 and subjects with skin cancer (green bar) with the variation 
0.5775 ≤ X ≤ 0.5805 don’t overlap, which means they are necessarily significantly different. So this result stands for the significant 
difference between the Hurst exponents values in case of two groups of subjects.

Figure 3: Grand average of the spectra of fractal dimension plots for DNA walks for all of healthy subjects (black 
curve) versus grand average of the spectra of fractal dimension plots for damaged DNA walks for all of subjects with 
skin cancer (red curve). 
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and complexity of damaged DNA. The analyses of the 
Hurst exponent and fractal dimensions plots show that 
DNA walk have smaller values of the Hurst exponent and 
bigger values of fractal dimension in case of damaged 
DNA compared to normal DNA. Also, the Hurst exponent 
and fractal dimension plots for damaged DNA show 
steeper behaviour than normal DNA plots. These results 
stand for the fact that damaged DNA is less predictable 
and more complex compared to normal DNA. The method 
used in this research can be applied for analysis and 
diagnosis of other types of cancer.

MATERIALS AND METHODS 

DNA and random walk

A DNA sequence is a four-letter (A, C, G, T) text 
where A, C, G and T stand for the bases adenine, cytosine, 
guanine and thymine respectively. An example of DNA 
sequence is

…GTGATAGGGTCTCACTCTGT…
This sequence in letter can be converted to a quaternary 
number sequence by changing T into 0, A into 1, C into 2, 
and G into 3, such as

…30310133302021202030….
This genomic sequence is what is contained in 

the whole set of chromosomes in the nucleus of a single 
cell. It is a remarkable phenomenon that DNA sequence 

contained in a cell dictates development of a complete, 
mature organism from one single cell. Scientists have 
attempted to decipher the structure and meaning of DNA 
sequences; however, consensus has not been reached and 
opinions are diverged.

Various mathematical methods have been applied to 
investigate the nature of DNA sequences. The chaos game 
representation of DNA sequences has been reported to 
produce a unique pattern consistently over different parts 
of the genome of an organism. From the image generated 
from the chaos game, characteristics of a DNA sequence 
can be studied, such as finding association between two 
letters.

A popular method to graphically portray the genetic 
information stored in DNA sequences is to use the so-
called “DNA walk” representation [19]. DNA Walk is a 
vectorial representation of DNA sequences transformed 
into a planar trajectory. It consists first in converting the 
DNA text into a binary sequence by coding at a given 
nucleotide positions and at other positions, and then in 
defining the graph of the DNA walk by the cumulative 
variables.

A prevalent method for DNA analysis is related 
to random walk or Brownian motion which led to the 
discovery of long-range correlation in DNA sequences.

The motion of Brownian particle consists of steps of 
movement in a characteristic length in a random direction; 
thus, it’s also called a random walk. Suppose the particle 
moves on the x-axis by jumping +ξ or –ξ every τ seconds, 
then its movement can be plotted as time proceeds. 

Figure 4: Comparison of confidence interval for means of Fractal dimensions. 
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Likewise, DNA sequence can be plotted in a form of time-
series, but the x-axis represents an array of DNA sequence 
instead of time [19]. This way, the profile of letters can be 
preserved along the sequence.

DNA sequence can be defined by two of six possible 
combinations which are purines (A+G), pyrimidines 
(C+T), Imino (A+C), Keto (G+T), Weak (A+T) and Strong 
(G+C). Combination of pyrimidine tract with purines tract 
is long known for analysis of DNA [20]. In this research 
we chose this combination as it helps for better detection 
of the long dependence property in DNA sequences (look 
at [19]).

Figure 5 shows map of whole genomic DNA 
sequences following purine-pyrimidine binary rule: 
change purines (A/G) to -1 and pyrimidines (C/T) to +1. 
This creates a one dimensional ‘DNA walk’ along the 
genome.

In the next section by introducing the Hurst 
exponent we discuss about the correlation of the random 
walks and in special case the DNA walks.

The Hurst exponent and type of motion

In order to analyse the behaviour of a DNA walk, 
the direction of fluctuation (deflection) from one point 
to the next point and in a bigger view the correlation of 
walk should be considered. This behaviour can be studied 
by computing a time varying parameter, called the Hurst 
exponent. The Hurst exponent is an indicator of the long 
term memory of the process and thus, it is the measure of 
the predictability of the DNA walk.

The Hurst exponent can have any value between 
0 and 1, where the value that it gains in each moment 
determines the behaviour of the next deflection in the 
signal.

