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In‑situ γ‑ray analysis of ground 
surface radioactivity using portable 
HPGe γ spectrometer
Zeqian Wu1, Bairong Wang1*, Jian Sun1, Yuqi Wang2 & Changwei Zhao2*

As essential high-end equipment for nuclear emergency monitoring, the portable HPGe γ 
spectrometer currently lacks supporting in-situ measurement methods, limiting its role and value 
in emergency missions. For this practical problem, this paper studies the measurement of ground 
surface radioactivity by portable HPGe γ spectrometer in nuclear emergency monitoring in view of the 
particularity of nuclear emergency source items. Firstly, the detection efficiency of point sources at 
different horizontal distances when the spectrometer is installed at the height of 1 m from the center 
of the detector to the ground is calculated. Secondly, the concept of effective contribution distance 
is defined and analyzed. Thirdly, the point source detection efficiency is obtained using the numerical 
integration method of calculation. Integrate to calculate the detection efficiency of the surface source, 
and then calculate the radioactive surface activity of the surface. Finally, the effectiveness of the 
method is verified through experiments.

With the development of science and technology, nuclear energy and nuclear technology have gradually 
embarked on a large-scale platform for human life. As nuclear power plants are widely used, they also bring some 
risks. As the last barrier to protect public safety, a nuclear emergency is worthy of attention and related technical 
research. Emergency radiation monitoring is an integral part of a nuclear accident emergency. The International 
Atomic Energy Agency (IAEA) proposes that one of nuclear accident emergency monitoring purposes is to 
provide accurate and timely information to the degree of radiation hazards1. The International Commission on 
Radiological Protection (ICRP), IAEA, and other organizations2–4 have put forward the concept of Operational 
Intervention Level (OIL) to make correct decisions in response to nuclear reactor accidents. An effective γ-ray 
radioactivity monitoring method is used to compute these values.

There are two main methods for measuring surface activity after a nuclear accident: laboratory analysis and 
in-situ measurement. The former focuses on on-site sampling and returns to the laboratory for more accurate 
analysis. At the same time, in-situ measurement refers to the collection and processing of data on the spot and 
directly gives the value of the physical measurement concerned, which has the advantages of convenience and 
speed.

At present, the primary method used for in-situ measurement is the Beck method, but the calibration process 
of the Beck method is complicated and time-consuming5. Some subsequent studies have optimized the in-situ 
measurement methods6–19, including a lot of work applied to geological surveys, some applied to accident emer-
gency conditions, and some studies on in-situ measurements on the seabed. The radioactivity of the monitored 
objects is low in geological surveys, and the depth distribution of radionuclides has an essential impact on the 
measurement results. For in-situ measurements in seawater, there is a large difference in the attenuation coef-
ficient of the medium for γ-rays, which will affect the scaling process of detection efficiency. However, when 
applied to nuclear emergency monitoring, the radioactivity of the monitored object is relatively high. In the early 
stage of the nuclear accident, the radionuclides settled on the surface have not penetrated the ground.

So it is necessary to simplify and improve it according to the characteristics of different usage scenarios. 
The basic premise and scope of application of this method are that in the early stage of a nuclear accident, the 
radioactive pollution that settles on the ground surface can be regarded as a surface source. It can be considered 
that there is no radioactive material in the air. Based on this, an effective and convenient in-situ measurement 
method of surface activity is established.
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Methodology
The HPGe γ spectrometer has different detection efficiency for γ-ray with different energies. Therefore, to obtain 
the detection efficiency of low-, medium-, and high-level energy γ-ray, experiments with different energy rays 
need to be performed. The Monte Carlo Simulation is adopted to simulate the point source detection efficiency 
at different energies and locations. The horizontal distance between the radiation source and the center of the 
detector extends from 0 to 6 m, as is shown in Fig. 1.

The Monte Carlo simulation relies on the accurate characterization of the structure of the portable HPGe γ 
spectrometer. Figure 2 describes the structure of the detector used in Monte Carlo simulation.

The calculated detection efficiency and relative uncertainty for different energy gamma rays at different posi-
tions are shown in Table 1.

Adopt the least square method to fit the above detection efficiency value according to Eq. (1),

where εE(r) is the characteristic γ-ray with energy E, the point source detection efficiency at a horizontal distance 
of r meters; r represents the horizontal distance between the point source position and the center of the detector, 
m; a and b represents fitting coefficient. The calculation result is shown in Table 2.

