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Simultaneous construction of axial and planar
chirality by gold/TY-Phos-catalyzed asymmetric
hydroarylation
Pei-Chao Zhang 1, Yin-Lin Li 1, Jiafeng He 1, Hai-Hong Wu 1✉, Zhiming Li2✉ & Junliang Zhang 2,3✉

The simultaneous construction of two different chiralities via a simple operation poses

considerable challenge. Herein a cationic gold-catalyzed asymmetric hydroarylation of ortho-

alkynylaryl ferrocenes derivatives is developed, which enable the simultaneous construction

of axial and planar chirality. The here identified TY-Phos derived gold complex is responsible

for the high yield, good diastereoselectivity (>20:1 dr), high enantioselectivities (up to 99%

ee) and mild conditions. The catalyst system also shows potential application in the synthesis

of chiral biaryl compounds. The cause of high enantioselectivity of this hydroarylation is

investigated with density functional theory caculation.
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As an effective and exceptionally versatile strategy, the
development of catalytic asymmetric intramolecular
hydroarylation for the construction of axial1–10 and

planar11–13 chirality or helicenes14–20 has received much
attention21–32. Various transition metal catalysis involving Au, Pt,
Rh, and Pd, have been reported in this regard. For instance, the
groups of Alcarazo1,14,16,18 and Tanaka6,15,17 extensively studied
the Au-catalyzed and Rh-catalyzed intramolecular alkyne
hydroarylation to achieve enantioselective synthesis of axially
chiral biaryls and helicenes, respectively (Fig. 1a). In 2013,
Uemura et al.10 developed a Pd-catalyzed asymmetric cycloi-
somerization of enynes for the construction of axially chiral
biaryl. The group of Urbano and Carreño11 developed an Au-
catalyzed cyclization to construct the planar naphthalene-fused
ferrocenes in 2016 (Fig. 1a). Later, Shibata et al.12 reported the
similar reaction enabled by a Pt-catalysis. Meanwhile, the capacity
of intramolecular hydroarylation is impressively complemented
by various other versatile stereocontrolled methodologies.
For example, Shibata2 and co-workers reported a Rh-catalysed
enantioselective synthesis of axially chiral PAHs via regioselective
cleavage of biphenylenes. Stará and Starý19,20 developed a
Ni-catalysed enantioselective [2+ 2+ 2] cycloisomerisation
of aromatic triynes to obtain the helicene derivatives. Toullec3,
Yan4, Irie5, and Sparr7–9 independently demonstrated efficient
organocatalytic enantioselective cyclization of aryl-alkynes to
construct valuable molecules containing axial or axial and helical
stereogenic elements.

In this work, the simultaneous construction of axial and planar
chiralities is realized via the gold-catalyzed33–42 asymmetric
intramolecular hydroarylation of readily available o-
alkynylferrocene derivatives 143 (Fig. 1c). And the simultaneous
construction of two different types of chiralities is now flourishing
development (Fig. 1b)44–51.

Results
Optimization of the reaction conditions. However, to the best of
our knowledge, simultaneous construction of multiple chiralities
by asymmetric gold catalysis has not been reported so far, this
hypothesis faced considerable challenges: (1) the universal and
efficient asymmetric intramolecular desymmetric cyclization for
the construction of planar ferrocene derivatives was not well
developed (In the work of refs. 11,12, 10–20 mol% catalytic
loading was used), (2) on the other hand, simultaneous con-
struction of axial and planar chiral molecules via asymmetric
catalysis has rarely been reported52,53 and innate reluctance to

