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BMDExpress Data Viewer - a visualization tool
to analyze BMDExpress datasets
Byron Kuoa, A. Francina Webstera,b, Russell S. Thomasc and Carole L. Yauka*
ABSTRACT: Regulatory agencies increasingly apply benchmark dose (BMD) modeling to determine points of departure for risk
assessment. BMDExpress applies BMDmodeling to transcriptomic datasets to identify transcriptional BMDs. However, graphing
and analytical capabilities within BMDExpress are limited, and the analysis of output files is challenging. We developed a web-
based application, BMDExpress Data Viewer (http://apps.sciome.com:8082/BMDX_Viewer/), for visualizing and graphing
BMDExpress output files. The application consists of “Summary Visualization” and “Dataset Exploratory” tools. Through analysis
of transcriptomic datasets of the toxicants furan and 4,4′-methylenebis(N,N-dimethyl)benzenamine, we demonstrate that the
“Summary Visualization Tools” can be used to examine distributions of gene and pathway BMD values, and to derive a potential
point of departure value based on summary statistics. By applying filters on enrichment P-values and minimum number of
significant genes, the “Functional Enrichment Analysis” tool enables the user to select biological processes or pathways that
are selectively perturbed by chemical exposure and identify the related BMD. The “Multiple Dataset Comparison” tool enables
comparison of gene and pathway BMD values across multiple experiments (e.g., across timepoints or tissues). The “BMDL-BMD
Range Plotter” tool facilitates the observation of BMD trends across biological processes or pathways. Through our case studies,
we demonstrate that BMDExpress Data Viewer is a useful tool to visualize, explore and analyze BMDExpress output files.
Visualizing the data in this manner enables rapid assessment of data quality, model fit, doses of peak activity, most sensitive
pathway perturbations and` other metrics that will be useful in applying toxicogenomics in risk assessment. © 2015 Her Majesty
the Queen in Right of Canada. Journal of Applied Toxicology published by John Wiley & Sons, Ltd.
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Introduction

Chemical risk assessment aims to establish acceptable levels of
exposures based on toxicological dose–response studies. Tradi-
tional methods that apply the lowest-observed-adverse-effect-
level or no-observed-adverse-effects-level, may be limited by the
selection of doses, sample sizes required to detect subtle effects
and by technical and biological variability that limits ability to
detect significant changes (Crump, 1984). In contrast, benchmark
dose (BMD) modeling fits experimental dose–response data with
a statistical model to identify a defined level of response relative
to a control group. BMD was developed to overcome the limita-
tions of the lowest-observed-adverse-effect-level/no-observed-ad-
verse-effects-level approach (Crump, 1984). Regulatory agencies
have increasingly adopted BMD modeling for human health risk
assessment (Budtz-Jorgensen et al., 2013; Health Canada, 2013).

Toxicogenomic studies use genomics technologies, such as
DNA microarrays and RNA-sequencing, to investigate global tran-
scriptional responses following chemical exposures. It has been
proposed that BMD modeling be applied to model the dose–
response of toxicogenomics data to derive BMD values for
transcriptional endpoints, including genes, pathways and gene
ontologies (Thomas et al. 2007). This approach has already been
applied to a variety of chemicals (Bhat et al., 2013; Moffat et al.,
2015; Thomas et al., 2013b). Importantly, these studies have shown
concordance between the BMD values modeled for transcriptional
and apical endpoints. However, this type ofwork is verymuch in its
infancy, and a significant amount of research is required to
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determine the best approaches for use in practical regulatory
science or product development settings.

The standard software BMDS (US EPA, 2015), which was devel-
oped to model the dose–response of apical data, is inefficient for
modeling the response of transcriptomics datasets because these
contain gene expression profiles of tens of thousands of genes. To
address this issue, Yang et al. (2007) developed a tool called
“BMDExpress” that automates the statistical analysis and BMD
modeling computational steps to facilitate timely analysis of very
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large transcriptomic datasets. In addition to modeling the dose–
response of individual genes, BMDExpress also computes BMD values
for biological categories (e.g., pathway BMDmeans, medians, 5th per-
centiles, etc.) using a feature called “Functional Classifications.” Global
transcriptional BMD modeling using BMDExpress has been used to
demonstrate that toxicogenomic BMDs fall within the range of BMDs
derived from apical data, and has been useful for investigating the
mode of action of several toxicants (Bhat et al., 2013; Bourdon et al.,
2013; Jackson et al., 2014; Moffat et al., 2015). These studies support
the notion that transcriptional BMDs can be used to derive points of
departure for human health risk assessment, particularly in instances
when apical data are not available (Chepelev et al., 2015; Moffat
et al., 2015; Thomas et al., 2012, 2013a, b).

BMDExpress computations are presented in tabular format
viewable in the BMDExpress software. However, because of the
limited capability to perform additional analyses and data visuali-
zation in the BMDExpress application, the results are typically
exported to separate software (e.g., a spreadsheet) for further
exploration. There are two major types of outputs that can be
exported, i.e., (1) “BMD Analysis,” and (2) “Functional Classifica-
tions.” A “BMD Analysis” output file contains gene (or microarray
probe), BMD and BMD lower confidence (BMDL) values for each
statistical model, as well as the information required for model se-
lection. A “Functional Classifications” output file can be exported as
“Gene Ontology Analyses,” “Signaling Pathway Analyses” or “De-
fined Category Analyses.” This file includes statistical BMD values
for each pathway, and lists the transcripts that were used to obtain
the pathway BMD. These output files typically contain 30–60 col-
umns and thousands of rows of numbers and text. Processing
and analysis of these complex files can be challenging and time-
consuming. Therefore, we have developed a tool that summarizes
the BMDExpress output files, and allows for quick exploration, analysis
and visualization of these complex datasets. Our tool allows users to
identify important genes or biological processes based on their
BMD values, which we anticipate will be very useful for human health
risk assessment. In this paper, we describe the development of
BMDExpress Data Viewer, which is a user-friendly web-based tool that
reads BMDExpress output files, provides visual ( graphical and tabular)
data summaries and provides an interactive interface for the analyses.
We anticipate that BMDExpress Data Viewer will streamline the
analyses of BMDExpress output files and facilitate the use of
transcriptional BMD data in human health risk assessment.