The detection efficiency curve is reverted to exponential form, and the fitting result is shown in Fig. 3.
It can be observed that the fitting effect is good. As the energy increases, the detection efficiency curve moves 

downwards overall, indicating that in this detection model, the higher the ray energy, the lower the detection 
efficiency of the point source at the exact location.

When the detector is placed in a flat and open area and 1 m away from the ground, its detection object can 
be regarded as a significant and uniformly distributed radioactive surface source. The practical contribution 
distance of HPGe γ spectrometer to γ-ray is of great significance for radioactivity measurement of significant 
surface sources.

(1)εE(r) = ae−br

Figure 1.   Schematic diagram of the detection model. The HPGe γ spectrometer was erected at a height of 1 m 
from the ground using a tripod, and the γ radiation source is placed at a horizontal distance of 0–6 m from the 
detector, and the interval is 1 m.

Figure 2.   Structure of the characterized HPGe detector used for modeling in Monte Carlo simulations.
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The practical contribution distance of the surface source to the spectrometer can be determined by setting the 
threshold for the contribution of artificial radionuclides to the spectrometer. The contribution of the radioactive 
point source to the spectrometer can be expressed by the spectrometer’s counting rate of γ-ray, and the calcula-
tion equation of the counting rate is shown in Eq. (2),

Table 1.   Variation of the detection efficiency of different energy γ-ray with horizontal distance.

Nuclide 
(energy/keV) 
(m) 132Te (228) 131I (364) 133I (530) 137Cs (662) 60Co (1173) 60Co (1332) 124Sb (1691)

0 1.56E−04 
(0.57%)

1.07E−04 
(0.68%)

7.80E−05 
(0.80%)

6.50E−05 
(0.88%)

4.10E−05 
(1.11%)

3.70E−05 
(1.16%)

3.00E−05 
(1.28%)

1 7.55E−05 
(0.81%)

5.13E−05 
(0.99%)

3.70E−05 
(1.16%)

3.08E−05 
(1.27%)

1.98E−05 
(1.59%)

1.77E−05 
(1.68%)

1.50E−05 
(1.83%)

2 2.79E−05 
(1.34%)

1.92E−05 
(1.61%)

1.41E−05 
(1.88%)

1.16E−05 
(2.08%)

7.73E−06 
(2.54%)

7.12E−06 
(2.65%)

5.82E−06 
(2.93%)

3 1.29E−05 
(1.97%)

8.92E−06 
(2.37%)

6.54E−06 
(2.76%)

5.43E−06 
(3.04%)

3.82E−06 
(3.62%)

3.54E−06 
(3.76%)

2.86E−06 
(4.18%)

4 7.38E−06 
(2.60%)

5.24E−06 
(3.09%)

3.69E−06 
(3.68%)

3.25E−06 
(3.93%)

2.13E−06 
(4.85%)

1.93E−06 
(5.10%)

1.56E−06 
(5.67%)

5 4.63E−06 
(3.29%)

3.24E−06 
(3.93%)

2.32E−06 
(4.65%)

2.02E−06 
(4.98%)

1.40E−06 
(5.99%)

1.27E−06 
(6.29%)

1.15E−06 
(6.59%)

6 3.10E−06 
(4.02%)

2.29E−06 
(4.68%)

1.60E−06 
(5.59%)

1.34E−06 
(6.11%)

9.10E−07 
(7.41%)

8.50E−07 
(7.67%)

7.10E−07 
(8.39%)

Table 2.   The parameter value of the fitting equation for detection efficiency.

Radionuclide Energy (keV)

The parameter value 
of the fitting equation

Fitted regression coefficients R2a b
132Te 228 1.59E−04 8.50E−01 0.9957
131I 364 1.08E−04 8.25E−01 0.9972
133I 530 7.87E−05 8.13E−01 0.9981
137Cs 662 6.49E−05 7.95E−01 0.9968
60Co 1173 4.11E−05 7.83E−01 0.9980
60Co 1332 3.70E−05 7.67E−01 0.9955
124Sb 1691 3.05E−05 7.59E−01 0.9976

Figure 3.   The HPGe γ spectrometer has different detection efficiency for characteristic γ-ray of different 
energy, and it decreases rapidly as the horizontal distance increases. The characteristic γ-ray of different energy 
is shown in different colors in the picture.
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where n represents the spectrometer’s counting rate of a certain γ-ray, cps; A represents the activity of the point 
source, Bq; p represents the branching ratio of the characteristic gamma-ray; εE(r) represents detection efficiency 
of the point source at a horizontal distance r; K represents decay correction factor during measurement.

