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Abstract: Childhood obesity carries an increased risk of metabolic complications, sleep disturbances,
and cancer. Visceral adiposity is independently associated with inflammation and insulin resistance
in obese children. However, the underlying pathogenic mechanisms are still unclear. We aimed
to detect the gene expression pattern and its regulatory network in the visceral adipose tissue
of obese pediatric individuals. Using differentially-expressed genes (DEGs) identified from two
publicly available datasets, GSE9624 and GSE88837, we performed functional enrichment, protein–
protein interaction, and network analyses to identify pathways, targeting transcription factors (TFs),
microRNA (miRNA), and regulatory networks. There were 184 overlapping DEGs with six significant
clusters and 19 candidate hub genes. Furthermore, 24 TFs targeted these hub genes. The genes were
regulated by miR-16-5p, miR-124-3p, miR-103a-3p, and miR-107, the top miRNA, according to a
maximum number of miRNA–mRNA interaction pairs. The miRNA were significantly enriched
in several pathways, including lipid metabolism, immune response, vascular inflammation, and
brain development, and were associated with prediabetes, diabetic nephropathy, depression, solid
tumors, and multiple sclerosis. The genes and miRNA detected in this study involve pathways
and diseases related to obesity and obesity-associated complications. The results emphasize the
importance of the TGF-β signaling pathway and its regulatory molecules, the immune system, and
the adipocytic apoptotic pathway in pediatric obesity. The networks associated with this condition
and the molecular mechanisms through which the potential regulators contribute to pathogenesis are
open to investigation.

Keywords: childhood obesity; in silico; microRNA; obesity; visceral adipose tissue

1. Introduction

Pediatric obesity is associated with an increased risk of metabolic complications, in-
cluding diabetes mellitus, metabolic syndrome, cardiovascular disease, sleep disturbances,
and certain malignancies later in life [1–3]. In the past few decades, the prevalence of
obesity in the pediatric age group has sharply increased in developing and developed
countries [1], making it a global health burden.

Obesity-related insulin resistance (IR) develops due to inflammation caused by ex-
cessive fat accumulation and abnormalities in lipid metabolism. Adipose tissue (AT) is a
central node in regulating our metabolic activities and energy homeostasis. The visceral
adipose tissue (VAT) component has a higher propensity for inflammation; its strong as-
sociation with IR in contrast to subcutaneous fat depots is well established. The ongoing
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lipotoxicity, endoplasmic reticular stress, oxidative stress, recruitment of AT macrophages,
and subsequent secretion of pro-inflammatory cytokines in an obese state are said to impair
the insulin signaling pathway in the liver and skeletal muscle leading to IR [4,5]. However,
the pathogenic molecular alterations in VAT leading to IR are not entirely known. Recent
evidence suggests that adipocyte gene expression and the transcriptional regulation of
gene products have a central role in IR in long-term obesity.

Visceral adiposity is independently associated with IR and inflammation in obese
adolescents, highlighting its potential role in obesity-related chronic disease [6]. Moreover,
a differential transcriptional response to hyperinsulinemia in obese subjects compared to
non-obese individuals was found to be independent of insulin sensitivity [7], implying that
VAT is the potential culprit. We can, therefore, hypothesize that the differentially-expressed
genes in VAT and their transcriptional regulators are involved in altering the roles of key
proteins in the insulin signaling pathway and glucose homeostasis in obese conditions.

Furthermore, microRNAs (miRNAs), well-known for their role in diabetes and its
complications [8,9], have shown promise as markers of endothelial dysfunction, type 2
diabetes, metabolic syndrome, and IR in children [10]. The miRNAs produced by AT
depots can affect the metabolism of distant tissues because they are easily transported into
the bloodstream. Strycharz and colleagues [11] identified several differentially-expressed
miRNAs in the VAT of pre-diabetic and diabetic females, stressing that these expression
changes could be associated with the low-grade chronic inflammation and oxidative stress
in VAT in hyperglycemia. Both transcription factors (TFs) and miRNA are known to
regulate the genetic network associated with insulin secretion and β-cell proliferation in
the context of obesity. A previous study [12] reported that AT macrophages modulate
obesity-related β-cell adaptations through the secretion of miRNA-containing (miR-155)
extracellular vesicles. Recently, several miRNAs, such as miR-320a, miR-142-3p, and the
let-7 family, were identified as potential circulating biomarkers of IR in pre-adolescent
children [13].