Materials and methods

Implementation, compatibility and availability

The core component of BMDExpress Data Viewer was written in the
Java programming language, while the browser-based user interface
was developed with a combination of hypertext markup language
(HTML), Java Servlet and Javascript. Data visualization was created
using the Google Charts application programming interface (API)
(Google Inc., 2015). All visualization APIs, including histogram, scatter
plot, pie chart, column chart, table and bubble chart, were provided
by Google Developers, while the heatmap plot was provided by the
Institute of Systems Biology (Institute of Systems Biology 2008).
Javascripts to generate charts and tables are downloaded at the time
the user requests BMDExpress Data Viewer to generate applicable
visualizations, and the user’s data are processed directly within the
web browser.

The application is hosted on a Tomcat server, version 7.0.6, with
Java version 1.6.0_37-b06. The Google Charts API is based on
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HTML5 and Scalable Vector Graphics technology (Google Inc.,
2015). The application is compatible with all modern browsers,
including Internet Explorer 9+ (Microsoft Windows), Safari (Mac
OSX), Firefox, Chrome and Opera.
BMDExpress Data Viewer is available as a browser-based appli-

cation, and is freely available at http://apps.sciome.com:8082/
BMDX_Viewer/ (MIT license).

BMD Analysis Summary: probe-to-gene mapping

To convert microarray probes to gene symbols, we first compiled a
probe-to-gene symbol file by matching the probe2gene file to the
genes2symbols file from each supported platform in the
BMDExpress installation directory. A probe-to-accession number
file was also compiled by obtaining the respective platform anno-
tation files from the National Center for Biotechnology Information
(NCBI) Gene Expression Omnibus (GEO). This allows the gene sym-
bols that correspond to each probe to be displayed (if available) in
the BMD Analysis Summary Dynamic Viewer. In the case where an
official gene symbol is not available, corresponding GenBank ac-
cession numbers are displayed. In instances when neither gene
symbol nor GenBank accession number are available, or if the
imported file is not of a supported platform, the original probe
identifiers are displayed. Currently, supported platforms include:
Agilent human whole genome (4 × 44 K and 8 × 60 K), Agilent
mouse whole genome (4 × 44K and 8 × 60 K), Agilent rat whole
genome (4 × 44 K and 8 × 60 K), Affymetrix human (HG_Focus,
HG_U133A, HG-U133A_2 and HG-U133_Plus_1), Affymetrix mouse
(MG_U74A, MG_U74Avs, MOE430A, MOE320B, Mouse430A_2 and
Mouse430_2) and Affymetrix Rat (RAE230A, RAE230B, Rat230_2
and RGU34A).
BMDExpress Data Viewer also supports human, mouse and rat

RNAseq-based datasets that use Ensembl Gene ID to represent
genes. The gene2ensembl file was downloaded from the NCBI’s
FTP site and was parsed for human (Taxonomy ID: 9606), mouse
(Taxonomy ID: 10090) and rat genes (Taxonomy ID: 10116). The
parsed file was matched by Entrez Gene ID to the Homo_sapiens.
gene_info, Mus_musculus.gene_info and Rattus_norvegicus.
gene_info files to compile an ensembl2symbols file. The BMD Anal-
ysis Summary Dynamic Viewer uses the ensembl2symbols file to
display corresponding gene symbols. In the case where a gene
symbol is not available, the Ensembl Gene ID is displayed.

Functional Enrichment Analysis: implementation of the
Fisher’s exact test

The Fisher’s exact test in the Functional Enrichment Analysis tool
uses Java Statistical Classes version 1.0 (Bertie, 2002). The Fisher’s
exact test examines the association between a set of genes to a
particular pathway. For each pathway, a 2 × 2 contingency table
is constructed. The Functional Enrichment Analysis tool defines
the four elements of the contingency table as: (1) number of genes
from the input list that are found in the biological process (or path-
way, network, etc.) and show a dose response (i.e., genes with
goodness-of-fit P ≥ 0.1); (2) total number of genes in the pathway
minus the number of significant genes in the pathways; (3) num-
ber of input genes minus the number of significant genes in the
pathway; and (4) number of background genes minus the total
number of genes in the pathway. The Fisher’s exact test performed
in the Functional Enrichment Analysis tool requires that the genes
show a dose–response that can be modeled to be included in the
analysis; thus, the approach is slightly different from other
pathway enrichment analyses (e.g., the Database for Annotation,
Canada. Journal of Applied Toxicology
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Visualization and Integrated Discovery (DAVID); Huang et al.,
2007b). The number of input genes is equal to the total number
of genes surveyed by the technological platform, while the num-
ber of background genes is set to 30 000, which is the approximate
total number of genes in human, mouse and rat.

Depending on the analysis approach, the user may apply
pre-filtering (e.g., statistical presence or fold change) to the
microarray probes before importing datasets to BMDExpress. If
no pre-filtering or only the built-in ANOVA in BMDExpress is
applied, all of the four Fisher’s exact test parameters can be
obtained from the two files uploaded to generate the Bubble Chart
view (described below). In the case where pre-filtering other than
the built-in ANOVA in BMDExpress was applied, the user needs
to specify the platform and the pathway database, to determine
the correct number of input genes and sizes of pathways.
Case study datasets