Because the measurement object is approximately a surface source and the spectrometer is set up at the 
height of 1 m from the ground, the effects of self-absorption correction and pulse coincidence correction can 
be ignored. However, due to the short half-life of some key radionuclides, the change of its activity needs to be 
taken into account in the actual measurement process. Therefore, the decay correction coefficient K during the 
measurement is introduced. The calculation equation is shown in Eq. (3) 20,

where T1/2 represents the half-life of the nuclide to be tested, s; t represents measurement time, s. The surface 
radioactivity after a nuclear accident can be regarded as a surface source, and it can be considered that there is 
no radioactive contamination in the air. Since the detection model is center symmetric, the contribution of the 
surface source to the spectrometer’s counting rate can be calculated by double integration based on the fitting 
equation of the point source detection efficiency with horizontal distance

where ns represents the contribution of the surface source to spectrometer counting rate, cps; r represents the 
radius of the surface source, m. The farther away the source is from the spectrometer, the smaller the contribu-
tion to the spectrometer’s count rate. The integration converges as the integration distance approaches infinity, 
which means that when the detection distance gradually increases to infinity, the contribution of the counting 
rate gradually approaches a specific value, that is, Eq. (5)

where r represents radius of the area source under consideration, m; a, b represents coefficients of the fitting 
equation. When the detection radius reaches a certain value, the contribution to the spectrometer’s count rate 
within this detection range will reach a part of the maximum contribution value. Calculate the horizontal dis-
tances at the 90% and 95% of the contribution of the maximum counting rate of the γ-ray of different energy, 
and establish the equation relationship,

where ns_0.90 represents 90% of the characteristic γ-ray’s contribution to the maximum counting rate, cps; ns_0.95 
represents 95% of the characteristic γ-ray’s contribution to the maximum counting rate, cps. It is an integral 
equation. Calculate the detection distances at 90% and 95% of the maximum count rate contribution to γ-ray of 
different energy, as is shown in Table 3.

Since the theoretical corresponding detection area is infinite when 100% of the maximum count rate is 
reached, this is unrealistic and cannot be calculated quantitatively. We usually consider the detector’s detection 
capability and measurement time to be limited. For areas beyond a certain range, the contribution to the count 
rate of the detector is negligible. In this paper, the horizontal distance at 95% of the maximum count rate contri-
bution of the spectrometer is defined as the effective contribution distance of the spectrometer, and the practical 
contribution distance is used to calculate the spectrometer’s detection efficiency of characteristic gamma rays 
with different energy from surface sources. The error thus introduced is acceptable in an in-situ measurement 

(2)n = A · p · εE(r) · K

(3)K =
T1/2

ln 2× t

[

1− exp

(

−
ln 2× t

T1/2

)]

(4)ns =
∫∫

D

A · p · εE(r) · Kdσ =
2πa[1− (br + 1)e−br] · A · p · K

b2

(5)ns_max = lim
r→+∞

A · p · K ·
∫ 2π

0
dθ

∫ r

0
ae−brrdr = A · p · K ·

2πa

b2

(6)ns_0.90 = 0.9ns_max

(7)ns_0.95 = 0.95ns_max

Table 3.   Contribution distance to γ-ray of different energy.

Radionuclide Energy (keV) 90% contribution distance (cm) 95% contribution distance (cm)
132Te 228 457.6 558.1
131I 364 471.5 575.0
133I 530 478.4 583.5
137Cs 662 489.3 596.7
60Co 1173 496.8 605.9
60Co 1332 507.1 618.5
124Sb 1691 512.5 625.0
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scenario in a nuclear emergency. This is because more accurate measurements are often achieved not by in-situ 
measurements but by sampling.

The detection efficiency of the spectrometer for the surface source should be the average of the point source 
detection efficiency in the detection area. According to the definition of the mean in probability theory,

where εE represents detection efficiency of surface source with characteristic γ-ray with energy E; εE(r) repre-
sents point source detection efficiency of characteristic γ-ray with energy E at a horizontal distance of r meters; 
D represents a circular area with the center of the detector’s vertical projection on the ground as the center and 
the effective contribution distance as the radius. Bringing the fitting Eq. (1) of point source detection efficiency 
into Eq. (8), we can get

where a, b represents the fitting coefficient of point source detection efficiency as a function of distance; d 
represents the effective contribution distance of the characteristic γ-ray with energy E, m; εE represents the 
detection efficiency of the surface source with characteristic γ-ray with energy E. The characteristic γ-ray with 
different energies correspond to different adequate contribution distances, which are brought into the Eq. (10) 
for calculation, and the detection efficiency of the uniformly distributed surface sources can be obtained, as is 
shown in Table 4.

