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Abstract: There are three state estimation fusion methods for a class of strong nonlinear measurement
systems, based on the characteristic function filter, namely the centralized filter, parallel filter, and
sequential filter. Under ideal communication conditions, the centralized filter can obtain the best
state estimation accuracy, and the parallel filter can simplify centralized calculation complexity and
improve feasibility; in addition, the performance of the sequential filter is very close to that of the
centralized filter and far better than that of the parallel filter. However, the sequential filter can
tolerate non-ideal conditions, such as delay and packet loss, and the first two filters cannot operate
normally online for delay and will be invalid for packet loss. The performance of the three designed
fusion filters is illustrated by three typical cases, which are all better than that of the most popular
Extended Kalman Filter (EKF) performance.

Keywords: characteristic function; multi-sensor; fusion method; parallel filtering; sequence filtering

1. Introduction

In practical, filtering methods play an important role in state estimation, such as fault
diagnosis, target tracking, signal processing, computer vision, communication, navigation,
and other fields [1]. The traditional Kalman Filter (KF) has several good advantages, such as
real-time, recursive, and optimal. It is only suitable for linear systems and Gaussian white
noises [2]. However, these conditions are difficult to meet in the actual situation. In 1961,
Bucy established a filtering method for nonlinear system based on Taylor expansion, called
as Extended Kalman Filter (EKF); it was established by the first-order linear approximation
to convert it to the standard KF form [3,4]. However, as the nonlinearity increases, the
performance gradually decreases. In 1995, Julier established the Unscented Kalman Filter
(UKF) based on the unscented transformation [5,6]. In 2009, Arasaratnam and Haykin
established the Cubature Kalman Filter (CKF) based on the approximation of points [7,8].
Both the UKF and CKF use sigma interpolation to design a form similar to Kalman filter, so
as to improve the influence caused by truncation error, and can achieve the second-order
approximation [9–12]. However, no matter EKF, UKF, or CKF, it still cannot show better
performance in strongly nonlinear systems.

When the modeling error of the system is described by the density function, Gor-
don et al. developed the particle filter (PF), employing the density function of the error
as the objective function [13,14]. The PF can solve general non-Gaussian problems [15].
However, since PF is based on conditional probability density, the implementation of PF
relies on a large number of particle samplings, which makes the calculation complexity
high [16]. The degradation of particles during the resampling process will reduce the speed
and accuracy of filters. The later-developed Ensemble Kalman Filter (EnKF) improved
the computational complexity of high-dimensional [17], Maximum Correlation Entropy
Kalman Filter (MCKF) canceled the requirement for white noise [18], etc., but they still
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cannot achieve the desired effect in the strong nonlinear system. Therefore, the design of
Kalman-style filters that can be applied to stronger nonlinear systems has always received
widespread attention, but there are still no breakthrough results.

In order to improve the applicability of Kalman-form filters in strongly nonlinear
systems, for a class of systems with liner state and strongly nonlinear measurement, Zhou
uses the characteristic function to replace the probability density function to design a
characteristic function filter (CFF) [19]. Since the strong nonlinear measurement model
is not required to be changed, therefore, large truncation or approximation errors caused
by serious changes in measurement equations such as EKF, UKF, and CKF are avoided.
However, its application filed is only limited in one-dimensional models. In Reference [20],
Wen designed a filter with general dimensions by establishing new performance index.
At the same time, by linearizing the state model by Taylor expansion, CFFs have been
applied to a system whose state is weakly nonlinear and the measurement is strong
nonlinearity [21].

The CFF, for strong nonlinear measurement system, has three typical application
directions. First, it has been successfully applied when the state model is linear [20]; in
other examples, such as in space target tracking, the state model is established in the
Cartesian coordinate system, and the measurement model is based on the polar coordinate
system, the relationship between the state and the measurement is super nonlinear. Another
possible application in network parameter solving, if the model parameter to be identified
is regarded as a linear state model of random walk, and the neural network model as the
measured value is a super nonlinear function with the parameter to be determined as
the variable. Second, the state model that is weakly nonlinear has also been successfully
applied [21]. This situation is common in industrial systems. Third, the state model with
strongly nonlinear is a problem that needs to be solved, mainly because the linearization
process of the model will cause the greatest loss of information.

While the measured or recognized target has multiple attributes or is interfered
by multiple uncertain factors, it has to employ multiple sensors to complete a common
detection task. In a complex large-area environment, the tracking of a non-cooperative
target needs to be completed by sensors distributed in different places, since the relationship
between the state and the measurement is super nonlinear, and each sensor model is also
strongly nonlinear. Since each sensor and the fusion center are usually connected wirelessly,
it is necessary to design fusion methods with different requirements to coordinate the
tracking task of the target. Under ideal transmission, it is necessary to design a high-
precision fusion filter. If the requirements for real time performance are also additionally
considered, a fast running fusion filter needs to be designed. When there exist delay and
packet loss in the transmission process, it is necessary to design a corresponding fusion
filter, etc. However, the research result about these fusion filters based on CFF is not found.

Consequently, to meet accuracy requirements, the centralized filter will be designed;
To consider real time, parallel filter will be designed; To meet the needs of network packet
loss and delay, sequential filter will also be designed. The prerequisites, advantages, disad-
vantages, and the relationship between the three fusion methods are shown in Figure 1.