To demonstrate the functionality and features of BMDExpress Data
Viewer, two microarray datasets were downloaded from GEO
(http://www.ncbi.nlm.nih.gov/geo/), derived from two microarray
platforms: Agilent mouse DNA microarrays and Affymetrix rat
microarrays. In the first dataset (GSE48644), mice were exposed
to increasing doses (0, 1, 2, 4, 8 mg kg–1 day–1 body weight) of
the hepatocarcinogen furan (the liver is the target organ for cancer
in rodents following furan exposure) by oral gavage for 21 days.
Dose and tissue (liver) selection was based on a previous rodent
cancer bioassay (Haseman et al., 1998), and included two doses
that did not induce liver cancer in the same strain of mice (1 and
2 mg kg–1 day–1) and two doses that caused liver cancer (4 and 8
mg kg–1 day–1). Agilent DNAmicroarrayswere used to examine he-
patic transcriptional profiles for these mice. Detailed methods for
the preparation of samples, microarray gene expression and nor-
malization of the data are described in the publications ( Jackson
et al., 2014; Webster et al., 2014). In the second dataset
(GSE45892), rats were exposed to increasing doses of one of six
chemicals for 5, 14, 28 and 90 days. Affymetrix HT RG-230 PMmi-
croarrays were used to examine transcriptional profiles for these
rats (Thomas et al., 2013b). We obtained the datasets for the
chemical 4,4′-methylenebis(N,N-dimethyl)benzenamine
(MDMB), which examined transcriptional changes in the thyroid
following exposure to 50, 200, 375, 500 and 750 ppm in drinking
water. All timepoints were considered. The chosen target tissue,
strain, sex and route of exposure were based on the critical effect
in the IRIS toxicological review for MDMB (US EPA, 1989). The
MDMB datasets were normalized using the Robust Multi-array
Average (Irizarry et al., 2003).
Benchmark dose analyses for the case study datasets

BMDExpress version 1.4.1 (Yang et al., 2007) was used to perform
BMD analyses. For the Agilent dataset (furan study), only the
probes that had signal intensities that were significantly above
background probe (non-murine control oligonucleotides) intensi-
ties (at least three standard deviations above the mean of the
background signal intensities) in at least one dose group were
imported into BMDExpress for analysis. These datasets were pre-
filtered using the built-in one-way ANOVA function for differential
gene expression in three ways: (1) unfiltered; (2) ANOVA P< 0.05
(in at least one dose); and (3) false discovery rate (FDR) P< 0.05
(in at least one dose). Detailed analyses of these results were pub-
lished previously (Webster et al., 2015). For the Affymetrix dataset
© 2015 Her Majesty the Queen in Right of
published by John
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(MDMB study), all probes were imported into BMDExpress and the
ANOVA P< 0.05 was applied. In the BMDExpress analysis for both
furan and MDMB datasets, the best fitting model for each probe
was selected based on: (1) a nested chi-squared cutoff value of
0.05 to select between linear and polynomial models; (2) lowest
Akaike information criterion value for the Hill and Power models;
and (3) likelihood ratio test goodness-of-fit P> 0.1. Other model-
ing parameters included maximum iterations of 250, confidence
interval of 0.95, benchmark response value of 1.349 and restricting
power parameter to ≥ 1. A Hill model was flagged if the k param-
eter was greater than one-third of the lowest dose, and the next
best model was selected if it had a goodness of fit P > 0.05. The
Hill model was only used and the BMD was modified to 0.5 of
the lowest BMD value if no other model had a P > 0.1. Using the
“Defined Category Analyses” feature in BMDExpress, the BMD
analyzed datasets weremapped to the Ingenuity Pathway Analysis
(IPA) mouse (Furan) and rat (MDMB) canonical pathways, which
were downloaded on April 24, 2014. In mapping to the IPA
pathways, probes were removed if the BMD value was greater
than the highest dose used in the experiment. Probes were also
removed if the goodness-of-fit P<value was less than 0.1.
Conflicting probe sets were identified and a correlation cutoff of
0.5 was applied to the conflicting probe sets. Both the BMD
analyzed dataset and the IPAmapped dataset were exported using
the “Export” function.

Results
Wedeveloped BMDExpress Data Viewer, a web-based tool designed
for visualization and exploration of BMDExpress output files. Our
application provides graphical summaries and statistics of
BMDExpress-generated output files. We demonstrate through two
case studies the features and potential use cases of the application.
Overview of BMDExpress Data Viewer

BMDExpress Data Viewer consists of two collections of tools: “Sum-
mary Visualization Tools,” and “Dataset Exploratory Tools” (Fig. 1).
Each collection contains tools that summarize datasets in addition
to allowing users to explore datasets and perform specific analyses.
The workflow for BMDExpress Data Viewer begins with uploading
unmodified BMDExpress output files, followed by interfaces to
guide the user through to display results or perform analyses (Fig. 1).
Example analysis with furan-treated mouse liver and
4,4′-methylenebis(N,N-dimethyl)benzenamine-treated rat
thyroid datasets

To illustrate the features and functionality of BMDExpress Data
Viewer, BMDExpress output datasets were obtained from two case
studies, i.e., (1) hepatic gene expression (Agilent) profiles of mice
orally exposed to increasing doses of furan by oral gavage ( Jackson
et al., 2014), and (2) thyroid gene expression (Affymetrix) profiles
from rats that were orally exposed to increasing doses of the chem-
ical MDMB (Thomas et al., 2013b).

Three statistical pre-filtering stringencies were applied to the
furan data before BMD analysis: (1) no filtering (removing only
the probes with signal intensities within the background range
across all conditions, i.e., genes with low or no expression); (2)
genes that reached an ANOVA P < 0.05 compared to controls in at
least one dose group; and (3) genes that reached an FDR P < 0.05
in at least one dose group compared to controls. Overall, the
J. Appl. Toxicol. 2016; 36: 1048–1059Canada. Journal of Applied Toxicology
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Figure 1. Workflow demonstrating the features and functionality of BMDExpress Data Viewer. BMD, benchmark dose; BMDL, benchmark dose lower con-
fidence (values); GO, gene ontology; POD, point of departure.
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filtered datasets contained 29847, 2597 and 362 probes, for the un-
filtered, ANOVA-filtered and FDR-filtered datasets, respectively. For
the MDMB study, we applied an ANOVA P < 0.05 filter on all four
timepoints before BMD analysis. The resulting dataset contained
6006, 7130, 8981 and 2697 probes for the 5-, 14-, 28- and 90-day
timepoints, respectively.