The detection efficiency and energy of the spectrometer for surface source are fitted by least squares, and the 
fitting equation is selected as follows,

where ε represents detection efficiency of surface source; E represents the energy of characteristic γ-ray, keV; k1, 
k2—fitting coefficient. The values of the fitted parameters are k1 = 0.001327, k2 =  − 0.8261, and the fitted regression 
coefficient R2 = 0.9992. The relationship between the spectrometer’s detection efficiency of uniformly distributed 
surface sources and the energy of characteristic γ-ray is shown in Fig. 4.

Observing the relationship between the detection efficiency and the energy, we can find that the detection 
efficiency of the surface source approximately follows the power function distribution and decreases monotoni-
cally with the increase of the energy. The greater the energy of γ-ray, the lower the detection efficiency in the 
effective contribution area is. It is consistent with the tendency of the detection efficiency of point sources to 
change with energy at the same position.

Due to the background count, the detection capabilities of different detection models are different. In the case 
of low activity, it is more difficult to determine whether the measured counts are due to pollutants or background. 
Only when the activity of a pollutant exceeds a certain threshold can it be judged as a pollutant.

The meaning of the lower detection limit is the limit at which the radioactivity can be detected by the detec-
tor, see Eq. (11)

where Kα represents the probability of false conclusions that there is radioactivity above the background in the 
sample and that there is no radioactivity above the background; Kβ represents the probability of false conclusions 
that there is no radioactivity above the background in the sample to judge that there is radioactivity above the 
background; nb represents background count rate, cps; ns represents total count rate, cps. For low-level measure-
ments, the total count rate can be approximately equal to the background count rate, that is

Let the probability α and β of both types of errors be 5%

(8)εE =
∫∫

D εE(r)dσ
∫∫

D dσ

(9)εE =
2a[1− (bd + 1)e−bd]

b2 · d2

(10)ε = k1 · Ek2

(11)DL = (Kα + Kβ)
√
nb + ns ,

(12)nb ≈ ns .

(13)Kα = Kβ .

Table 4.   Detection efficiency of uniformly distributed large area sources.

Radionuclide Energy (keV) Detection efficiency of surface source
132Te 228 1.34E−05
131I 364 9.12E−06
133I 530 6.64E−06
137Cs 662 5.48E−06
60Co 1173 3.47E−06
60Co 1332 3.12E−06
124Sb 1691 2.58E−06
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The DL can be expressed as the minimum detectable activity concentration (MDAC) 21, which is related to 
the parameters of the detection model. The calculation method for the MDAC is

where t represents measurement time, s; nb represents the background count rate of the nuclide’s region of 
interest, cps; p represents emissivity of γ-ray; ε represents detection efficiency of surface source in effective 
contribution area; S represents the area of effective contribution area, m2; K represents decay correction factor 
during measurement.

In order to obtain the background count rate as accurately as possible, the spectrometer is used to measure 
the outdoor background 15,000 s. The energy spectrum is shown in Fig. 5.

For characteristic γ-ray of different energy, the corresponding region of interest should be selected, and the 
background count within it calculated. Table 5 shows the count rate of the background in the region of interest 
of different energy γ-ray.

In order to correct the decay of radionuclides during the measurement, according to the half-life of different 
nuclides, Eq. (3) was adopted to calculate the decay correction factors of different nuclides at different measure-
ment times, as is shown in Table 6.

(14)MDAC =
4.65

√
tnb

tpεSK
,

Figure 4.   Fitting curve of HPGe γ spectrometer’s detection efficiency of radioactive surface source with 
characteristic γ-ray energy.

Figure 5.   Background energy spectrum obtained from outdoor measurement at 15000 s. The characteristic 
γ-rays of various natural radioactive backgrounds are marked with arrows.
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It can be seen that the decay of the radionuclide during the measurement has little effect on the measurement 
results. When measuring 7200 s for 133I with a half-life of 20.8 h, the minimum K is 0.967.

According to the calculation equation of the minimum detectable surface activity MDAC, the relationship 
between the value of MDAC and the types of radionuclides, the energy of γ-ray, and measurement time is shown 
in Table 7.