The ‘DNA walker’ moves either up or down at 
every base pair according to the binary map of the DNA 
sequence. If there is no long-range correlation, the walk 
is a realization of a Brownian motion. Otherwise, we 
observe a ‘walker’ with long-term memory and thus 
a Fractional Brownian motion. Those two processes 
can be characterized by different values of the Hurst 
exponent (H). H = 0.5 for Brownian motion and 
0 < H < 1 · (H ≠ 0.5)  for Fractional Brownian motion. 
In case of Brownian motion, H  = 0.5, the process is 
considered to be truly random (e.g., Brownian motion). It 
means that there is absolutely no correlation between any 
values of the process and it is hard to predict the future of 
process. The analysis of the Hurst exponent for fractional 
Brownian motion can be categorized in two ranges. Firstly, 
if the Hurst exponent has a value between 0 and 0.5, it 
means that the process is anti-persistent i.e. the trend of 
the process at the next instant will be opposite to the trend 
in the previous instant. Secondly, a value of H between 0.5 
and 1 means that the process is persistent i.e., the trend of 
the process at the next instant will be the same as the trend 
in the previous instant.

In this research we compute the value of the Hurst 
exponent for damaged DNA walk and compare its values 
with the normal DNA walk. This comparison helps us 
in to find out about the correlation and predictability of 
damaged versus normal DNA walk.

Figure 5: The DNA walk plot. 
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There are different methods which have been 
developed to estimate the value of H. Rescaled Range 
Analysis (R/S) and DFA are two mostly used methods of 
the Hurst exponent estimation. By the initial analysis of 
the computed Hurst exponent of DNA walks we found out 
that even R/S method shows higher values of the Hurst 
exponent than DFA, the standard deviations are lower for 
R/S so that the confidence intervals are narrower and thus 
in our case R/S method is more precise. Nevertheless, we 
found out that both methods show similar results which 
become closer as the DNA sequence becomes longer.

So in this research we employ R/S analysis method 
for computing the Hurst exponent which is described in 
the next section using a sample.

Computation of the Hurst exponent using R/S 
analysis

R/S analysis is described in many literatures as a 
famous method for calculating the Hurst exponent of time 
series. Applying this concept to the DNA sequence, the 
Hurst exponent can be calculated for DNA walk. The same 
principle which is applied in case of time series also can be 
applied to DNA sequence. The calculations are explained 
here through a sample. Considering:

X(s, l ) = a s

u=1 
5ξ(u) − kξll6  (2)

where s is a letter on the sequence of l letters long, and

kξll =
1

l a l

s=1 
ξ (s )   (3)

Calculated from table 1, the sum of movements for the 
entire sequence of length l would be

a l

s=1 
ξ (s ) = −9385 − 6285 + 9300 + 6122 = −248  (4)

So,

kξll = 1

l a l

s=1 
ξ (s ) = 248

31092
= 0.0079763 ≈ 0  (5)

Thus,

X(s, l ) = a s

u=1 
5ξ (u) − kξll6 ≈ a s

u=1 
5ξ (u) − 06

= a s

u=1 
5ξ (u) 6 (6)

Considering adequate letter conversions,
R( l ) = max X(s, l ) − min X(s, l)  (7)

S = [1
l a l

s=1 
5ξ (s ) − kξll62]1⁄2  (8)

From (6),

R( l ) = max a s

u=1 
ξ (u) − min a s

u=1 
ξ (u)   (9)

Since a s

u=1 
ξ (u)  is the position of a letter s along  

the y-axis, R( l)  is equivalent to the difference between the 
maximum point and the minimum point on the DNA walk; 
thus, from Figure 5,

R( l ) = 175 − (−440) = 615  (10)

From (5) and (8)

S = c1
l a l

s=1 
5ξ (s ) − 062 d

1⁄2
= c1

l a l

s=1 
(ξ (s ))2 d

1⁄2
≈ 1 (11)

So

R⁄S ≈ R( l ) = a l

2
b

H

  (12)

Consequently,

H =
 log R(l)

 log a l

2
b

=
log 615

 log a31092

2
b

≈ 0.663  (13)

Based on the last discussion the value of H  suggests that 
there exists good persistence in the DNA walk as it is 
between 0.5 and 1.

In order to make a comparison, some of published 
values of H  for DNA sequences and the value computed 
in Equation (13) are brought in Table 2.

As it can be seen in Table 2, there are good 
correlations between our governed value in Equation (13) 
and other researchers’ computed values in all cases for 
normal DNA.

Estimation of the Hurst exponent by R/S analysis is 
more laborious than this naive estimation. In this research 
R/S value is calculated for l, l/2, l/4,…, and l/2n, and for 
each division of l, average R/S is calculated again. Then 
a linear regression line is obtained from plotting log(R/S) 
versus logl. Then, the slope of the linear graph is the 
estimated Hurst exponent. In this research we calculate 

Table 1: Probability, number of occurrence (bp), and movement of each nucleotide
Nucleotide Probability Number of occurrence (bp) Movement

A 0.3018 9385 −1

G 0.2021 6285 −1

T 0.2991 9300 +1

C 0.1968 6122 +1

Total 1 31092
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the Hurst exponent in different segments of DNA walk and 
report a signal-shaped plot for it not only an average value. 
Using this method we are able to talk about the memory 
and predictability in the DNA walk.