To demonstrate the features of each tool, we compared the
effects of statistical pre-filtering in the furan study, as well as
changes in the BMD over the four timepoints in the MDMB
study. We analyzed the summaries of probes and pathways for
the three pre-filtered furan datasets and the four timepoints in
the MDMB study. We applied both studies to the “Functional
Enrichment Analysis” tool to identify potentially sensitive pathways.
The pathways that were common across timepoints in the
MDMB study were further examined in the “Multiple Dataset
Comparison” and “BMDL-BMD Range Plotter” tools.
J. Appl. Toxicol. 2016; 36: 1048–1059 © 2015 Her Majesty the Queen in Right of
published by John Wiley
BMD Analysis Summary

The BMD Analysis Summary tool was applied to provide visual
summaries of the BMD, BMDL and fit P-values, and the best-fit
models, which are the commonly examined parts of the probe
BMD datasets (Fig. 2). Two components, Dataset Summary and
Dynamic Viewer, are available in the BMD Analysis Summary
tool. The dataset summary component presents overall summa-
ries of the BMD and BMDL values as histograms and scatterplots
to illustrate distributions, enabling inspection of main trends and
outliers. A histogram of fit P-values is also presented for inspec-
tion of the overall quality of modeling. Summary statistics are
also computed for maximum, minimum, mean and median
BMD and BMDL values, as well as fit P-values. Pie charts are plot-
ted to illustrate the distribution of best-fit models selected by
BMDExpress. In the Dynamic Viewer component, the complete
Canada. Journal of Applied Toxicology
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Figure 2. Summaries of the analyses performed using the “BMD Analysis Summary” tool. (A) Effects of pre-filtering methods on the distributions of probe
BMD values (furan dataset on the Agilent platform). (B) Distributions of probe BMD values over timepoints (MDMB dataset on the Affymetrix platform). (C)
Distributions of fit P-values (MDMB dataset on the Affymetrix platform). (D) BMD vs. BMDL over time (MDMB dataset on the Affymetrix platform). (E) Distri-
bution of selected models over time (MDMB dataset on the Affymetrix platform). BMD, benchmark dose; BMDL, benchmark dose lower confidence (values);
FDR, false discovery rate; MDMB, 4,4′-methylenebis(N,N-dimethyl)benzenamine.
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list of probes uploaded is presented in both a stepped chart and
a table, illustrating BMD and BMDL values for each probe. Slider
bars for BMD and BMDL values allow the user to set ranges to
focus on specific parts of the dataset.

We used the BMD Analysis Summary tool to investigate the
distributions of BMD and BMDL values in both datasets. As illus-
trated in Fig. 2(A), the BMD histogram of the unfiltered furan
dataset showed an even distribution of BMDs across dose. In
contrast, peaks of BMD values were clearly visible in both the
ANOVA and FDR-filtered datasets. The even distribution in the
unfiltered dataset and the bimodal distribution in the ANOVA-
filtered dataset were reduced to approach a unimodal distribu-
tion in the FDR-filtered dataset. The main mode (peak) in the
© 2015 Her Majesty the Queen in Right of
published by John
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ANOVA-filtered dataset occurred at approximately 4.2 mg kg–1

day–1, while for the FDR-filtered dataset, it was approximately
3 mg kg–1 day–1. In the MDMB study (Fig. 2B), ANOVA pre-
filtering was applied and all four timepoints displayed clearly
visible peaks, with unimodal distributions at 14 and 28 days,
and bimodal distributions at 5 and 90 days. The main modes
occurred at approximately 440, 190, 450 and 460 ppm for 5,
14, 28 and 90 days, respectively. Fit P-value distributions of
the MDMB datasets were examined (Fig. 2C). No clear peaks
were observed for any of the four timepoints. However, the
distribution showed a slightly increasing trend towards higher
fit P-values at 5 days, while decreasing trends were observed
at 14, 28 and 90 days.
J. Appl. Toxicol. 2016; 36: 1048–1059Canada. Journal of Applied Toxicology
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We also examined the BMD versus BMDL scatterplots for the
MDMB dataset (Fig. 2D). The BMD/BMDL ratios were approxi-
mately 1.2 with few outliers (two at 14 days and one at 90 days).
The pie chart of models suggested that the Power model was
the most frequently applied (36.7–44.7%), followed by the Hill
model (27.2–31.7%) in 5-, 28- and 90-day datasets (Fig. 2E). For
14 days, the 2° Polynomial model was the predominant best-fit
model at 55.9%, followed by the Hill model at 17.8%.
Functional Classification Summary

The Functional Classification Summary tool visually summarizes
the BMD means, BMD medians, BMDL means, BMDL medians
and BMD 5th and 10th percentiles from the export files of Func-
tional Classification Analyses, which may be one of: Signaling
Pathway Analyses, Gene Ontology Analyses or Defined Category
Analyses. Similar to the BMD Analysis Summary tool, two compo-
nents are available: Dataset Summary and Dynamic Viewer. In
the dataset summary component, histograms are plotted to
illustrate the distributions. Scatterplots of BMD mean versus
BMDL mean, BMD median versus BMDL median and BMD 5th
Figure 3. Summaries of the analyses performed using the “Functional Classifica
of pathway BMD mean values (furan dataset on the Agilent platform). (B) Dist
Affymetrix platform). (C) Twenty-four pathways identified by the Dynamic View
for BMDL mean, median, BMD fifth and 10th percentile values were selected b
genes was applied as suggested in previous studies (Moffat et al., 2015; Thomas
4,4′-methylenebis(N,N-dimethyl)benzenamine.

J. Appl. Toxicol. 2016; 36: 1048–1059 © 2015 Her Majesty the Queen in Right of
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percentile versus BMD 10th percentile illustrate the relationships
of these values for each pathway. In the Dynamic Viewer compo-
nent, a complete list of pathways and their respective BMD and
BMDL means and medians, BMD 5th and 10th percentiles, as
well as the number of significant genes and the percentage of
these genes relative to the total number of genes in the pathway
are also plotted in a stacked chart and a data table. Slider bars
for these values are available for setting ranges to focus on the
desired part of the dataset. By default, the number of significant
genes is “Items with BMD P ≥ 0.1” column, where the value 0.1
can be any cutoff the user used in BMDExpress analysis. This
ensures only genes with the BMD less or equal to the highest
dose and with a P-value greater or equal to the cutoff for the
model fit is examined.
Using the Functional Classification Summary tool, we investi-