Results
In order to verify the rationality and validity of the simulation results, it is necessary to conduct experiments 
using a surface radioactive source. The effective contribution distance of the spectrometer to γ-rays with different 
energies is approximately 6 m. Under non-nuclear emergency conditions, it is difficult to measure the surface 
source of uniformly distributed artificial radionuclides with a radius greater than 6 m. Therefore, the grid point 
method is used to approximate the radioactive surface source. The schematic is shown in Fig. 6.

As shown in Fig. 6, a square grid with a side length of 8 m and an interval of 0.5 m is established, and the 
spectrometer is set up at the apex of the square, as shown in Fig. 6a. At the same time, with the spectrometer 
position as the center of the circle and 8 m as the radius to make the arc, only the area inside the arc is consid-
ered, as shown in Fig. 6b. If the same radioactive source is sequentially placed at the intersection of the grids at 
this time, and the measurement time is the same, it can be approximately equivalent to measuring a uniformly 
distributed quarter-surface radioactive surface source with a radius of 8 m. Its activity is the surface activity of the 
micro-elements represented by the radioactive point source, and the simulated measurement time is 1/215 of the 
actual measurement time. According to the symmetry, the energy spectrum of the spectrometer for a uniformly 
distributed surface source with a radius of 8 m can be calculated. The activities of the standard radioactive point 
sources used are shown in Table 8.

There are 215 intersections and vertices, and each point measures the 1200 s, and the total measurement time 
is 258,000 s. The experimental site is shown in Fig. 7, and the energy spectrum is shown in Fig. 8.

The experimental results are shown in Table 9.
Since the detector is placed at the apex of the grid, the experimentally measured part is a quarter of the actual 

detection object. In order to transform the experimental results into the measurement results of the uniformly 
distributed radioactive surface source by the spectrometer, according to the symmetry, the net count rate, surface 
activity, and other values need to be expanded four times.

The surface activity of a uniformly distributed surface source simulated by the grid method can be calculated 
by the Eq. (15)

Table 5.   Background measurement results of different energy γ-ray.

Radionuclide Energy (keV) Region of interest (keV) Count Count rate (cps)
132Te 228 [226.0, 230.0] 222,187 2.57
131I 364 [361.9, 366.1] 81,725 0.95
133I 530 [527.8, 532.2] 41,771 0.48
137Cs 662 [659.7, 664.3] 34,369 0.40
60Co 1173 [1170.3, 1175.7] 17,166 0.20
60Co 1332 [1329.2, 1334.8] 9358 0.11
124Sb 1691 [1687.9, 1694.1] 3445 0.04

Table 6.   Decay correction factors K for detection models.

Nuclide (energy/keV) (s) 132Te (228) 131I (364) 133I (530) 137Cs (662) 60Co (1173) 60Co (1332) 124Sb (1691)

100 1.000 1.000 1.000 1.000 1.000 1.000 1.000

1000 0.999 1.000 0.995 1.000 1.000 1.000 1.000

3600 0.996 0.998 0.984 1.000 1.000 1.000 1.000

7200 0.991 0.996 0.967 1.000 1.000 1.000 1.000

Table 7.   Minimum detectable surface activity of the detection model (unit: Bq/m2).

Nuclide (energy/keV) (s) 132Te (228) 131I (364) 133I (530) 137Cs (662) 60Co (1173) 60Co (1332) 124Sb (1691)

100 6.43 5.89 5.28 5.62 5.19 4.08 5.99

1000 2.03 1.86 1.68 1.78 1.64 1.29 1.89

3600 1.08 0.98 0.89 0.94 0.86 0.68 1.00

7200 0.76 0.70 0.64 0.66 0.61 0.48 0.71
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where AS represents the surface activity of uniformly distributed surface source, Bq/m2; Ap represents the activ-
ity of the point source used in the experiment, Bq; R represents the radius of uniformly distributed area source 

(15)AS =
215Ap

πR2
× 4,

Figure 6.   Simulation of uniformly distributed surface sources using the grid layout method. (a) shows the 
meshing principle, and the part enclosed by the arc in (b) is the area of interest.

Table 8.   Radioactivity of standard point sources.