undergo a related asymmetric desymmetric aromatization, and
(3) the inherent difficulties to asymmetric gold catalysis, which
stem from its linear coordination geometry and the outer-sphere
nature of Au(I)-catalysis44–50. To test our hypothesis, our inves-
tigation began with the cyclization of ortho-alkynylaryl ferrocene
derivative 1aa. A series of commercially available chiral ligands
were investigated (please find more details in the Supplementary
Information (SI) Supplementary Fig. S3). Unfortunately, catalysts
used by Urbano-Carreño11, Shibata12, or Uemura10 all failed to
give the desired cyclization product (Fig. 2, entries 1–3). (R)-
DTBM-SEGPhos (L1), the commonly used chiral ligand in
asymmetric gold catalysis, delivered the enantiomer of 2aa in 15%
NMR yield with 80% ee and 3:1 diastereoselectivity. (S,S)-Ph-BPE
(L2) could give the product 2aa in quite low enantioselectivity
and conversion. (R)-BINAP (L3) furnished 2aa in 62% NMR
yield with 51% ee and 5:1 d.r., and the dominant Brønsted acid
(R)-CPA (L4) in the field of atroposelective synthesis of axially
chiral molecules, cylohexanediamine-derived (S,S)-DACH-Phe-
nyl Trost Ligand (L5), (R)-BI-DIME (L6), Binol-derived phos-
phor-amidite (Sa,R,R)-CPPA (L7), chiral oxazoline-phosphine
ligand (R)-tBu-PHOX (L8), all have insufficient catalytic activity.
We next turned to investigate our developed chiral sulfinamide
phosphine (Sadphos), which has shown good performance in
asymmetric gold catalysis41–43 (Sadphos are commercially avail-
able (Daicel and Strem), which are also easily prepared in
2–4 steps from chiral tert-butane sulfinamide.) (Fig. 2). The gold
complexes derived from Ming-Phos42,43,54–56, Xu-Phos57–61,
Xiang-Phos62–65, PC-Phos41,66–68 and TY-Phos69 could deliver
(−)-2aa in up to 83% yield with 85% ee. We found that enan-
tioselectivity roughly correlates to the electrical properties of the
Sadphos, with a more σ-donating ligand providing a higher
enantioselectivity and catalytic activity. Notably, Au(TY-Phos)Cl
could be easily synthesized in a gram scale via a five-steps in
“one-pot” synthesis (for more details, see the SI). Inspired by this
promising result, we varied the Ar group of TY-Phos (TY2–TY4)
and introduced electron-donating groups to the aryl moiety of
TY-Phos, structured as TY5-TY6 with alkyl groups. Gratifyingly,
the product 2aa could be obtained in 83% yield with 85% ee and
5:1 d.r. with the use of [Au(TY5)]BArF as the catalyst. Moreover,
N-Me-TY5 delivered much lower enantioselectivity to 46% ee
(Fig. 2, entry 10). Then, the effect of the counterion was inves-
tigated (Fig. 2, entries 8, 11–13)70, among which sodium tetrakis
[3,5-bis(trifluoro-methyl) phenyl]borate (BArF−) delivered the
best enantioselectivity and reactivity. Subsequently, either low-
ering the temperature to −10 °C or using other solvents such as
DCE and toluene failed to give better result (Fig. 2, entries 14–16).
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Fig. 2 Optimization of reaction conditions. aUnless otherwise noted, all reactions were carried out with 0.1 mmol of 1aa and 10mol% of catalyst (Au: P:
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Finally, no counterion or only additives which all have not cat-
alytic activity (Fig. 2, entry 18–19).

Reaction scope study. Further optimization focused on adjust-
ment of the OR group. Surprisingly, a meaningful increasing
enantioselectivity and reactivity and diastereoselectivity occurred
when the R was switched to the longer carbon chains (Fig. 3, 2aa–
2ad). Bulkier groups (OiPr, O-2-Naph) could furnish the

corresponding products in 88% ee (2ae, 2af). Better enantios-
electivity (92% ee) was achieved with a benzyl (Bn) protecting
group (2ag), however, the diastereoselectivity and reactivity is
still far from ideal. The cyclohexylmethyl (CHM) group seems to
be crucial to deliver good result (2ah–2al). A series of
internal substituted aryl-alkynes were then prepared and tested to
this cyclization process. A good tolerance towards halogens
(1am–1av), electron-withdrawing substituents (1aw–1az),
electron-withdrawing substituents (1aw–1az), electron-donating
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substituents and steric hindrance groups (1ba–1bf) on different
positions of the phenyl ring (R1) were observed and the corre-
sponding products (2am–2bf) were obtained in 88–92% yields
with 81–99% ee. The structure and configuration of (Sa,Sp)-2bb
was unambiguously determined via its X-ray analysis. There is an
obvious substituent effect at the ortho-position of the aryl alkyne,
indicating that the steric hindrance at ortho-position is unbene-
ficial to the enantioselectivity (2bg). Gratifyingly, the naphthyl
and phenyl ring bearing electron-donating and electron-
withdrawing groups at different positions (R2), could deliver
the desired products (2bh–2bm) in excellent yields with moderate
to high ee. Then, employing the derivative of pharmaceutical
naproxen as the substrate 1bn, the corresponding product 2bn
could be obtained in high yield with excellent diastereoselectivity.