gated the distributions of BMD/BMDL mean and median values,
as well as BMD 5th and 10th percentile values in both the furan
and the MDMB studies. We highlight the results of BMD mean dis-
tributions in both studies (Fig. 3A,B). In both studies, BMD means
for the pathways displayed unimodal distributions, with minimal
noise on either side of the histograms. For the furan study, the
tion Summary” tool. (A) Effects of pre-filteringmethods on the distributions
ributions of pathway BMD mean values over time (MDMB dataset on the
er in the peak regions of the MDMB 90-day timepoint. Slider bar ranges

ased on the main modes of their respective histograms. A minimum of five
et al., 2011, 2012). BMD, benchmark dose; FDR, false discovery rate; MDMB,
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modes were approximately 4.5, 4 and 2.5 mg kg–1 day–1 for the
unfiltered, ANOVA-filtered and FDR-filtered datasets, respectively.
For the MDMB study, these numbers were approximately 375,
315, 435 and 440 ppm for the 5-, 14-, 28- and 90-day timepoints,
respectively. Compared to the bimodal distributions in the
ANOVA-filtered furan dataset observed at the gene level, as well
as in the 5- and 90-day MDMB timepoints, the secondary modes
observed at the lower doses had largely been reduced.

Using the Dynamic Viewer, we investigated the pathways that
were at the modes of the MDMB 90-day histograms (see Supple-
mentary Fig. S1 for all histograms). By setting the sliders on top
of the Dynamic Viewer to where the modes of each histogram
occurred, with a minimum of five genes, 24 pathways were
identified (Fig. 3C). The majority of these pathways had more than
10 significant genes at approximately 15% mapping percentage.

Functional Enrichment Analysis

Although some studies have suggested that application of BMD
gene expression data focus on selecting biological processes, such
as gene ontology terms and pathways, which are associated with
disease processes or known mechanisms of action in toxicity, it is
valuable to consider more unbiased approaches to filter through
and explore pathways of potential toxicological significance. The
Functional Enrichment Analysis tool displays BMDs for biological
processes in a bubble chart view to enable exploration of the
dataset and selection of perturbations that may have significant
biological impacts.

In the Functional Enrichment Analysis tool, each biological pro-
cess is represented as a bubble in a two-dimensional space, with
enrichment probability on the Y-axis and BMD value on the X-axis
(Fig. 4). Enrichment probability is computed using a Fisher’s exact
test. The BMDs that are shown can be BMD mean, BMD median,
BMDL mean, BMDL median or BMD 5th or 10th percentiles. In
addition to position, a bubble is also defined by its size and color.
Figure 4. Screenshot of the analysis on the 90-day timepoint of the MDMB stu
sented as a bubble, with size of bubble representing the total number of genes
genes from the user’s input list thatmapped to the pathway. Aminimumof five
example analyses. BMD, benchmark dose; MDMB, 4,4′-methylenebis(N,N-dimet

© 2015 Her Majesty the Queen in Right of
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The size of a bubble represents the total number of genes in the
biological process, whereas the depth of color indicates the
number of genes from the user’s input list that mapped to the
pathway (i.e., more affected genes in a pathway will mean a
darker color). Slider bars are available to set ranges to limit the
number of significant genes, size of pathways and Fisher’s exact
test P-value in percentages. Altering the ranges of these values
dynamically refreshes the bubble chart and the data table by
displaying only the pathways fitting the criterion. The user can
mouse-over to the pathway (bubble) of interest and a dialogue
box will automatically appear to show the respective informa-
tion on the number of genes, pathway size, Fisher’s exact test
P-value and BMD.

To demonstrate the ability to filter for sensitive pathways, we
applied the FDR-filtered dataset of the furan study to the Func-
tional Enrichment Analysis tool and compared the resulting path-
ways to the pathways identified previously using IPA ( Jackson
et al., 2014). By applying the Functional Enrichment Analysis tool
with Fisher’s exact test P ≤ 0.05 (5%), and the minimum number
of significant genes equal to three (in accordance with Jackson
et al. [2014]), we obtained 24 pathways (Table 1). Fourteen (58%)
of the identified pathways were also found in our previous IPA anal-
ysis ( Jackson et al., 2014). Themean andmedian values for the BMDL
means for these pathways were 1.77 and 1.63 mg kg–1 day–1,
respectively. The results show that by applying a cut-off with
the Fisher’s exact test P-value, the Functional Enrichment
Analysis tool is capable of identifying known pathways that are
potentially important for the mode of action of furan, and that
exhibits a dose–response.

We also applied the Functional Enrichment Analysis tool to the
four timepoints of the MDMB study. We applied a Fisher’s exact
test P ≤ 0.01 (1%) and the minimum number of significant genes
equal to five (in accordance with Thomas et al., 2013b) to all four
timepoints. For each of the 5-, 14-, 28- and 90-day timepoints, we
obtained 91, 67, 242 and 44 pathways, respectively. Comparison
dy using the “Functional Enrichment Analysis” tool. Each pathway is repre-
in the biological process, and the depth of color indicating the number of

genes and a Fisher’s exact test P-value cutoff of 5% (0.05) were applied in our
hyl)benzenamine.
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Table 1. Pathways identified by the Functional Enrichment Analysis tool for the ANOVA-filtered furan-treated mouse liver dataset. A
minimum of three significant genes and a Fisher’s exact test P ≤ 0.05 (5%) were applied for the analysis

Pathway BMDL mean
(mg kg–1 day–1)

Fisher’s exact test
P-value (%)

Number of
significant genes Pathway size

14-3-3-mediated signalinga 1.63 1.04 5 110
ATM signaling 1.67 0.34 4 52
Aldosterone signaling in epithelial cellsa 1.40 0.78 6 144
Aryl hydrocarbon receptor signalinga 2.15 0.07 7 124
BMP signaling pathway 2.01 4.95 3 69
Bladder cancer signaling 2.43 1.42 4 78
Breast cancer regulation by stathmin1a 1.67 1.98 6 177
Germ cell–Sertoli cell junction signalinga 1.42 3.10 5 146
Glioblastoma multiforme signaling 1.31 2.80 5 142
Glucocorticoid receptor signalinga 1.41 0.26 9 242
Hypoxia signaling in the cardiovascular systema 1.67 0 7 57
NGF signaling 1.98 3.50 4 103
NRF2-mediated oxidative stress responsea 2.58 0.02 9 165
PI3K signaling in B lymphocytes 2.18 0.06 7 118
PI3K/AKT signalinga 1.52 0.27 6 116
PPAR signalinga 1.30 1.68 4 82
PTEN signaling 1.88 4.91 4 115
PXR/RXR activationa 3.06 1.55 3 44
Prostate cancer signaling 1.36 1.30 4 76
Protein ubiquitination pathwaya 1.61 0.06 10 239
Remodeling of epithelial adherens junctions 1.54 3.49 3 60
Retinol biosynthesis 1.50 0.36 3 26
Sertoli cell–Sertoli cell junction signalinga 1.74 1.16 6 157
p53 Signalinga 1.64 0.34 5 84

BMDL, benchmark dose lower confidence (values).
aPathways that matched to the Ingenuity Pathway Analysis (IPA) result performed in a previous study ( Jackson et al., 2014).