Spectra of fractal dimension

In this section we explain the fractal dimension as 
a measure of complexity of the fractals and accordingly 
DNA walk.

The concept of fractal dimension is based on 
the concept of generalized entropy of a probability 
distribution, introduced by Renyi [23]. In case of a DNA 
walk with ξmax and ξmin, where the total range of the value 
is divided into N  bin:

N =
ξmax − ξmin

δξ
  (14)

The probability that the value falls into the i-th bin of size 
δξ is computed as:

wi =  limNS ∞ 
Ni

N
  (15)

where Ni equals the number of items the value falls into 
the i-th bin. On the other hand, in case of a DNA walk:

wi =  limlS ∞ 
si

l
  (16)

where si is letter in the i-th bin in the entire sequence of 
length l.
Starting with the letter of order q of the probability wi, the 
Renyi entropy is:

Eq = 1

1 − q
log2a i=1

N w
q

i
  (17)

Note that for q → 1:

E1 = −a N

i=1
wi logwi  (18)

The generalized fractal dimensions of a given 
DNA walk with the known probability distribution are 
defined as:

qאּ =  lim
δξS0

 
1

q − 1

 loga N

i=1
w

q

i

 log δξ
  (19)

where the parameter q ranges from − ∞  to + ∞ . 
Note that for a self-similar (simple) series with equal 
probabilities wi = 1⁄N , equation (19) yields אq = 0א for 
all values of q. Also, note that for a constant value, all 
probabilities except one become equal to zero, whereas the 
remaining probability value equals unity.

For a given DNA walk, the function אq, 
corresponding to the probability distribution of walk, is 
called the fractal spectrum. Indeed, a larger value of the 
fractal dimension for a given DNA walk corresponds to 
the presence of more pronounced fluctuations (sharper 
fluctuations, less expected values of the DNA walk) than 
in the DNA walks for which the value of fractal dimension 
of the same order is less. Furthermore, DNA walks with 
a wider range of fractal dimensions can be termed more 
fractal than DNA walks whose range of fractal dimensions 
is narrower, so that DNA walks with the zero range are 
self-similar (simple) fractals.

Now, if the unexpectedness of an event is defined 
as the inverse of the probability of this event, then steeper 
spectra correspond to the series in which unexpected 
values are more dominant, whereas flatter spectra represent 
those series in which less unexpectedness occurs [9].

Data collection

In order to do the analyses, the sequences of 
interest were collected from 60 patients with skin cancer 
(30 male and 30 female) and 60 subjects in complete 
healthy conditions (30 male and 30 female) that all of 
them are 35 ± 3 years old. It is noteworthy that patients 
are in early steps of melanoma cancer. Patients didn’t 
receive any treatment (chemotherapy, etc.) before their 
recruitment. Before doing the experiments each subject 
was interviewed by a physician to describe the nature of 
experiments and then informed consent was obtained from 
them. It is noteworthy that all procedures were approved 
by the Internal Review Board of the University. Identity of 
all subjects remains confidential.

In this research sample were taken from subjects’ 
skin. Samples were homogenized in the TissueLyser II 
from Qiagen for 1 min at 28 Hz, centrifuged for 60 s at  

Table 2: Some published values of H for DNA sequences
Sequence H Reference

human beta-cardiac myosin heavy 
chain gene 0.67 [21]

human beta globin purine-pyrimidine 
representation 0.708 [22]

synthetic model sequence 0.655 [22]

DNA genetic sequences 0.663 Governed in Equation (13)
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3000 × g and incubated at 56°C for 30 min. After 
centrifugation at 6000 × g for 20 min the clarified samples 
were transferred to MACHEREY-NAGEL 8-well strips 
on the Microlab® STAR and further processed according to 
the MACHEREY-NAGEL NucleoSpin® 8 Plant protocol. 
The MACHEREY-NAGEL NucleoSpin 8 Plant kit was 
used for the extraction of genomic DNA based on vacuum 
filtration. The extraction yields high quality DNA suitable 
for further analyses.

Data analysis

In order to do the analyses a program was written in 
MATLAB to generate the DNA walk for the sequences. 
This program maps the whole genomic DNA sequences 
using purine-pyrimidine binary rule by changing purines 
(A/G) to −1 and pyrimidines (C/T) to +1. This procedure 
creates the DNA walk along genome. After this being 
established the DNA walk is analysed by computing the 
Hurst exponent and Fractal dimension.