To demonstrate the practical utility of this protocol for
synthesis of ferrocene derivatives bearing axial and planar
chirality (Fig. 4a), four reactions were carried out in gram scale
under standard conditions. With the use of Au[TY5]+ and its
enantiomer, 1.2 g of 2al and ent-2al were produced in 89% yield
with 93% ee and in 90% yield with 91% ee, respectively. 1.0 g of
2ag and ent-2ag were produced in 78% yield, 91% ee and 78%
yield, 92% ee, respectively using the same procedure. Dealkylation

of the aryl alkyl ethers 2al with concentrated boron tribromide
led to chiral naphthol 371 in 71% yield 93% ee. Subsequent
hydrogenation of aryl benzyl ethers 2ag and ent-2ag with the
combination of Pd(OH)2 and Pd/C in a 1:1 ratio72 afforded axial
and planar chiral naphthol 3 in 86% yield 92% ee and ent-3 in
87% yield 93% ee, respectively.

To unravel the origin of the high enantioselectivity of the
reaction (Fig. 4b), the asymmetric hydroarylations of 1-ethynyl-2-
methylnaphthalene derivative 1ao, 2-benzyne-1-ferrocenylbenzenes
4, 2-aryne-1-arylbenzenes 5a and 5b were also carried out under
standard conditions. The 2bo could be obtained in 91% yield with
78% ee and 5:1 d.r., 6 with only the planar chirality was delivered in
99% yield but with low ee (22% ee), in contrast, axial chiral 7a and
7b were obtained in 99% yield with 80% ee and 95% ee, respectively
and the reactions were complete in less than one minute. Moreover,
the linear relationship (see Supplementary Information (SI),
Supplementary Fig. S2) between the ees of the Au(TY5)Cl and
those of product 2al and the e.e. of the 2al did not significantly
change during the reaction, which reveal that the enantioselectivity-
determining step might involve a single chiral sulfinamide
phosphine ligand and one gold species. In light of the structures
of the chiral gold catalyst Au[(Sc,Rs)-TY5]+ and the product 2, a
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Fig. 4 Proof-of-principle study. a The practical utility. b mechanism study. c proposed asymmetric induction model.
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catalytic chirality-induction model was proposed for the reaction
(Fig. 4c). The phosphine of the ligand and the alkyne coordinate to
the Au(I) center. The Re face of alkyne and the alkoxyl group are
shielded by the 1-naphthyl group of the ligand and the ferrocene
group attack takes place at the Si face to define the (Sp)-planar
chirality (path b), the alkoxyl group causes a blockage in the
rotation of the naphthalene ring to define the (Sa)-axial chiralities.
Because of these, it defines to form the product (Sa,Sp)-2 with
excellent enantioselectivity and diastereoselectivity.

To shed light on the mechanism of the reaction, especially the
planar enantioselectivity determining step catalyzed by Au/(Sc,
Rs)-TY5, density functional theory (DFT) calculations were
carried out with Gaussian 09 software package73–75. The
geometry optimization and frequency calculations were carried
out with M062X method and combined basis sets. That is, 6–31G
(d) for the reactant 1aa fragment (except the hydrogen atom of
the reaction site on the phenyl ring), the heteroatoms P, S, N, O
(connected with S atom) on the ligand (Sc,Rs)-TY5 and the
carbon atoms linked with the above mentioned heteroatoms,
SDD for Au and Fe atoms76. Considering the existence of
hydrogen bonding, 6–31+G(d,p) basis set was applied for the H
atom of the reaction site on the phenyl ring of 1aa and the H
atoms on the chiral carbon and on the N atom of (Sc,Rs)-TY5.
3–21 G basis set was used for all the other atoms. Truhlar and co-
workers’ SMD solvation model was employed to consider the
solvent effect of dichloromethane (ε= 8.93)77. The geometry
optimizations were performed without symmetry constraints and
the nature of the extrema was checked by analytical frequency
calculations. The intrinsic reaction coordinate calculation78,79 was
also performed to verify the connectivity of the transition state
and the energy minima. (see Supplementary Data for details)