BMDExpress Data Viewer
of these four lists of pathways showed that nine were in common,
with means (medians) of 351.50 (352.16), 350.27 (340.27), 404.50
(404.67) and 415.48 (417.12) ppm for 5, 14, 28 and 90 days, respec-
tively (Table 2).
Multiple Dataset Comparison

The Multiple Dataset Comparison tool lets the user compare how
BMD values vary over different experimental conditions, such as
Table 2. Common pathways identified using the Functional Enrich
(values for each timepoint are BMD means)

Pathway

Colorectal cancer metastasis signaling
Endothelin-1 signaling
Glioblastoma multiforme signaling
HMGB1 signaling
Hepatic fibrosis/hepatic stellate cell activation
IL-8 signaling
ILK signaling
Nitric oxide signaling in the cardiovascular system
Regulation of the epithelial-mesenchymal transition pathway

Mean
Median

BMD, benchmark dose; IL, interleukin; MDMB, 4,4′-methylenebis(N,N

J. Appl. Toxicol. 2016; 36: 1048–1059 © 2015 Her Majesty the Queen in Right of
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across timepoints, tissues or treatments. This tool lets the user se-
lect the number of datasets to compare, followed by uploading
the files accordingly. It is important that the files uploaded in a
comparison analysis are analyzed using the same pathway or
defined category source, as the tool looks for exact matches in
names between files and generates a list of biological processes
to be selected for comparison. The tool displays only the biological
processes common to the uploaded files for selection. When only
one file is selected and uploaded, the user can compare pathway
ment Analysis tool on the four timepoints of the MDMB study

5 days 14 days 28 days 90 days

332.01 342.84 394.15 396.45
358.24 325.90 410.97 419.76
344.00 321.17 404.83 396.32
354.35 360.03 404.39 423.17
352.81 432.79 421.11 457.97
343.88 337.70 387.05 418.76
358.97 379.46 408.96 387.71
348.94 337.21 410.81 379.97
370.30 315.33 398.27 459.18

351.50 350.27 404.50 415.48
352.16 340.27 404.67 417.12

-dimethyl)benzenamine.
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Figure 5. Comparison of BMDmean values for the nine commonpathways identified across four timepoints in theMDMB study using the “Multiple Dataset
Comparison” tool. BMD, benchmark dose; IL, interleukin; MDMB, 4,4′-methylenebis(N,N-dimethyl)benzenamine.
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BMDs within the same dataset. BMD comparisons can be per-
formed on BMD mean, BMD median, BMDL mean, BMDL median
and BMD fifth and 10th percentiles. Four visualization options
are available for comparisons: column chart, stepped chart, heat
map and data table.

To demonstrate the Multiple Dataset Comparison tool, we com-
pared nine pathways that we foundwere enriched using the Func-
tional Enrichment Analysis tool in each of the four timepoints for
the MDMB study (Table 2 and Fig. 5). In general, BMDmean values
were considerably lower at the 5- (average of 352 ppm) and 14-day
(average of 350 ppm) timepoints than at the 28- (average of 405
ppm) and 90-day (average of 415 ppm) timepoints. All but the glio-
blastoma multiforme signaling, ILK signaling and nitric oxide signal-
ing in the cardiovascular system pathways showed increasing BMD
mean values from 28 to 90 days. For the 14-day timepoint, the
hepatic fibrosis/hepatic stellate cell activation pathway had a BMD
mean value of 433 ppm, while the other eight pathways were
within 310–380 ppm. Overall, the BMD mean values for these
pathways displayed an increasing trend over time.
BMDL-BMD Range Plotter

The BMDL-BMD Range Plotter tool displays both BMD and BMDL
mean or median values as upper and lower bound ranges for
user-selected pathways in a single figure, similar to approaches
Figure 6. BMDL-BMD range plots for the nine common pathways identified
Plotter” tool. BMD, benchmark dose; BMDL, benchmark dose lower confidence

© 2015 Her Majesty the Queen in Right of
published by John
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described previously (Slob and Setzer, 2014). As BMDExpress does
not provide BMD upper confidence limit (BMDU) values at this
time, we applied BMD as the upper bound in the figure at this time.
We define the value bound between the BMDL and the BMD as a
“range.” The tool displays the range of BMDs for the selected path-
ways, enabling assessment of these ranges across pathways, and
providing information on trends that are useful in determining
what BMD may be relevant for regulatory purposes.

To demonstrate the BMDL-BMD Range Plotter tool, we selected
the nine pathways identified by the Functional Enrichment Analy-
sis tool that were common between the four timepoints of the
MDMB study. We applied the tool to the datasets for each of these
timepoints. The analysis revealed consistent ranges between the
BMDL and BMD (approximately 110 ppm) for all timepoints (Fig. 6).
In each of the 5-, 28- and 90-day timepoints, the nine pathways
overlapped with each other, and the lengths of overlaps were
approximately 60–70 ppm. In contrast, the ranges of all of the
pathways did not overlap with each other in the 14-day timepoint.
In general, the ranges extended to lower doses for the earlier
timepoints (BMDLs approximating 250–350 ppm, and 220–350
ppm, for 5 and 14 days, respectively), while they were bound at
higher doses for the later timepoints (approximately 300–400
ppm, and 250–450 ppm, for 28 and 90 days, respectively). For
the 14-day timepoint, the range of the hepatic fibrosis/hepatic
stellate cell activation pathway had a higher BMDL and BMD
across four timepoints in the MDMB study using the “BMDL-BMD Range
(values); MDMB, 4,4′-methylenebis(N,N-dimethyl)benzenamine.
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bound, while the other eight pathways extended to lower doses. In
general, the centers of overlaps were lower (290 and 300 ppm) for 5
and 14 days, respectively, and higher (340 and 360 ppm) for 28
and 90 days, respectively.