The main arrangement of this paper is as follows: Section 1 offers the background
introduction; Section 2 establishes the model; Sections 3–5 give a description of three
fusion methods; Section 6 offers the detailed implementation process of sequential fusion
method; Section 7 discusses the simulation of typical cases; and Section 8 offers the method
summary and outlook.
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2. Problem Description

Consider a type of dynamic system whose state is linear and measured by several
sensors [22]. For example, for a moving target in larger space area, there are multiple
radars on the ground, distributed in different places, to simultaneously observe the target.
The distribution between each radar and the target is far or near, and the transmission of
information may be fast or slow. Moreover, after the radar collects the information, it needs
to be transmitted to the fusion center for data processing, as shown in Figure 2.
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Therefore, a multi-dimensional state space model is established as follows:

X(r) = Γ(r, r− 1)X(r− 1) + λ(r, r− 1)w(r− 1) (1)

Yi(r) = hi(X(r)) + vi(r) (2)

where X(r) ∈ Rn×1 and Yi(r) ∈ Rmi×1 are state vector and measurement vector respec-
tively; w(r) and vi(r) are system noises; Γ(r, r− 1) is the state transition matrix; λ(r, r− 1)
is the known process drive noise; and hi(·) is a continuous smooth nonlinear function [23].
Moreover, i = 1, 2, · · · , N represents the number of sensors.
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The measurement model of Equation (2) can be rewritten as a concise form, as follows:

Y(r) =
[

Y1(r) Y2(r) · · · YN(r)
]T (3)

h(X(r)) =
[

h1(X(r)) h2(X(r)) · · · hN(X(r))
]T (4)

v(r) =
[

v1(r) v2(r) · · · vN(r)
]T (5)

Correspondingly, the multiple nonlinear measurement models in Equation (2) become
the following:

Y(r) = h(X(r)) + v(r) (6)

where Y(r) ∈ Rm, m = m1 + m2 + · · ·+ mN .

3. Centralized Characteristic Function Fusion Filtering Method under
Multi-Dimensional Observation
3.1. Centralized Characteristic Function Filter Design

On the basis of the Equations (1) and (6), design filters in the form of Equations (7)
and (8) are as follows:

X̂(r|r) = Γ(r, r− 1)X̂(r− 1|r− 1) + K(r)[Y(r)− Ŷ(r|r− 1)] (7)

Ŷ(r|r− 1) = h(X̂(r|r− 1)) , (8)

where X̂(r|r) ∈ Rn×1 and Ŷ(r|r− 1) ∈ Rm×1 are state estimate vector and measurement
prediction vector respectively. K(r) ∈ Rn×m is the filter gain matrix to be designed.

3.2. Establishment of Error Characteristic Function Propagation Equation

According to Equations (1) and (7), we get the following:

γ(r− 1) = X(r− 1)− X̂(r− 1|r− 1) (9)

where γ(·), X(·), and X̂(·) represent the state error, the actual state value, and the state
estimate value, respectively. By combining Equations (1), (7), and (9), the error recurrence
equation can be obtained:

γ(r) = Γ(r, r− 1)γ(r− 1) + λ(r, r− 1)w(r− 1)− K(r)[Y(r)− Ŷ(r|r− 1)] (10)

In Equation (10), note the following:

s(r− 1) = Γ(r|r− 1)γ(r− 1) (11)

q(r− 1) = λ(r|r− 1)w(r− 1) (12)

Ỹ(r|r− 1) = Y(r)− Ŷ(r|r− 1) (13)

Then, Equation (10) can be simplified as follows:

γ(r) = s(r− 1) + q(r− 1)− K(r)Ỹ(r|r− 1) (14)

Remark 1. When Γ(·), λ(·), Ỹ(·), and K(·) are all given, In Equation (14), we can see that γ can
be represented by s(·), q(·), and a K(·)Ỹ(·). That is, the probability density function of γ is the
conditional probability density function that depends on s(·) and w(·).

In probability theory, the characteristic function of any random variable has been
clearly given to completely define its probability distribution. Therefore, on the basis of KF,
replace the probability density with characteristic function, and a new form of CFF is used
to study the fusion algorithm.
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For any random variable X, we denote its characteristic function as ψX(t), which is
defined as follows:

ψX(t) = E(eitX) (15)

where, t represents any real number, and E represents the expected value.
In Equation (15), the right side of the equation is given by the Riemann–Steelches

integral:

E(eitX) =
∫ ∞

−∞
eitxdFX(x), (16)

where FX(x) is the distribution function of random variable X.
If the probability density function of the random variable X exists, Equation (16) can

be further written as follows:

E(eitX) =
∫ ∞

−∞
eitx fX(x)dx, (17)

where fX(x) is the probability density function of random variable X.
In Reference [19], two lemmas of characteristic function are given:

Lemma 1. Assuming multidimensional vector x ∈ Rn, z ∈ Rn and ψz(x) is the characteristic func-
tion of the strict system output. Define X = Az + b, where A ∈ Rm×n, b = [b1, b2, · · · , bm]

T ; The
characteristic function expression of random variable X is ψX(t), t ∈ Rm. Then the characteristic
function of X can be expressed as follows.

ψX(t) = E
{

ejtX
}
= E

{
ejt(Az+b)

}
= ejtbE

{
ej(tA)z

}
= ejtbψz(tA) =

m

∑
i=1

ejtbi ψz(tA) (18)

Lemma 2. For two independent random variables, X1 and X2, let X = X1 + X2, X1, X2 ∈ Rn,
and then we get the following:

ψX(t) = ψX1+X2(t) = E
{

ejt(X1+X2)
}
= E

{
ejtX1

}
E
{

ejtX2
}
= ψX1(t)ψX2(t) (19)

Usually, it is more complicated to directly use the probability density function to solve
the analytical solution of the K(r) [24]. Here, we use the characteristic function to replace
the probability density function to solve Equation (14). First, combine the definition of
characteristic function and Equation (18), take the probability density function on both
sides of Equation (14) at the same time, and then take the characteristic function at the
same time, and we can get the following:

ψpγ(r)(t) = ψps(r−1)+q(r−1)−K(r)Ỹ(r|r−1)
(t) , (20)

where p means probability density function, and ψ means characteristic function.
Combining Lemmas 1 and 2, Equation (20) becomes the following:

m

∑
i=1

ejtσi pγ(r) =

[
m

∑
i=1

ejtσi ps(r−1)