Our study aimed to discover any existing pattern of gene expression and its regulatory
network in VAT of the obese pediatric population. We identified differentially-expressed
genes (DEGs) for VAT by analyzing the mRNA expression profiles of two different mi-
croarray datasets. Subsequently, Gene Ontology (GO) and functional enrichment were
carried out to reveal the pathways and mechanisms involved in childhood obesity. The
protein–protein interaction (PPI) network was constructed, and hub genes were identified.
Finally, we analyzed the candidate hub genes for target miRNA and TFs. The mechanisms,
the hub genes, their co-expressed regulators, and the potentially involved pathways can
reveal useful information in understanding the mechanism behind childhood obesity.

2. Results
2.1. Identification of DEGs between Obese and Lean Individuals

A schematic diagram depicting the study design is shown in Figure 1.
For the chosen datasets, the number of upregulated DEGs was 1182 (GSE9624, obese vs.

lean) and 378 (GSE88837, obese vs. lean), whereas the number of downregulated DEGs was
1226 (GSE9624, obese vs. lean) and 514 (GSE88837, obese vs. lean), respectively. Figure 2A,B
depicts the significant DEGs in the two datasets. Venn diagrams were then constructed us-
ing the Venn diagram tool available at http://bioinformatics.psb.ugent.be/webtools/Venn/
(accessed on 11 July 2022) to identify the overlapping DEGs between the two groups. Eighty-
one upregulated (Figure 2C) and 103 downregulated DEGs (Figure 2D) were identified as
overlapping between the two datasets, which were selected for further analysis.

http://bioinformatics.psb.ugent.be/webtools/Venn/
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Figure 2. Volcano plots depicting the analysis of obesity-induced differentially-expressed genes 
(DEGs) in visceral or omental adipose tissue comparing obese and lean pediatric subjects (aged 2-
19 years) in the datasets (A) GSE9624 and (B) GSE88837, respectively. The publicly available Gene 
Expression Omnibus (GEO) datasets, downloaded from the NCBI website, together comprised 40 
samples from 19 obese and 21 lean children or adolescents. DEGs were obtained using the GEO2R 
online interactive tool (that uses the GEOquery, Limma, and umap R packages) with the cut-off p-
value < 0.05. The downregulated and upregulated genes are depicted in blue and red, respectively, 
for both datasets. (C,D) The DEGs for the individual datasets were further segregated using the 
threshold |log2 (fold change)| ≥ 1. Venn diagrams indicate the overlap between (C) upregulated 
and (D) downregulated DEGs, respectively. These 184 common DEGs (81 upregulated and 103 
downregulated) were selected for further analysis. 

2.2. Functional Enrichment Analysis of DEGs 
The top 20 significant GO enrichments for the overlapping DEGs are displayed in 

Figure 3A,B. The upregulated genes were enriched in response to hormones, enzyme-
linked receptor protein signaling pathway, positive regulation of the apoptotic process, 
response to estradiol, hemopoiesis, regulation of growth, cellular response to fatty acid, 
positive regulation of protein kinase B signaling, regulation of fat cell differentiation, and 
regulation of cell adhesion and were involved in the TGF-β signaling pathway (Figure 
3A). The downregulated genes are strongly enriched in Complement Cascade, Cell Cycle-
mitotic, regulating cholesterol metabolic process, inflammatory response, and connective 
tissue development. These genes are also involved in the IL-18 signaling pathway, trans-
sulfuration, one-carbon metabolism, and ferroptosis (Figure 3B). 

Furthermore, the disease–gene interaction from DisGeNet revealed that the upregu-
lated genes were involved in vascular inflammations, unipolar depression, weight gain, 

Figure 2. Volcano plots depicting the analysis of obesity-induced differentially-expressed genes
(DEGs) in visceral or omental adipose tissue comparing obese and lean pediatric subjects (aged
2-19 years) in the datasets (A) GSE9624 and (B) GSE88837, respectively. The publicly available Gene
Expression Omnibus (GEO) datasets, downloaded from the NCBI website, together comprised 40
samples from 19 obese and 21 lean children or adolescents. DEGs were obtained using the GEO2R
online interactive tool (that uses the GEOquery, Limma, and umap R packages) with the cut-off
p-value < 0.05. The downregulated and upregulated genes are depicted in blue and red, respectively,
for both datasets. (C,D) The DEGs for the individual datasets were further segregated using the
threshold |log2 (fold change)| ≥ 1. Venn diagrams indicate the overlap between (C) upregulated
and (D) downregulated DEGs, respectively. These 184 common DEGs (81 upregulated and 103
downregulated) were selected for further analysis.