Discussion
We developed BMDExpress Data Viewer to assist in the analysis of
BMDExpress output files by providing visualization tools to sum-
marize datasets, and data exploratory tools to identify sensitive
biological processes, to compare BMDs across experiments and
to determine BMDs of potential regulatory use. In this paper, we
analyzed DNA microarray datasets from rodent tissues generated
from two separate dose–response experiments to demonstrate
the features and functionality of BMDExpress Data Viewer. We
show that BMDExpress Data Viewer can be used to visualize
BMDExpress output files and provide novel ways to explore and
analyze these datasets.

By applying the furan and MDMB datasets to the BMD Analysis
Summary and the Functional Classification Summary tools, we
demonstrate some variables that may influence the BMDs derived
from whole genome transcriptional profiles. For example, statisti-
cal pre-filtering of the data influences the distribution of gene
BMDs leading to more normal distributions that may yield more
robust BMD estimates. In addition, a general trend of declining
BMDs with increasing statistical stringency (i.e., unfiltered versus
ANOVA-filtered versus FDR-filtered) was found. However, second-
ary modes and the “noise” at extreme ends of the probe BMD
histograms (Fig. 2A,B) were largely minimized in the histograms
of pathway BMDs (Fig. 3A,B). Our results also showed that the
peaks (main modes) of BMD were very similar to the BMD values
reported in previous studies. It has previously been proposed that
the lowest BMD be used as a point of departure for risk assessment
(Moffat et al., 2015; Thomas et al., 2011, 2012). Our results suggest
that the main modes of gene expression BMDs may be useful sur-
rogates to estimate the BMDs at which adverse apical effects (such
as cancer in the 2-year cancer bioassay) may occur (Webster et al.,
2015). More work is needed across a diverse array of toxicological
endpoints to determine the most effective application of gene
expression BMDs as points of departure.

In the furan ANOVAdataset, as well as in theMDMB5- and 90-day
datasets, the BMDs were bimodally distributed. As an example
of how this distribution might be used to inform risk assess-
ment, we extracted the genes underlying each mode from
the three BMDExpress output files and performed pathway
enrichment analysis using IPA. There was no overlap in the
top 10 pathways from these analyses, with a single exception
(mitotic roles of polo-like kinase pathway in the MDMB 5-day
dataset) (Supplementary file). Given that the pathways in the
lower mode are activated by a lower dose than the pathways
in the higher mode, these processes may represent the most
sensitive drivers of the underlying toxicological effects. We
speculate that these processes will be important considerations
for establishing the mode of action and point of departure for
this chemical. However, detailed analysis and interpretation of
the biological effects observed here are beyond the scope of
this paper. More work is needed to investigate further the
mechanisms of interactions between the groups of pathways.

The histogram of fit P-value distributions provides an opportu-
nity to investigate the overall quality of the models. Our results
from the four MDMB timepoints suggest an overall lower confi-
dence of fit for the 14-, 28- and 90-day datasets (fit P-values closer
J. Appl. Toxicol. 2016; 36: 1048–1059 © 2015 Her Majesty the Queen in Right of
published by John Wiley
to cutoff of 0.1) relative to the 5-day dataset where more probes
were modeled with higher confidence (fit P-values closer to 1). To
demonstrate an example of further analysis, we obtained the
number of probes before and after the fit P-value filter (by checking
and unchecking the option in the BMDAnalysis Summary tool) and
computed the percentage of probes that could be modeled
(Supplementary File 2). For all timepoints, except for 14 days, over
80% of the probes that passed the initial filter of one dose with
ANOVA P < 0.05 relative to control could be modeled. In contrast,
only ~50% of probes could be modeled at 14 days. Interestingly,
the 14-day timepoint also exhibited a different model distribution
from the other three timepoints (Fig. 2E). More research is needed
to understand the biological basis for these differences, but this is
beyond the scope of the present study.
The scatterplot of BMD versus BMDL provides the capability to

identify quickly the outliers and allows the user to investigate ra-
tios of BMD/BMDL. We note that it has been suggested that since
BMDL calculation takes into account measures of data uncertainty,
a higher BMD/BMDL ratio may indicate higher uncertainty; thus, it
has been proposed that a BMD/BMDL ratio < 2 indicates low un-
certainty (Muri et al., 2009). BMDExpress Data Viewer enables users
to assess rapidly which genes and pathways are not in agreement
with these principles, facilitating the filtering of poor fitting data
before subsequent analyses.
The pie chart of models in the BMD Analysis Summary tool

displays an overall representation of the models used. Where a
specific model is preferred, such as the Hill model for receptor-
mediated responses (Zhao et al., 2010), the pie chart can be used
for a quick assessment of the suitability of the models used. If an
unexpected skew is observed in the types of models used, the
model selection parameters in BMDExpress may then be adjusted.
In our analysis with the four MDMB timepoint datasets, we noted a
considerably different distribution of models in the 14-day
timepoint in comparison to other timepoints (Fig. 2E). The
dissimilar model distribution in the 14-day timepoint may be the
cause for some divergent results observed in the main modes of
probe and pathway BMD histograms at this timepoint, as well as
in the reduced degree of overlap in the BMDL-BMD range plots.
More work is needed to assess the source of this observed
dissimilarity.
The Dynamic Viewers in the BMD Analysis Summary and Func-