][
m

∑
i=1

ejtσi pq(r−1)

]
e−jtK(r)Ỹ(r|r−1) (21)

By combining Lemmas 1 and 2 and Equation (21), the characteristic function propaga-
tion equation of the error recurrence equation is obtained:

ψγ(r)(t) = ψs(r−1)(t)ψq(r−1)(t)e
−jtK(r)Ỹ(r|r−1) (22)
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3.3. Establishment of Filter Performance Index

It is pointed out in References [20,25] that K-L divergence can be used to quantify
the difference between two different probability distributions. On the premise that the
conditional estimation error characteristic function is obtained, and an objective function
is given, the filter design can be carried out by describing the difference between the
conditional estimation error characteristic function and the objective function. Therefore,
the performance index of the characteristic function filter is designed as follows:

M(r) = M0(r) + KT(r)R(r)K(r) (23)

where M(r) represents the filter performance index, M0(r) is the parameter, R(r) is a
positive definite weight matrix, and K(r) is the gain matrix to be estimated.

In Equation (23), let the following be [21]:

M0(r) =

(∫
Λ(t)ψg(r) log

ψg(t)
ψγ(r)(t)

dt

)(∫
Λ(t)ψg(t) log

ψg(t)
ψγ(r)(t)

dt

)T

(24)

where Λ(t) represents the weight function, ψg(t) is the characteristic function of the
objective, and ψγ(r)(t) is the characteristic function of the error.

Remark 2. In Equation (24), Λ(t) is introduced to ensure that M0(r) is bounded. Because M0(r)
is a parameter, in order to ensure that it is non-negative, a transpose is multiplied to the right-hand
side in Equation (24). For example, when the target is measured, the distance is non-negative, and
the solution to the radial distance is in the form of a square, so the non-negativity of the parameters
is guaranteed by multiplying by a transpose. The term log in Equation (24) can be understood as
information entropy. The closer the values of ψg(t) and ψγ(r)(t) are, the better the performance of
the filter. Moreover, in Equation (8), the measurement model of the system is multi-dimensional, so
the objective function is in the form of a matrix. Then in Equation (23), M(r) is a multi-dimensional
form, so the gain matrix K(r) is also multi-dimensional.

3.4. Establishment of Equation for Solving Filter Gain Matrix K(r)

Bring Equation (22) into Equation (24), and then expand Equation (24). In the ex-
panded Equation (24), let the following be:

σ(r− 1) =
∫

Λ(t)ψg(t) logψg(t)dt−
∫

Λ(t)ψg(t) logψs(r−1)(t)dt
−
∫

Λ(t)ψg(t) logψq(r−1)(t)dt
(25)

δ(r− 1) =
∫

Λ(t)ψg(t)jtdt (26)

Combining Equations (23)–(26), Equation (23) can be rewritten as follows:
M(r) = σ(r)σT(r) + σ(r)ỸT(r|r− 1)KT(r|r− 1)δT(r) + δ(r)K(r)Ỹ(r|r− 1)σT(r)

+δ(r)K(r)Ỹ(r|r− 1)ỸT(r|r− 1)KT(r)δT(r) + KT(r)R(r)K(r)
(27)

By solving the first-order partial derivative of Equation (27) and taking it to be zero,
we have the following:

∂M(r)
∂K(r)

= δT(r)σ(r)ỸT(r|r− 1) + δ(r)δT(r)K(r)Ỹ(r|r− 1)ỸT(r|r− 1 + 2R(r)K(r) = 0 , (28)

Then, taking the second-order partial derivative of Equation (27), we have the following:

∂2M(r)
∂K2(r)

= δT(r)δ(r)Ỹ(r|r− 1)ỸT(r|r− 1) + 2R(r) > 0 (29)

In Equation (29), when the second-order partial derivative is greater than zero, the
solution of K(r) in Equation (28) is the minimum value. Bring the concentrated gain matrix
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K(r) into Equation (27), and the obtained estimated value is the optimal estimated value of
the centralized fusion method.

Remark 3. In Equation (29), since δ(·) ∈ Rn×1, Ỹ(·) ∈ Rm×1, obviously δT(·)δ(·) > 0 and
Ỹ(·)ỸT(·) > 0. Since R(·) is positive definite, the second-order partial derivative of Equation (29)
is greater than zero. At this time, the filter gain matrix obtained by Equation (28) is the optimal
solution under the minimized performance index M.

4. Parallel Characteristic Function Fusion Filtering under Multi-Dimensional
Observation
4.1. Parallel Filter Design

When the distribution position of each sensor and the distance from the fusion center
is different, the centralized use of these sensors will increase the communication cost [26].
Moreover, as the number of sensors, N, increases, the filtering iteration process will become
more complicated. Therefore, a class of distributed parallel filters is designed. For each
sensor, there are the following:

X̂(r|r) = Γ(r, r− 1)X̂(r− 1|r− 1) + Ki(r)[Yi(r)− Ŷi(r|r− 1)] (30)

Ŷi(r) = hi(X̂(r|r− 1)) (31)

where i represents the ith sensor. Based on a network composed of multiple distributed
sensors, design a parallel characteristic function filter as shown in Equation (32).

X̂(r|r) = Γ(r, r− 1)X̂(r|r− 1) +
[

K1(r) · · · KN(r)
] Y1(r)− Ŷ1(r|r− 1)

...
YN(r)− ŶN(r|r− 1)

 (32)

The parallel fusion filtering process is shown in Figure 3.

Figure 3. Parallel fusion filtering process.