The reaction of 1aa is selected as the model and we focused on
the planar enantioselectivity of the reaction (Fig. 5). Enantio-
determining step of the reaction is the 6-endo-dig cyclization, that
is, aromatic ferrocene attacks the alkyne moiety of 1aa, which is
activated by cationic Au/(Sc,Rs)-TY5. The following proto-
demetalation gives high enantioselective 2aa. Barriers (TS-A and
TS-en-A) for the enantioselective step are 24.4 and 25.4 kcal/mol for

the major and minor intermediates B and B-en, which means the
reaction can proceed smoothly at reaction temperature. In addition,
the difference of the two barriers are 1.0 kcal/mol, that is also in
good line with the experimental 85% ee value of 1aa reaction. Both
TSs are late transition states, and the structures are closer to those of
B and B-en (Fig. 5). For example, in both TSs, new 6-membered
rings almost formed, C5-C6 distances are 1.30, very similar to that
of normal double bonds. Meanwhile, weak interaction can be found
between the tertiary hydrogen atom of TY5 and Au atom, the Au-H
distances are 2.64 and 2.53 Å, respectively (Fig. 5). The two
hydrogen bonds between O atom of the methoxy group and two
hydrogen atoms on ferrocene may contribute to the axial
enantioselectivity of the reaction. In TS-A, π-π stacking effect was
found between two naphthyl groups from TY5 and 1aa parts
respectively, while there is no such effect in TS-en-A. This may be
the cause of high facial enantioselectivity of the reaction.

In summary, we developed an efficient gold(I)/TY-Phos-
catalyzed intramolecular hydroarylation of ortho-alkynylaryl
ferrocenes derivatives, which represents the highly enantioselec-
tive and diastereoselective simultaneous construction of axial and
planar chiral (Sa,Sp)-naphthalene-fused ferrocene derivatives.
The axial biaryl compound could be also delivered efficiently
under the same reaction conditions. The here identified cationic
Au(TY-Phos)+ is responsible for the high yield and diastereos-
electivity, good to excellent enantioselectivities. The DFT
calculations explained the chirality-induction model and accounts
for the high enantioselectivity. We believe that this well-designed,
easily available gold catalyst Au(TY-Phos)Cl can be applied in
other catalytic asymmetric transformations.

Methods
Typical procedure for simultaneous construction of axial and planar chirality
by Gold/TY-Phos-catalyzed asymmetric hydroarylation. In a dried Schlenk
tube, after the solution of (Sc,Rs)-Au(TY5)Cl (5mol%, 8.2mg) and NaBArF (6mol%,
10.6 mg, cas: 79060-88-1, Energy Chemical, white powder) in DCM (0.5mL) was
stirred at room temperature for 15min. Then the above catalyst solution was added
to the solution of 1, 4–5 (0.2 mmol) in DCM (1.5mL) at 0 °C. The reaction was
determined by TLC analysis, after the 1, 4–5 was consumed completely. Solvent was
removed in a rotary evaporator, purified by flash column chromatography on silica
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+

[(Sc,Rs )-TY5]Au+
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Fe
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HMeO

Fe
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Fe
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- 41.2
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a
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Fig. 5 Density functional theory (DFT) calculations. a The Free-energy reaction profiles (kcal mol−1) for the reaction of 1aa, calculated with SMD Model
(dichloromethane) using M062X at 273 K. b and c The optimized transition states TS-A, TS-en-A for the enantioselectivity-determining step, calculated
with SMD Model (Dichloromethane) with M062X method at 273 K.
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gel (Hexane/DCM= 10:1 to 5:1) to afford the desired product 2, 6, 7. All new
compounds were fully characterized (see the Supplementary Information).

Data availability
The data that support the findings of this study are available within the article,
its Supplementary Information files and Supplementary Data files. All data underlying the
findings of this work are available from the corresponding author upon reasonable request.
The X-ray crystallographic coordinates for structures reported in this study have been
deposited at the Cambridge Crystallographic Data Center (CCDC), under deposition numbers
2052064 ((Sa,Sp)-2bb) and 2052077 (((Sc,Rs)-TY6)AuCl). The data can be obtained free of
charge from The Cambridge Crystallographic Data Center via http://www.ccdc.cam.ac.uk/
data_request/cif.
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