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Abstract
Ongoing novel coronavirus (COVID‑19) with high mortality is an infectious disease in the world 
which epidemic in 2019 with human‑human transmission. According to the literature, S‑protein is 
one of the main proteins of COVID‑19 that bind to the human cell receptor angiotensin‑converting 
enzyme 2 (ACE2). In this study, it was attempted to identify the main effective drugs approved that 
may be repurposed to the binding site of ACE2. High throughput virtual screening based on the 
docking study was performed to know which one of the small‑molecules had a potential interaction 
with ACE2 structure. Forasmuch as investigating and identifying the best ACE2 inhibitors among 
more than 3,500 small‑molecules is time‑consuming, supercomputer was utilized to apply docking‑
based virtual screening. Outputs of the proposed computational model revealed that vincristine, 
vinbelastin and bisoctrizole can significantly bind to ACE2 and may interface with its normal 
activity.
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Introduction
In December 2019, an unknown respiratory 
disease emerged in Wuhan, Hubei 
province, China, which is now known as 
coronavirus disease 19 (COVID‑19). A 
novel coronavirus is closely related to severe 
acute respiratory syndrome coronavirus 
(SARS‑CoV). SARS‑CoV‑2 binds to human 
angiotensin‑converting enzyme 2 (ACE2) 
which may lead to severe pneumonia and 
lung fibrosis in patients.[1] ACE2 is a cell 
membrane enzyme which expresses in the 
outer surface of cells, mainly in the lungs,[2] 
and converts angiotensin II into angiotensin 
1–7.[3] It has been shown that exogenous 
Ang‑(1–7) and upregulation of the ACE2 
may protect against lung fibrosis by blocking 
the MAPK/NF‑κB pathway.[4] On the other 
hand, SARS‑CoV‑2 spike protein entrance 
site is different from the active site of 
ACE enzyme.[5] ACE2 is a receptor to help 
SARS‑S to entry to human cell, using the 
cellular serine protease TMPRSS2 for S 
protein priming.[6]

Few numbers of articles have been 
published about ACE2 using computational 
approach. For example, identification of 
exact amino acid residues in the place of 
interaction of S‑protein with ACE2 was 
investigated to develop antiviral inhibitor 
by Zhang et al. in 2005.[6] Pharmacophore 
model and virtual screening was the 
other model that was published by Rella 
et al. in 2005.[7] Simulation S‑protein in 
complex with ACE2 and their interaction 
with four host species‑specific receptors 
was another computational manuscript that 
was published by Zhang et al. in 2007,[8] 
and changing conformational active site 
and reducing level of ligand binding was 
the other model considered by Lokeshwari 
et al. in 2015.[9]

Besides, numerous computational methods 
have been proposed to find the best lead 
compound as a de novo drug candidate for 
other homo‑sapience targets since 1980. 
As evidenced by the recent publications 
in drug discovery, the search for finding 
drug‑like compounds with desired 
biological activities in the large libraries of 
chemical compounds such as ZINC, called 
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Figure 1: Schematic of the proposed model
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high‑throughput virtual screening (HTVS), is a really 
risky, time‑consuming procedure as well as low success 
percentages. Drug repurposing or repositioning is one of 
the proposed virtual screening approaches which refers 
to rediscover a narrow the list of drug candidates which 
already passed safety tests in clinical trials and a great 
chance of taking the desired activity via computational 
approaches.[10] Various computational approaches have 
been used in drug repositioning which can be categorized 
into three main groups: (i) ligand‑based models,[11] i.e., 
machine learning‑based models, (ii) target‑based screening 
such as docking‑based method,[12] and (iii) network‑based 
methods.[13]

Since March 2020, various manuscripts were published based 
on mentioned approaches to find out the best appropriate 
drugs among existed ones. Some of the main of them are 
reviewed in the following text. Basu et al. focused on some 
of the natural products and their effects on the ACE2. In 
another study, it was tried to find compounds which can 
bind to spike, ACE2, and the ACE2:spike complex with 
good affinity.[14] Joshi et al. focused on the main effective 
inhibitors of ACE2 among natural compounds.[15] In another 
study, the current efforts of exploiting ACE2 as a therapeutic 
target were reviewed via Jia et al.[16]