ACKNOWLEDGMENT

This work is partially supported by the research 
grant RG30/13 awarded by the Academic Research Fund 
(AcRF) of Ministry of Education (Singapore).

CONFLICTS OF INTEREST

All authors declare no conflicts of interest.

REFERENCES

1. Cakir BÖ, Adamson P, Cingi C. Epidemiology and eco-
nomic burden of non-melanoma skin cancer. Facial Plast 
Surg Clin North Am. 2008; 20:419–422.

2. Rajpar S, Marsden J. ABC of skin cancer. Backwell 
Publishing, UK. 2008.

3. Hendi A, Martinez JC. Atlas of Skin Cancers: Practical 
Guide to Diagnosis and Treatment. Springer, USA. 2011.

4. Segura S, Puig S, Carrera C, Palou J, Malvehy J. 
Development of a two-step method for the diagnosis of mel-
anoma by reflectance confocal microscopy. The American 
Academy of Dermatology Journal. 2009; 61:216–229.

5. Stoecker WV, Li WW, Moss RH. Automatic detection of 
asymmetry in skin tumors. Computerized Medical Imaging 
and Graphics. 1992; 16:191–197.

6. Celebi ME, Iyatomi H, Schaefer G, Stoecker WV. Lesion 
border detection in dermoscopy images. Computerized 
Medical Imaging and Graphics. 2009; 33:148–153.

7. Korotkov K, Garcia R. Computerized analysis of pigmented 
skin lesions: A Review. Artificial Intelligence in Medicine. 
2012; 56:69–90.

8. Celebi ME, Schaefer G. Color medical image analysis. 
Springer. lecture notes in computational vision and biome-
chanics. 2012.

9. Scharcanski J, Celebi ME. Computer vision techniques for 
the diagnosis of skin cancer. Springer, Series in bioengi-
neering. 2013.

10. Flores-Sahagun JH, Vargasa JVC, Mulinari-Brenner FA. 
Analysis and diagnosis of basal cell carcinoma (BCC) via 
infrared imaging. Infrared Physics & Technology. 2011; 
54:367–378.

11. Poljak-Blazi M, Kolaric D, Jaganjac M, Zarkovic K, Skala K,  
Zarkovic N. Specific thermographic changes during Walker 
256 carcinoma development: Differential infrared imaging 
of tumour, inflammation and haematoma. Cancer Detection 
and Prevention. 2009; 32:431–436.

12. Cholewka A, Stanek A, Kwiatek S, Sieroń A, Drzazga Z.  
Does the temperature gradient correlate with the pho-
todynamic diagnosis parameter numerical colour value 
(NCV)? Photodiagnosis and Photodynamic Therapy. 2013; 
10:33–38.

13. Kulish VV. Partial differential equations. 2nd Edn., 
Pearson, Singapore. 2010.

14. Mastrolonardo M, Conte E, Zbilut JP. A fractal analysis of 
skin pigmented lesions using the novel tool of the variogram 
technique. Chaos, Solitons & Fractals. 2006; 28:1119–1135.

15. Hall PN, Claridge E, Smith JDM. Computer screening 
for early detection of melanoma-is there a future? British 
Journal of Dermatology. 1995; 132:325–338.

16. Piantanelli A, Maponi P, Scalise L, Serresi S, Cialabrini A,  
Basso A. Fractal characterisation of boundary irregularity in 
skin pigmented lesions. Medical and Biological Engineering 
and Computing. 2005; 43:436–442.

17. Ng V, Coldman A. Diagnosis of Melanoma with Fractal 
Dimensions. Proceedings of the IEEE Region 10 
Conference on Computer, Communication. Control and 
Power Engineering. 1993; 4:514–517.

18. Ng V, Lee T. Measuring Border Irregularities of Skin 
Lesions Using Fractal Dimensions. Proc. SPIE 2898. 
Electronic Imaging and Multimedia Systems. 1996; 
64–72.

19. Peng CK, Buldyrev S, Goldberger A, Havlin S, Sciortino F, 
Simons M, Stanley HE. Long-range correlations in nucleo-
tide sequences. Nature. 1992; 356:168–170.

20. Yagil G. The over-representation of binary DNA tracts 
in seven sequenced chromosomes. BMC Genomics.  
2004; 5:19.

21. Peng CK, Buldyrev SV, Goldberger AL, Havlin S, 
Sciortino F, Simons M, Stanley HE. Fractal landscape 
analysis of DNA walks. Physicia A. 1992; 191:25–29.

22. Borovik AS, Grosberg AY, Kamenetskii F. Fractality of 
DNA texts. J. Biomol Struct. 1994; 12:655–669.

23. Renyi A. On a new axiomatic theory of probability. Acta 
Mathematica Hungarica. 1906; 6:145–174.