4.2. Solve Each Gain Matrix Ki(r) in the Parallel Filter Group

Follow and repeat the process of Sections 3.2–3.4. This subsection establishes an
iterative numerical solution algorithm for the gain matrix, Ki(r), based on the fixed point
principle [27,28]. Since the numerical iterative solution method in this paper is based on
the fixed point equation, if the problem of solving a certain equation can be converted into
a fixed point problem, then it can be solved numerically. The fixed point is the point where
D(c) = c. That is, for any equation D(c), if there is D(c) = c, then the fixed point equation
of D(c) can be written in the form of c = d(c). Synthesize the above analysis, combined
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with Equation (28), and construct a fixed point equation Kit(r) = d(Kit(r)), to iteratively
solve the Ki(r):

Kit+1(r) = R−1
i (r)δT

i (r)σi(r)ỸT
i (r|r− 1)

+R−1
i (r)δi(r)δ

T
i (r)Kit(r)Ỹi(r|r− 1)ỸT

i (r|r− 1)
(33)

where t = 0, 1, 2, · · · , Ti(r) represents the iteration steps. Therefore, based on the ith group
of sensors, the gain matrix, Ki(r), of its characteristic function filter is obtained, which is
substituted into the parallel filter Equation (32), and the filter in the form of Equation (34)
is obtained.

X̂(r|r) = X̂(r|r− 1) +
N

∑
i=1

KTi(r)
(r)[Y(r)− Ŷi(r|r− 1)] (34)

The estimated value obtained at this time is the optimal solution of the parallel fusion
method.

5. Sequential Characteristic Function Fusion Filtering under Multi-Dimensional
Observation

Considering that the distance between the sensor and the fusion center is different,
the problem of transmission data delay and even packet loss due to network bandwidth
constraints will occur. Then, on the basic of Equation (2), considering the reasons for
network delay and packet loss, the measured value of the sensor data transmitted to the
fusion center through the wireless network is marked as follows and the sensor fusion
process is shown in Figure 4 [29]:

Yj1(r), Yj2(r), · · · , Yji (r), · · · , YjL(r) L ≤ N

{j1, j2, · · · , ji, · · · , jL} ⊆ {1, 2, · · · , i, · · · , N} L ≤ N

where, N means that we share N sets of sensors for measurement; L is the number of
sensors that transmit data to the fusion center, after taking into account packet loss; and ji
is the order in which the sensors arrive at the fusion center.
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Figure 4. Schematic diagram of sensor fusion.

Remark 4. In this paper, we divide packet loss into two types. One is the data not transmitted to
the fusion center in time, and the other is indeed lost data.
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5.1. Sequential Filter Design

Considering the phenomenon of packet loss, it is assumed that the order of the
measurement from each sensor arrives at the fusion center is 1, 2, · · · , L (L ≤ N). Design a
sequential characteristic function fusion filter as follows:

X̂ji (r|r) = X̂(j−1)i
(r|r) + Kji (r)[Yji (r)− Ŷji (r|r− 1)] (35)

Ŷji (r) = hji (X̂(j−1)i
(r|r)) (36)

where Yji (r) ∈ Rmji
×1, Kji (r) ∈ Rn×mji , and ji indicate that the order of group i sensors

reaching the fusion center is j.

Remark 5. The sequential consideration of the order of information arrival, and first come first
fusion. So use ji to indicate that the data collected by the i-th sensor is the j-th transmission to
the fusion central. Moreover, mji represents the dimensionality of the observation value of the i-th
sensor. Because the observation is multi-dimensional and the number of sensors is also multiple,
thus the observation value of each sensor is also multi-dimensional. In order to add distinguish and
clearly describe, we use mji to represent it.

5.2. The Establishment of Error Recurrence Equation

Follow and repeat the process of Section 3.2, to get the following:

γ(j−1)i
(r) = X(j−1)i

(r)− X̂(j−1)i
(r|r) , j = 1, 2, · · · , L (37)

Then the error recurrence equation is as follows:

γji (r) = Γ(r, r− 1)γ(j−1)i
(r) + λ(r, r− 1)w(j−1)i

(r)− Kji (r)Ỹji (r|r− 1) (38)

Equation (38) simplifies to become the following:

γji (r) = sji−1(r) + qji−1(r)− Kji (r)Ỹji (r|r− 1) , (39)

Take the probability density function and characteristic function on both sides of
Equation (39), we can get the following:

m

∑
L=1

(ejtσL peji
(r)) =

[
m

∑
L=1

(ejtσL ps
(j−1)i

(r))

][
m

∑
L=1

(ejtσL pq(j−1)i
(r))

]
e−jtK(r)Ỹji

(r|r−1) (40)

Combine the two lemmas given in Section 3 and Equation (39), and there is the
following:

ψγji
(r)(t) = ψs(j−1)i

(r)(t)ψq
(j−1)i

(r)(t)e
−jK(k+1)Ỹji

(r|r−1) (41)

5.3. Establishment of Filter Performance Index

Follow and repeat the process of Sections 3.3 and 3.4, and the filter performance index
can be described as follows:

Mji (r) = M0(r) + KT
ji (r)Rji (r)Kji (r) (42)

Then Mji can be rewritten as follows:

Mji = σji σ
T
ji + σji Ỹ

T
ji KT

ji cT
ji + δji Kji Ỹji σ

T
ji + δji Kji Ỹji Ỹji

TKji
Tδji

T + KT
ji Rji Kji (43)

Solve the first two-order partial derivative of Equation (43). The second-order partial
derivative is greater than zero, and the filter gain matrix obtained by first-order partial is
the optimal solution under the minimized performance index, Mji .
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Remark 6. When the performance index has multiple poles, traditional solving methods may lead to
local extremes and cause large errors, so we still introduce the fixed point equation as in Section 4.2.