Radionuclide Activity (Bq) Relative uncertainty (%, k = 2)
137Cs 24,380 1.7
60Co 24,403 1.7

Figure 7.   The experimental site was chosen to be in a flat and open area, and the HPGe γ spectrometer was set 
up at the height of 1 m from the ground and connected to a computer. Place the radioactive sources in sequence 
according to the grid division method described in Fig. 6 to complete the experiment.
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simulated by grid method, m, here is 8 m. The calculation of the net count rate of the simulated surface source 
is shown in the Eq. (16)

where nS_tr represents the net count rate of simulated surface source, cps; nS_or represents the actual net count 
rate measured, cps.

According to the measurement results of the net count rate, the detection efficiency of surface source, and 
effective contribution distance, the surface activity can be calculated by the Eq. (17)

where AS_MC represents surface activity derived from Monte Carlo simulation of point source detection efficiency, 
Bq/m2; εS_MC represents detection efficiency of surface source; dMC represents effective contribution distance 
derived by Monte Carlo simulation of point source detection efficiency, m; Pr represents emissivity of charac-
teristic γ-ray.

Compare the derived activity with the activity calculated by the Eq. (17), and the validity of the calibration 
method is tested. Substituting the effective contribution distance and surface source detection efficiency in 
Table 1 into the calculation, the comparison results between the theoretical and integral calculations of surface 
source activity are shown in Table 10.

(16)nS_tr = 215nS_or × 4,

(17)AS_MC =
nS_tr

εS_MC · Pr · πd2MC

,

Figure 8.   Energy spectrum of a uniformly distributed surface source experiment using the grid method.

Table 9.   Grid source experiment results.

Radionuclide Energy (keV) Net count Uncertainty range Time (s) Net count rate (cps)
137Cs 662 15,380  ± 635 258,000 5.96E−02
60Co 1173 12,680  ± 657 258,000 4.91E−02
60Co 1332 11,397  ± 457 258,000 4.42E−02

Table 10.   Comparison of surface source experiment results with Monte Carlo simulation detection efficiency .

Radionuclide Energy (keV)
Net count rate of simulated source 
(cps)

Surface activity of simulated source 
(Bq/m2)

Surface activity of integral calculation 
(Bq/m2) Relative error (%)

137Cs 662 51.3 1.04E+05 9.83E+04 −5.4
60Co 1173 45.6 1.04E+05 1.14E+05 9.6
60Co 1332 44.7 1.04E+05 1.19E+05 14.6
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It can be seen that the relative error of the measurement of uniformly distributed radioactive surface sources 
using the numerical integration method is relatively small, all of which do not exceed 14.6%. The results of surface 
source detection efficiency obtained by this method are relatively accurate.

Conclusion
In this paper, a method for rapid surface activity measurement of radioactive surface sources settled on the sur-
face under nuclear emergency conditions is studied. Innovatively introduce the numerical integration method 
into the process of calibration of surface source detection efficiency. The area of ​​numerical integration is a cir-
cular area enclosed within the effective contribution distance. Since the detection efficiency of point sources is 
simulated by Monte Carlo method, and the detection efficiency of surface sources is calculated by the numerical 
integration, this method is reproducible. The calculation of point source detection efficiency uses the Monte Carlo 
simulation method, which has the advantage that: (1) the results are obtained quickly; (2) no natural radioactive 
source is required for calibration. The disadvantages are: (1) the spectrometer needs to be characterized before 
use because the HPGe γ spectrometer will change its dead layer thickness and size the hole with the use of time, 
which will cause errors in the simulation results; (2) There are some differences between the simulation model 
and the real situation, such as a spectrometer tripod, air humidity, etc., which will cause certain errors.

After the point source detection efficiency is calculated, the horizontal distance corresponding to 95% of the 
maximum contribution rate extending outward from the projection point of the detector is defined as the effective 
contribution distance, and the numerical integration method is used to calculate the detection efficiency of the 
surface source. Finally, the grid point method is used to simulate the radioactive surface source for experiments. 
The maximum relative error between the theoretical calculation and the experiment is 14.6%, which verifies the 
effectiveness of this method.

Since radioactive contamination may exist not only on the surface but also in seawater under nuclear emer-
gency conditions, an effective in situ measurement means is needed. Since the attenuation coefficient of γ-rays 
in seawater is different from that in air, and the spatial distribution of radioactive substances in seawater is 
unknown, the method cannot be directly applied to measurements in seawater, and further relevant studies are 
worthwhile in the future.

Data availability
The datasets generated and analysed during the current study are available in the Mendeley Data repository, 
https://​doi.​org/​10.​17632/​h59f2​wnc5x.1.
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