Machine learning‑based models depend on the known 
drug‑target interaction.[17] Shallow learning methods 
such as k‑nearest neighbor and deep learning model, for 
instance, convolutional neural network, have been the main 
techniques which exploited to achieve drug repurposing 
prediction.[11,18,19] Target‑based virtual screening, most of the 
time, is based on the docking studies with supercomputer, 
and the best top‑ranked drugs can be tested via molecular 
dynamic simulation or experimental test.[20] Moreover, 
some of the scientists, efforts to find out drug‑disease 
associations and drug‑target interactions simultaneously 
with network‑based methods.[13]

In this study, it was attempted to figure out the best 
approved drugs to inhibit ACE2 binding site based on 
the drug re‑purposing methodology. Hence, more than 

3500 existed drugs in DrugBank website were downloaded 
and drug‑target interaction for each drug was simulated 
via high‑throughput docking virtual screening. Finally, the 
best identified effective drugs were extracted and grouped 
according to their categories [Figure 1]. We hypothesized 
that binding proposed drug to the ACE2 may exacerbate 
pulmonary fibrosis.

Materials and Methods
Receptor and ligand preparation

ACE2 receptor structure was downloaded from Protein 
Data Bank (PDB) website (PDB ID: 1r4l, resolution 3 Å) 
and its three‑dimensional conformation was refined with 
AutoDock4 software, such as add hydrogen and remove 
nonpolar hydrogen and add total Kollman charge. ACE2 
binding site was chosen around ZN (x = 37, y = 5, z = 25, 
with search box 60 × 60 × 60) set its binding site[21]

Besides, as the aim of this work was identifying the best 
drugs to inhibit COVID‑19, a library of approved drugs, 
found in Supplementary Table S1, were downloaded from 
DrugBank website in xml format. The version of database is 
5.1.5 released on January 3, 2020, and contained more than 
3000 approved drugs. After that, xml format was changed 
to the sdf and then all molecules were extracted as a pdb 
formatted file. After that, because of the lack of hydrogen 
in the converted structures, all molecular hydrogens were 
added with Open Babel software, automatically. Besides, 
one of the main steps in computational drug design is 
optimizing 3D structures of ligands. There are several tools 
available to generate 2D/3D structure/conformers, but, 
because of existing huge number of molecules as well as 
time‑consuming optimization procedure, Open Babel was 
utilized to optimize 3D structure, automatically, with the 
aim of finding low‑energy conformations via conformer 
searching. In this software, accessing several algorithms for 
conformer searching is performed by Gen3D library with 
steepest descent geometry optimization and the MMFF94 
force field. Finally, to confirm the optimization procedure, 
some of the structures were optimized with HyperChem 
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software and the results were compared with Open Babel 
outputs. Finally, all optimized structures were converted to 
pdbqt format via Open Babel software for docking studies.

High‑throughput docking‑based virtual screening

HTVS methods have been one of the main computational 
drug design approaches to rapidly investigate hundreds 
number of chemical compounds which could be 
appropriate for finding the best drug‑like molecules.[22] 
One of the common computational methods in HTVS is 
molecular docking.[23] The main goal of molecular docking 
is given a ligand‑target interaction in two main steps: (i) 
minimizing ligand conformation in receptor binding site 
and (ii) scoring these conformations.[24] Vina AutoDock 
is one of the docking methods useful for HTVS by using 
multithreading on multicore machines and widely utilized 
for drug repurposing. The main drawback of Vina docking 
is that did not contain flexible binding sites residues.[25]

Structure‑based virtual screening

Structure‑based virtual screening (SBVS) has been one of 
the main computational drug design approaches based on 
the simulation ligand‑target interaction for identification 
of hit molecules. Molecular docking is one of the SBVS 
methods with the aim of optimized matching prediction 
of ligand orientation according to the 3D structures 
of receptors. The main goal of molecular docking is 
investigating affinity and binding energy of DTI. Finally, 
all suggested conformers are clustered according to the 
computed free energies and grouped together by scoring 
function.

Results and Discussion
As mentioned, this study was founded on two different 
parts, i.e., HTVS and molecular docking, which were 
discussed in the following by details.