5.4. Establishment of Equation for Solving Gain Matrix Kji (r)

According to Section 4.2, construct a fixed point equation like Kji (r) = d(Kji (r)), to
iteratively solve the filter gain matrix:

Kjit+1 = R−1
ji

δT
ji σji Ỹ

T
ji + R−1

ji
δji δ

T
ji KjitỸji Ỹ

T
ji (44)

where t = 0, 1, 2, · · · , Tji (r) represents the iteration steps of the fixed point method.

Remark 7. Initialize Equation (44) as Kji0(r) = K
(j−1)i Tji

(r)(r). In the fixed point equation, set a

threshold β; if Kjit
(r) satisfies Equation (45), the iterative process is ended.∥∥∥Kjit

(t)
∥∥∥

2
−
∥∥∥K(j−1)i

(t)
∥∥∥

2∥∥∥Kjit
(t)
∥∥∥

2

≤ β (45)

Then Equation (35) can be rewritten as follows:

X̂ji (r|r) = X̂(j−1)i
(r|r) + Kji Tji

(r)(r)ỹji (r|r− 1) (46)

Until the L-th sensor transmits the information to the fusion center and completes
filtering, the estimated value X̂Li (r|r) obtained at this time is the optimal estimated value
of the sequential fusion method.

6. Implementation Process of Sequential Characteristic Function Fusion Filtering
Algorithm under Multi-Dimensional Observation

(1) Initialization:

X̂0i (r|r) = Γ(r, r− 1)X̂0i (r− 1|r− 1) (47)

(2) Set arrival order:
At the r moment, assume that the measured value of the sensor transmitted to the

fusion center via the wireless network is Y1(r), Y2(r), · · · , Yi(r), · · · , YL(r), and then we get
the following:

X̂(j−1)i
(r|r) = E{X(j−1)i

(r)|X(j−1)i
(0), Y(j−1)i

(1), · · · , Y(j−1)i
(r− 1); Y1i (r), Y2i (r), · · · , Y(j−1)i

(r)} , (48)

(3) Filter design:
Step 1: Design filters based on Equations (35) and (36).

X̂ji (r|r) = X̂(j−1)i
(r|r) + K(j−1)i

(r)Ỹ(j−1)i
(r|r− 1) , (49)

Ŷji (r|r− 1) = hji (X̂ji (r|r)) (50)

Step 2: Establish error recurrence equation according to Equation (39).

γji (r) = s(j−1)i
(r) + q(j−1)i

(r)− Kji (r)Ỹji (r|r− 1) (51)

Step 3: Solve the error characteristic function propagation equation according to two
lemmas.

ψγji
(r)(t) = e−jtKji

(r)Ỹji
(r|r−1)ψs

(j−1)i
(r)(t)ψq(j−1)i

(r)(t) (52)

Step 4: Obtain the performance index function according to Equation (42).

Mji (r) = M0(r) + KT
ji (r)Rji (r)Kji (r). (53)
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Step 5: Establish the filter gain solving equation according to Equation (43).

∂Mji
∂Kji

= 0,
∂2Mji

∂K2
ji

> 0 (54)

Step 6: Solve the filter gain matrix Kit+1
(r) according to Equation (44).

Kjit+1 = R−1
ji

δT
ji σji Ỹj i + R−1

ji
δT

ji σji KjitỸji Ỹ
T
ji (55)

Step 7: Substitute the solved Kji (r) into Equation (49).
(4) Repeat the above process.

Step 1: Obtain the state prediction value of the first sensor arriving at the fusion center

X̂1i (r|r− 1) = Γ(r, r− 1)X̂1i (r− 1|r− 1) (56)

Step 2: Solve the filter gain of the first sensor that reaches the fusion center K1i (r)Ỹ1i (r|r− 1).
Step 3: Calculate the state estimate value of the first sensor that reaches the fusion

center.
X̂1i (r|r) = Γ(r, r− 1)X̂1i (r− 1|r− 1) + K1i (r)Ỹ1i (r|r− 1) (57)

Step 4: Take the first arrival state estimation value X̂1i (r|r) obtained in Step 3 as the
second arrival state prediction value.

X̂2i (r|r− 1) = X̂1i (r|r) (58)

After another round of cyclic Equations (56)–(58), the state estimation value of the
second sensor that reaches the center can be obtained, denoted as X̂2i (r|r).

Step 5: Repeat the above steps, until all measurements in the L(L ≤ N) group are
transmitted to the fusion center, the iteration ends. The corresponding estimated value
is the optimal estimated value of the sequential characteristic function filtering. That is
X̂(r|r) = X̂Li (r|r).

7. Simulation

This paper uses three typical nonlinear systems to illustrate the effectiveness of the
proposed three fusion methods. The first category is to imitate actual target tracking, the
second category is from real industrial devices, and the third category is a general nonlinear
model. Table 1 is used to present the application of three typical cases and the reasons why
these cases were selected.

Table 1. Typical cases.

Case Typical Case Application Reason for Selecting This Case

Case 1 Space moving target tracking system

Generally, the measurement of space targets is carried out in the polar
coordinate system, and it is usually necessary to perform a unified
transformation in the rectangular coordinate system before further

data processing. The method based on characteristic function in this
paper, avoids the error caused by conversion and also avoids the

rounding error caused by the linearization process.

Case 2 Industrial device measurement system

For high-precision industrial devices, the measurement equations
must be complicated, and may be super-nonlinear equations. In
order to obtain very accurate parameter results, the coordinated

measurement of multiple sensors can be used.