tional Classification Summary tools provide an opportunity for
the user to explore graphically the input datasets with the flexibil-
ity to zoom in and out for more or less detail. If the user has an ex-
pected range of BMDs in mind, or if pathways within a particular
range are of interest, the Dynamic Viewers will reveal the genes
or pathways in the set ranges. In addition, the Dynamic Viewers
can be used to examine the specific ranges of BMDs within a re-
gion (e.g., within a mode, or within an outlier regions) identified
in the histograms or scatterplots. Overall, this viewer enables a dy-
namic filtering capability for comparison of BMD values across
pathways. In our investigation of the modes of the 90-day
timepoint of the MDMB study, we identified 24 pathways (Fig. 3C);
of these, only the endothelin-1 signaling, HMGB1 signaling, IL-8 sig-
naling and RAR activation pathways were among the nine com-
mon pathways later identified using the Functional Enrichment
Analysis tool. This low number of matches is not unexpected, as
the Dynamic Viewer simply presents the pathways within the
specified BMD ranges without utilizing probability values of the
statistical enrichment test.
The Functional Enrichment Analysis tool represents biological

processes as bubbles in a two-dimensional space. The main
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difference between this analysis and other pathway or functional
enrichment approaches is that it only includes genes that were
fit to a mathematical model and therefore have a BMD. Thus, the
test requires that the gene was significant in at least one dose, in
addition to showing a dose–response that could be modeled.
Overall, it makes use of dose–response information that is not
considered in the other pathway enrichment approaches. With
this tool, users can visualize and evaluate the relevance of each
pathway. Larger bubbles represent larger pathways (pathways
with more genes) and the darker the color, the more genes
perturbed in the pathway. Thus, large and dark bubbles that are
near the bottom left (i.e., lower BMDs and P-values) may be impor-
tant biological perturbations. Applications such as DAVID have in-
tegrated a Fisher’s exact test to determine the probability of a
pathway matching from a short list of genes as opposed to ran-
domly picking it up from a full list of genes in the organism (Huang
et al., 2007a). We found that by applying a Fisher’s exact test P ≤ 0.05
and a minimum of three significant genes, similar pathways
were identified to our previous IPA approach ( Jackson et al.
2014) (Table 1). However, our approach here has the added
benefit of including the BMDs within the pathway analysis. As
we decreased the Fisher’s exact test P-value and increased
the minimum number of significant genes in the Functional
Enrichment Analysis tool, more pathways in the upper range
of the BMDL mean axis were filtered out. The remaining
pathways that matched the previous IPA analysis were
generally larger. This shows how the Functional Enrichment
Analysis tool presented here is capable of identifying
potentially important pathways for further investigations.

By using the Multiple Dataset Comparison tool, the nine com-
mon pathways in the MDMB study showed an increasing BMD
trend over time (Table 2 and Fig. 5). A potential hypothesis is
that over time the organism may be adapting to the chemical
exposure, hence requiring a higher dose to activate these path-
ways. We also have applied this tool to compare datasets
across three gene expression technology platforms: reverse
transcription–polymerase chain reaction, microarray and
RNAseq (Webster et al., 2015). Overall, the “Multiple Dataset
Comparison” tool enables an analysis of important trends
across different datasets to provide support in identifying the
most relevant pathways.

Application of the BMDL-BMD Range Plotter tool to nine com-
mon pathways between the fourMDMB timepoints revealed lower
BMD values at two earlier timepoints than the later timepoints
(Fig. 6). This observation was consistent with results of theMultiple
Dataset Comparison analysis. The center values of overlaps for the
timepoints were very similar to the 2-year rodent cancer bioassay
BMD of 381 ppm (Thomas et al., 2013b). The higher BMDL-BMD
range of the hepatic fibrosis/hepatic stellate cell activation pathway
in 14, 28 and 90 days may indicate that the pathway requires a
higher dose to be activated than the other pathways. Slob and
Setzer (2014) demonstrated that within a BMDL-BMDU range, a
true BMD can be definedwith 90% confidence and thus true differ-
ences across pathway BMDs can be assessed. However, in the
BMDL-BMD Range Plotter, similar confidence cannot be
assumed. When two BMDL-BMD ranges overlap, their true BMD
values are more likely similar if the overlapping interval is larger.
Such confidence will increase if the ranges include BMDU values.
Non-overlapping BMDL-BMD ranges, in addition, may or may not
overlap with BMDU values. BMDExpress does not compute BMDU.
Enabling this feature would improve the utility of this tool and will
be addressed in future work. At present, the BMDL-BMD Range
© 2015 Her Majesty the Queen in Right of
published by John
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Plotter provides an effective means to visualize trends and assess
potential pathways for use in determining a transcriptional point
of departure.

In conclusion, BMDExpress is an important software application
used to compute BMDs from high-throughput transcriptional
datasets. We anticipate that the application of such approaches
will grow as higher-throughput and less expensive methodologies
for global gene expression analysis are produced. Indeed, it has
been proposed that BMDs from toxicogenomic experiments be
used as points of departure in human health risk assessment in
the absence of data from traditional methods (Chepelev et al.
2015; Moffat et al. 2015; Thomas et al. 2012, 2013a, b). The applica-
tion of toxicogenomics in risk assessment is still in an early phase
of development. We hope BMDExpress Data Viewer can help
advance the utility of toxicogenomics in developing effective ap-
proaches to determine themost suitable BMDs in a whole genome
analysis. Previous work has shown that toxicogenomic experi-
ments with sufficient biological replicates and doses (preferably
encompassing doses both above and below the BMD) can be
modeled to derive the BMDs that are comparable to apical BMDs
(Black et al., 2014; Webster et al., 2015). We highly recommend that
the designs of experiments in this field follow best practices that
are already established for BMDmodeling of apical data, for exam-
ple, having at least one dose near the anticipated BMD as well as
including the lower doses that should be closer to point of depar-
ture for sensitive endpoints (US EPA, 2012). We demonstrate that
BMDExpress Data Viewer can be used to assist in the interpretation
of toxicogenomic BMDs derived using BMDExpress, and hope that
it will facilitate further work to establish the best approaches for
BMD applications to toxicogenomic data. The application
provides a means to evaluate the quality of study data, explore
BMD ranges across pathways, experiments and experimental
conditions, and identify the most relevant perturbations. In the
example analyses, we showed how this tool could be used to
explore the most sensitive biological perturbations occurring in a
transcriptomics study through analysis of gene and pathway
BMDs. These features and results illustrate that BMDExpress Data
Viewer is a useful tool to visualize, explore and analyze
BMDExpress output files.
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