High‑throughput virtual screening

To perform the docking study, two main input datasets 
must be prepared, containing approved drugs and 
protein crystallography structure. For the first one, all 
FDA‑approved drugs (more than 3500 molecules) were 
downloaded from DrugBank website and their structures 
were optimized (discussed in material section). 3D structure 
of ACE2 was the second essential information which was 
downloaded from PDB, i.e., ID 1r4l, with resolution After 
that, protein PDB structure was rectified with AutoDock4 
software; then, molecular docking simulation was 
performed between drugs and receptor via AutoDock Vina 
software. According to the root mean square error (RMSE), 
the best conformers of each ligand were extracted, and 
finally, the ligands were sorted based on their affinities. 
More than 200 drugs had an affinity with score better 
than 11 Kcal/Mol. Hence, ligands with pose scores of 
more than 15 Kcal/Mol and weight <1000 (g/mol) were 
selected (corresponding to 30 molecules, i.e., about the top 

10% compounds) [Table 1]. Among these drugs, some of 
them are used widely, especially in patients with underlying 
disease such as antiviral. As shown, it was figured out 
seven different potent drugs – with ΔG <−15 (µM) and 
weight <700 (g/mol) – that could be effective to inhibit 
ACE2 enzyme activity.

Before to consider molecular interaction precisely, we were 
interested to investigate proposed drug performance in 
the body, i.e., their side effects and mechanism of actions 
which were extracted from DrugBank website [Table 2].

Molecular docking

At the second step, seven suggested molecules were 
docked to the receptor via AutoDock4. There are two 
main steps for docking procedure, i.e., setting the search 
space and optimization and docking procedure. In the first 
step, choosing appropriate grid box to search in 3D space 
of protein is a critical point which conducted researcher 
to have reliable decision. Three different parameters are 
vital which must be adjusted that are selecting suitable 
box center, number of points in each dimension, and 
spacing between the points. To achieve the best selection 
for box center, existed ligand in protein crystallography 
was extracted via Schrodinger software and docked again 
via blind docking method. The result was matched with 
experimental approach. Its binging energy was 10.7 (µM). 
Hence, the center of grid box was defined on the center of 
ligands (x = 40.12, y = 1.32, z = 23.68) in crystallography 
of proteins with size 60 × 60 × 60 and 0.375°A. After 
that, according to the defined atoms, probes were serially 
located at each grid point and internal energy between 
the probs and protein were computed for each atom type, 
individually. Computed energies for each point were 
utilized as a lookup table during the docking simulation.

The second step was docking procedure with the aim of 
finding out binding energy of each ligand as well as its 
interaction with the target. Thus, Lamarckian genetic 
algorithm (LGA) was utilized to extract the population 
of ligand conformations, randomly. In LGA method, two 
optimization methods, genetic algorithm and local search, 
are combined to enhance docking performance. Van 
der Waals potentials and a dihedral angle term are two 
main critical parameters to calculate internal energy. The 
results of interaction‑binding energies and interactions 
are summarized in Table 3. As shown, indinavir, 
retapamulin, and saquinavir have the lowest binding 
energies (<−12.5 [µM]).

Besides, the interactions between suggested drugs, 
indinavir, retapamulin, and saquinavir, and protein are 
illustrated in Figure 2a‑c. As demonstrated, various amino 
acids were contributed on the interaction, which are helpful 
to increase binding affinities.
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Conclusion
High‑blood pressure (hypertension) has been one of the 
main regular situations reported in most patients with 
severe illness in COVID‑19. The main worry in the 
medical treatment of these conditions, such as using 
RAAS inhibitors, is occurring adverse outcomes which 
emerge as the robust estimator of COVID‑19‑related death. 
Hence, hypertension condition has been key determined 
prognostic. In the recent studies, it was released that spike 
protein of coronaviruses binds to the human receptor in the 
cell surface, i.e., ACE2 which its expression is increased 
in the patients with type 1 or type 2 diabetes. Hence, it 
can be concluded that ACE2 expression and activity have 
a significant rule in SARS‑CoV‑2 patients. Therefore, the 
drugs with high affinity for ACE2 enzymatic site should be 
prescribed with caution in these patients

In this study, it was attempted to find the main ACE2 
inhibitors among 3981 approved drugs downloaded from 
DrugBank website. The receptor structure was downloaded 
from PDB website (PDB ID: 1r4l, resolution 3 Å) and 
its three‑dimensional conformation was refined with 
AutoDock4 software, such as add hydrogen and remove 
nonpolar hydrogen and add total Kollman charge. To 
evaluate docking results, firstly, the ligands in the 1r4l 
crystallography were docked again. The results revealed 
that selected centers of grid box were appropriate. In 
HTVS step, approved drugs were docked to the receptor 
via AutoDock Vina. The best conformers of each ligand 
were selected based on the RMSE, and finally, the ligands 
were sorted based on their affinities. Ligands with pose 
scores <20 (Kcal/Mol) were extracted and are shown in 
Table 1. After that, to find the best inhibitors, drugs with 
weights <700 (g/mol) were investigated via AutoDock4. 