Case 3 General nonlinear system In order to make the fusion method universal, a general case is used
to demonstrate the effectiveness of the proposed methods.
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Case 1: Given a class of target tracking system, which is composed by



X1(r)
X2(r)
X3(r)
X4(r)
X5(r)
X6(r)

 =



1 0 0 T 0 0
0 1 0 0 T 0
0 0 1 0 0 T
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1





X1(r− 1)
X2(r− 1)
X3(r− 1)
X4(r− 1)
X5(r− 1)
X6(r− 1)

+



w1(r− 1)
w2(r− 1)
w3(r− 1)
w4(r− 1)
w5(r− 1)
w6(r− 1)

 (59)

 Y1(r)
Y2(r)
Y3(r)

 =


√

X1
2(r) + X22(r) + X32(r)

ar cos X3(r)/
√

X1
2(r) + X22(r) + X32(r)

arctanX2(r)/X1(r)

+

 v1(r)
v2(r)
v3(r)

 (60)

where X1, X2, X3, X4, X5, X6 represent the position and velocity on the x, y, z axes, and
Y1, Y2, Y3 respectively represent the radial distance between the target and sensors, and the
two direction angles formed by the coordinate axis.

In this case, three sensors are used to carry out the experiment. We simulate different
measurement environments by setting different measurement noise covariance. The measure-
ment noise variances of the three sensors are, respectively, Qv1 = diag([0.004, 0.004, 0.004]),
Qv2 = diag([0.003, 0.003, 0.004]), Qv3 = diag([0.002, 0.002, 0.003]). Set the process noise
covariance as Qw = diag([0.004, 0.003, 0.003, 0.002, 0.002, 0.001]) and initial conditions as

x(0) = [20, 5, 12, 5, 8, 10]T . Given objective characteristic function ψg(t) = e−0.0005tItT
and filter

weight function R(k) = diag([5 × 10−5, 4× 10−5, 3× 10−5, 3× 10−5, 2× 10−5, 2 × 10−5]).

Moreover, given a weight function Λ(t) = [0.08eitµ1−tQ1tT
, 0.06eitµ2−tQ2tT

, 0.05eitµ3−tQ3tT
]
T

that can guarantee the filter performance parameters are bounded, where µ1 = 0.0001,
µ2 = 0.0001, µ3 = 0.00015, Q1 = 0.0005I, Q2 = 0.0004I, Q3 = 0.0003I, I is the unit matrix.

We perform characteristic function filtering on the three sensors, respectively. In order
to make the result analysis clearer, we only give the result graph of x1 in Case 1, and focus
on it. The analysis of state x2–x6 is the same as x1, and the numerical results are all given
in the table. The estimation error of x1 is shown in Figure 5.
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Due to the random noise generated in the simulation experiment, we obtain the Monte
Carlo average value of 100 times for the filtering result, and the mean square error is
recorded in Table 2.
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Table 2. Mean square error.

Sensors CFF Sensor1 CFF Sensor2 CFF Sensor3

Mean square error 0.07864 0.07953 0.06221
CFF, characteristic function filter.

In Table 2, it can be seen that the accuracy of each sensor is different. Then select the
highest precision sensor, and perform CFF and EKF, to further study the filtering effect of
CFF in nonlinear systems, as shown in Figure 6.
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From Figure 6, we can clearly see that the CFF filtering effect is better than EKF. To
better analyze the results, we recorded estimation error in Table 3, and also recorded the
accuracy improvement ratio of using the most accurate sensor for CFF, as compared to
EKF.

Table 3. Case1 CFF and EKF error comparison.

State
Value

CFF
Sensor1

CFF
Sensor2

CFF
Sensor3

(best)
EKF CFF Accuracy

Increase Ratio

x1 0.04892 0.04762 0.04692 0.04954 5.5839%
x2 0.05691 0.05572 0.05120 0.06452 26.0156%
x3 0.06618 0.06650 0.05993 0.06732 12.3311%
x4 0.07436 0.07894 0.07642 0.07991 4.8687%
x5 0.09174 0.09501 0.09402 0.09853 4.7969%
x6 0.10972 0.10150 0.10618 0.11985 12.8744%

From the experimental results in Table 3, it can be analyzed that the effect of using
CFF is better than that of EKF in nonlinear systems.

To further improve the estimation accuracy of CFF in nonlinear systems, we study the
fusion method based on CFF. When using sequential fusion filtering method, the accuracy
of the sensor is carried out, from low to high, to simulate the order in which sensors
transmit information to the fusion center, as shown in Figure 7.
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It can be directly observed from Figure 7 that the estimation accuracy of the centralized
fusion method is significantly higher than that of the parallel fusion method, and higher
than or even close to the sequential fusion method. To make the results more convincing,
we also recorded the numerical results, as shown in Table 4.

Table 4. Case 1 fusion method error comparison.

State Value CFF
Sensor3 Centralized Accuracy

Increase Ratio Parallel Accuracy
Increase Ratio Sequence Accuracy

Increase Ratio

x1 0.04692 0.04017 16.8034% 0.04313 8.7874% 0.04271 9.8572%
x2 0.05120 0.04268 19.9625% 0.04835 5.8945% 0.04352 17.6471%
x3 0.05993 0.04605 30.1412% 0.05471 9.5412% 0.04782 25.3241%
x4 0.07642 0.06484 17.8593% 0.06915 10.5134% 0.06509 17.4067%
x5 0.09402 0.07812 20.3533% 0.09025 4.1773% 0.08504 10.5597%
x6 0.10618 0.08470 25.3601% 0.09724 9.1937% 0.08612 23.2931%

From the data in Table 4, it can be concluded that the filtering effect of the three fusion
methods is better than that of using only one sensor, and the centralized fusion method
has the highest accuracy.

For space-moving targets, especially high-speed moving targets, when the target’s
velocity increases, the target’s motion state will change, and the nonlinear characteristics of
the system will also increase. In order to further explore the filtering effect of the fusion
method in nonlinear system, we further study by changing the initial velocity and the
given characteristic function, as shown in Table 5.

Table 5. Case 1 variable parameter error comparison.

x4(0) x5(0) x6(0) ψg(t) CFF Mean
Square Error

EKF Mean
Square Error

CFF Accuracy
Increase Ratio

Centralized Mean
Square Error

Centralized
Accuracy

Increase Ratio

5 8 10 e−0.0002tItT 0.0621 0.0663 6.7633% 0.0637 2.5765%
5 8 10 e−0.0010tItT 0.0823 0.0899 9.2345% 0.0864 4.9818%

10 15 20 e−0.0015tItT 0.0876 0.1004 14.6119% 0.0995 13.5845%
15 20 25 e−0.0020tItT 0.1027 0.1273 27.9533% 0.1192 16.0662%
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It can be analyzed from the data in Table 5 that, with the enhancement of system
nonlinearity, the filtering effect of CFF is significantly better than that of EKF. At the
same time, no matter which method of multiple sensor fusion, with the enhancement of
nonlinearity, it is better than the filtering effect of using only a single sensor.

Remark 8. When conducting multiple sets of experiments, we only discussed the changes of the
initial velocity and the target characteristic function in this case. This is because, when the velocity
is very large, the measurement equation is almost a super-nonlinear equation, so the change of
velocity can cause a very obvious change in the degree of system nonlinearity. We also tried to
change µ and Q in the weight function Λ(t), but we found that the change has very little effect on
the result. This is because the appearance of Λ(t) is to ensure that M0 is bounded, so as long as M0
is bounded, ans changes in µ and Q will not significantly affect the results.

Case 2: Given a parameter identification system for a type of industrial device.

In the actual measurement of industrial devices, as shown in Figure 8, the state
equations are generally not complicated, but in order to obtain very accurate parts size
and other parameters, the measurement equations are often very complicated and exhibit
nonlinear characteristics. Therefore, multiple sensor fusion methods are usually considered
to further improve the estimation accuracy of parameters, especially in nonlinear systems
that require very high accuracy.[

X1(r)
X2(r)

]
=

[
1 T
0 1

][
X1(r− 1)
X2(r− 1)

]
+

[
w1(r− 1)
w2(r− 1)

]
(61)

[
Y1(r)
Y2(r)

]
=

[
sin(αX1(r)) + cos(αX2(r))
sin(βX2(r)) + cos(βX1(r))

]
+

[
v1(r)
v2(r)

]
(62)

where X1, X2 are the parameters of industrial devices; Y1, Y2 are the measurement param-
eters of industrial devices; and α and β are adjustable coefficients. Given that the mea-
surement noise variances of the three sensors are respectively Qv1 = diag([0.004, 0.004]),
Qv2 = diag([0.003, 0.003]), Qv3 = diag([0.002, 0.003]), set the process noise covariance as
Qw = diag([0.002, 0.003]) and initial conditions as X(0) = [0.0002, 0.0003]T . The objec-

tive characteristic function is ψg(t) = e−0.0005tItT
, and the filter weight function R(k) =

diag([4 × 10−5, 3 × 10−5]). Moreover, given a weight function Λ(t) = [0.65ejtµ1−tQ1tT
,

0.05ejtµ2−tQ2tT
]
T

that can guarantee the filter performance parameters are bounded, where
µ1 = 0.0001, µ2 = 0.0001, Q1 = 0.0005I, Q2 = 0.0004I, I is the unit matrix.
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where 1 2,X X  are the parameters of industrial devices; 1 2,Y Y  are the measurement param-
eters of industrial devices; and α  and β are adjustable coefficients. Given that the meas-
urement noise variances of the three sensors are respectively  = diag([0.004,0.004])v1Q , 

 = diag([0.003,0.003])v2Q ,  = diag([0.002,0.003])v3Q , set the process noise covariance as 

Figure 8. Industrial device model diagram.

The detailed analysis steps are the same as in Case 1. Thus, in Cases 2 and 3, we did
not give a very detailed description as in Case 1, but simplified the expression. When
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α = β = 0.1, the three sensors perform CFF separately and, at the same time, perform EKF
on the sensor with the highest accuracy. The results are shown in Figures 9 and 10.
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Similarly, in order to make the results more clearly presented, all numerical results are
recorded in Table 6.

Table 6. Case 2 CFF and EKF error comparison.

State Value CFF
Sensor1

CFF
Sensor2

CFF
Sensor3 EKF CFF Accuracy

Increase Ratio

x1 0.0678 0.0647 0.0702 0.0815 25.9660%
x2 0.0739 0.0698 0.0721 0.0846 21.2034%

From the data in Table 6, we can conclude that the filtering effect of CFF is significantly
better than that of EKF. We also compared the three fusion methods based on CFF, as shown
in Figures 11 and 12.
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The numerical results are also compared with the estimated results of the single sensor
with the highest accuracy. All numerical results are recorded in Table 7.

Table 7. Case 2 fusion method error comparison.

State Value
CFF

Sensor
(best)

Centralized Accuracy
Increase Ratio Parallel Accuracy

Increase Ratio Sequence Accuracy
Increase Ratio

x1 0.0647 0.0619 4.5234% 0.0632 2.3734% 0.0621 4.1868%
x2 0.0698 0.0674 3.5608% 0.0686 1.7492% 0.0679 2.7982%
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From Table 7, we can get that, no matter which fusion method, the filtering effect is
better than that of using only a single sensor. In order to further explore the filtering effect
of the fusion method in the nonlinear system, we further study by changing α, β, and the
given characteristic function ψg(t), as shown in Table 8.

Table 8. Case 2 variable parameter error comparison.