Table 1: Fifteen percent of top‑ranked extracted drug after docking simulation based on virtual screening
ID Name Pharmacologic category Affinity Weight logC
1 Indinavir Highly active antiretroviral therapy to treat HIV/AIDS −18.5 627.64 3.68
2 Teicoplanin Antibiotic, miscellaneous −26.4 1198.93 2.43
3 Prednisolone Endocrine, rheumatic, and hematologic disorders; collagen, dermatologic, 

ophthalmic, respiratory, and gastrointestinal diseases; allergic and edematous 
states; and other conditions like tuberculous meningitis

−16.3 486 4.08

4 Retapamulin Antibiotic −15.5 517 5.21
5 Bisoctrizole Sunscreen agent in cosmetic products −19.5 658 6.11
6 Vindesine Antineoplastic agent, antineoplastic agent, vinca alkaloid antimicrotubular −23.8 753.94 3.42
7 Vancomycin Glycopeptide antibiotics −23.7 1449.27 −1.14
8 Vinblastine Antineoplastic agent, antineoplastic agent, vinca alkaloid antimicrotubular −23.6 810.99 5.23
9 Histrelin Antineoplastic agent, gonadotropin‑releasing hormone agonist; gonadotropin −23.6 1323.53 −1.9
10 Vincristine Antineoplastic agent, antimicrotubular; antineoplastic agent, vinca alkaloid −23.5 824.97 4.04
11 Glycyrrhizic Anti‑inflammatory agents, liver therapy, lipotropics, triterpenes −23.4 822.94 3.03
12 Levocabastine An ophthalmic for the temporary relief of the signs and symptoms of seasonal 

allergic conjunctivitis. Also used as a nasal spray for allergic rhinitis
−15.5 420.53 1.86

13 Anhydrovinblastine Not available −23.1 792.97 6.11
14 Zotarolimus Immunosuppressant −22.9 966.23 7.45
15 Betadex Biopolymers −22.7 1134.99 −17.46
16 Vinorelbine Antineoplastic agent, antimicrotubular; antineoplastic agent, vinca alkaloid −22.5 778.95 5.94
17 Octreotide Antidiarrheal, antidote, somatostatin analog −22.3 1019.25 2.51
18 Nafarelin Gonadotropin releasing hormone agonist −22 1322.50 −1.22
19 Sirolimus Immunosuppressant agent; mTOR kinase inhibitor −22 914.19 7.04
20 Adapalene Indicated for the topical treatment of acne vulgaris in patients aged 12 and over
21 Saquinavir In combination with ritonavir and other antiretroviral agents, for the treatment 

of HIV‑1 infection in patients 16 years of age and older
−16.5 670.86 4.73

22 Aclarubicin Antineoplastic agent: Cytotoxic antibacterial from the group of anthracyclines −21.7 811.88 3.43
23 Docetaxel Antineoplastic agent, antimicrotubular, taxane derivative −21.6 807.89 4.08
24 Flumetasone For the treatment of contact dermatitis, atopic dermatitis, eczema, psoriasis, 

diaper rash, and other skin conditions
−17.5 494 3.6

25 Carperitide Treatment of heart failure, atrial natriuretic peptide −20.8 3080.48 0
26 Everolimus Antineoplastic agent, mTOR kinase inhibitor; immunosuppressant agent −20.7 958.24 7.1
27 Buserelin Gonadotropin releasing hormone agonist −20.4 1239.45 −1.45
28 Dalbavancin Glycopeptide antibacterials −20.3 1816.71 5.64
29 Goserelin Antineoplastic agents, hormonal −20.3 1269.43 −2.86
30 Acetoxolone Drugs for peptic ulcer and GORD −20 512.73 7.42
* Bold names were related to the selected drugs among others. **GORD – Gastroesophageal reflux disease



Figure 2: ACE2 in complex with (a) Indinavir, (b) Retapamulin, (c) Saquinavir
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Outputs of the proposed computational model revealed 
that indinavir, retapamulin, and saquinavir can significantly 
bind to ACE2 and may interface with its normal activity.
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