α β ψg(t) CFF Mean
Square Error

EKF Mean
Square Error

CFF Accuracy
Increase Ratio

Centralized Mean
Square Error

Centralized Accuracy
Increase Ratio

0.05 0.05 e−0.0001tItT 0.0583 0.0641 9.9485% 0.0557 4.6678%
0.5 0.5 e−0.0005tItT 0.0624 0.0739 18.4295% 0.0571 9.2819%
1 5 e−0.0020tItT 0.1062 0.1294 21.8456% 0.0913 16.3198%
5 10 e−0.0050tItT 0.1375 0.1782 29.6000% 0.1149 19.6693%

From the data in the Table 8, it can be seen that, when the measurement model of the
system is a more complex nonlinear model, the multi-sensor fusion algorithm based on
CFF can obtain higher accuracy. At the same time, no matter which fusion method is used,
the estimation accuracy is higher than that of only one sensor.

Case 3: Given a general nonlinear system

In case 3, the characteristic function fusion filtering algorithm is further extended to
systems with weakly nonlinear state models. In order to better describe weak nonlinearity,
we introduce trigonometric functions in the state equation. The general nonlinear model is
shown as follows.[

X1(r)
X2(r)

]
=

[
0.1X1(r− 1) + 0.2X2(r− 1)

sin(X1(r− 1)) + cos(X2(r− 1))

]
+

[
w1(r− 1)
w2(r− 1)

]
(63)

[
Y1(r)
Y2(r)

]
=

[
sin(αiX1(r)) + cos(βiX2(r))

X1(r) + X2(r)

]
+

[
v1(r)
v2(r)

]
(64)

where X1, X2 are state vectors; Y1, Y2 are measurement vectors; and αi and βi are adjustable
coefficients. Given that the measurement noise variances of the three sensors are respectively
Qv1 = diag([0.001, 0.001]), Qv2 = diag([0.002, 0.002]), and Qv3 = diag([0.001, 0.002]), set
process noise covariance as Qw = diag([0.002, 0.002]) and initial conditions as X(0) =

[0.001, 0.002]T . The objective characteristic function is ψg(t) = e−0.0005tItT
, and filter weight

function is R(k) = diag
{

3× 10−5, 3× 10−5}. Moreover, given a weight function Λ(t) =

[0.06ejtµ1−tQ1tT
, 0.03ejtµ2−tQ2tT

]
T

that can guarantee the filter performance parameters are
bounded, where µ1 = 0.002, µ2 = 0.003, Q1 = 0.0005I, Q2 = 0.0004I, I is the unit matrix.

In Case 3, three sensors are also used for simulation, and the parameters of the three
sensors are set as α1 = β1 = 0.1, α2 = β2 = 0.2, α3 = β3 = 0.3. The three sensors perform
CFF separately and, at the same time, perform EKF on the sensor with the highest accuracy.
The results are shown in Figures 13 and 14.
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Figure 14. Case 3 x2 single sensor estimation error.

Similarly, all numerical results are recorded in Table 9.

Table 9. Case 3 CFF and EKF error comparison.

State Value CFF Sensor 1 CFF Sensor 2
(best) CFF Sensor 3 EKF CFF Accuracy

Increase Ratio

x1 0.0963 0.0887 0.0923 0.1032 16.3472%
x2 0.0805 0.0761 0.0892 0.0995 30.7490%

It can be obtained from the data in Table 9 that, for general nonlinear equations, CFF
can still obtain better filtering effects than EKF. Three fusion methods based on CFF are also
compared, as shown in Figures 15 and 16. Moreover, the numerical results are compared
with the estimated results of the single sensor with the highest accuracy. All numerical
results are recorded in Table 10.
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Figure 16. Case 3 x2 fusion estimation error.

Table 10. Case 3 fusion method error comparison.

State Value
CFF

Sensor
(best)

Centralized
Accuracy
Increase

Ratio
Parallel

Accuracy
Increase

Ratio
Sequence

Accuracy
Increase

Ratio

x1 0.0887 0.0721 23.0236% 0.0867 2.3068% 0.0757 17.1731%
x2 0.0761 0.0718 5.9889% 0.0741 2.6990% 0.0724 5.1105%

From the data in the Table 10, it can be seen that, for the general nonlinear measure-
ment equation, the multi-sensor fusion algorithm based on CFF can obtain higher accuracy.
It also shows that three fusion methods based on CFF not only achieve good filtering effects
in systems where the state is linear and measured as nonlinear, but also in systems where
the state model is weakly nonlinear.
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Generally speaking, in the actual system, according to different requirements, such as
high precision, being easy to implement, or as close to the actual situation as possible, we
can choose different fusion methods for state estimation.

8. Conclusions

In this study, three fusion filters were designed for a class of strong nonlinear mea-
surement systems based on CFF, namely as centralized, parallel, and sequential. They
were designed to meet the different needs of the systems, such as accuracy, being easy
to implement, or matching with the actual environment. The performances of the three
fusion filters are illustrated by three typical cases. Since EKF is the most popular method
in the nonlinear system, we compared CFF with EKF. The results show that, under the
same conditions, all filters show good performance, but the performance of the three
fusion filters we designed is better than the most popular EKF performance, respectively.
The fundamental reason is that the performance of CFF is better than that of EKF: (1) On
the basic of introducing new performance indicators, the proposed CFF avoids the large
truncation error caused by Taylor expansion like EKF. (2) CFF relaxes the requirements for
the statistical characteristics of the error, and EKF’s requirement for the ideal white noise of
the error is replaced by the characteristic function of the error in the CFF.

Motivated by the results of this paper, we need to further think about the following
issues: (1) These results were all established under the condition that the characteristic
function of the target was given. In complex situations, how to make an accurate character-
istic function or whether the characteristic function of the actual system can be obtained
through a certain solution method still needs further study. (2) We imitated the EKF to
solve the weakly nonlinear state, but in the face of a large number of strongly nonlinear
state models, how to design a CFF model suitable for strong nonlinearity is still worth
studying. (3) The fusion methods in this paper were all established under the condition
that the error characteristic functions were independent. How to design the corresponding
CFF when the error characteristic functions are related is worthy of further study.
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