2.2. Functional Enrichment Analysis of DEGs

The top 20 significant GO enrichments for the overlapping DEGs are displayed in
Figure 3A,B. The upregulated genes were enriched in response to hormones, enzyme-
linked receptor protein signaling pathway, positive regulation of the apoptotic process,
response to estradiol, hemopoiesis, regulation of growth, cellular response to fatty acid,
positive regulation of protein kinase B signaling, regulation of fat cell differentiation, and
regulation of cell adhesion and were involved in the TGF-β signaling pathway (Figure 3A).
The downregulated genes are strongly enriched in Complement Cascade, Cell Cycle-
mitotic, regulating cholesterol metabolic process, inflammatory response, and connective
tissue development. These genes are also involved in the IL-18 signaling pathway, trans-
sulfuration, one-carbon metabolism, and ferroptosis (Figure 3B).



Int. J. Mol. Sci. 2022, 23, 11036 5 of 18

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 5 of 18 
 

 

kidney failure, and adolescent idiopathic scoliosis (Figure 3C). In contrast, the downreg-
ulated genes were significantly associated with meningioma, acute myocardial infarction, 
diseases of the capillaries, Behçet syndrome, and Fatty Liver disease (Figure 3D). The func-
tional enrichment in terms of Biological Process, Molecular Function, and Cellular Com-
ponents is given in Supplementary Table S1. 

 
Figure 3. The GO enrichment analysis of the overlapping DEGs between obese and lean children.
Top 20 significant enrichment terms for (A) upregulated and (B) downregulated DEGs. (C,D) The
top 20 disease-gene interactions for the overlapping genes between obese and lean children.

Furthermore, the disease–gene interaction from DisGeNet revealed that the upregu-
lated genes were involved in vascular inflammations, unipolar depression, weight gain,
kidney failure, and adolescent idiopathic scoliosis (Figure 3C). In contrast, the downregu-
lated genes were significantly associated with meningioma, acute myocardial infarction,
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diseases of the capillaries, Behçet syndrome, and Fatty Liver disease (Figure 3D). The
functional enrichment in terms of Biological Process, Molecular Function, and Cellular
Components is given in Supplementary Table S1.

2.3. PPI Network Construction and Significant Modules

The PPI network on the Search Tool for the Retrieval of Interacting Genes and proteins
(STRING) platform was significantly enriched (p < 0.001). The network was imported and
visualized on Cytoscape (Figure 4).
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lean children. The red-purple border indicates the upregulated genes, and the green border shows the
downregulated overlapping genes. There were 44 upregulated and 71 downregulated overlapping
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We found 44 upregulated and 71 downregulated overlapping genes in this network
with 552 paired interactions (Supplementary Table S2).
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The network analysis through the MCODE plug-in was carried out with a Network
Score Degree Cutoff: 2, and Cluster parameters—Node Density Cutoff: 0.1, Node Score
Cutoff: 0.2, K-Core: 2, and Maximum Depth: 100. The analysis revealed six significant clus-
ters. Cluster 1, with the highest score of 13.077, had 14 nodes and 170 edges and included
Kinesin Family Member 20A (KIF20A), Aurora Kinase A (AURKA), Hyaluronan Mediated
Motility Receptor (HMMR), dual specificity protein kinase TTK, DNA Topoisomerase IIα
(TOP2A), Centromere Protein N (CENPN), Denticleless protein homolog (DTL), Lymphoid-
specific helicase (HELLS), G2/mitotic specific Cyclin-B2 (CCNB2), GINS complex subunit
2 (GINS2), Kinetochore protein SPC24, Kinesin Family Member 4A (KIF4A), Centromere
Protein F (CENPF), Thymidylate synthase (TYMS) (Figure 5A). The details of each module
are given in Supplementary Table S3.
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Figure 5. (A–F) The top six significant clusters were extracted from the PPI network through the
MCODE plug-in. The red-purple border indicates the upregulated genes, and the green wall shows
the downregulated overlapping genes. (A) Cluster 1 (KIF20A, AURKA, HMMR, TTK, TOP2A,
CENPN, DTL, HELLS, CCNB2, GINS2, SPC24, KIF4A, CENPF, TYMS): 14 nodes, 170 edges, and
score: 13.077, (B) Cluster 2 (LEP, SREBF1, ACLY, PDK4, SCD, DGAT2): 6 nodes, 28 edges, and score:
5.600, (C) Cluster 3 (CR1, HP, KNG1, TIMP1, APOE, COL1A1, CFI, VCAN, CFB, MMP14, COL5A1):
11 nodes, 38 edges, and score: 3.800, (D) Cluster 4 (SERPINA1, C4A, C4B): 3 nodes, 6 edges, and
score: 3.000, (E) Cluster 5 (JUND, MAFF, NQO1): 3 nodes, 6 edges, and score: 3.000, (F) Cluster 6
(SHMT1, BHMT2, CBSL): 3 nodes, 6 edges, and score: 3.000.
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Cluster 2, having six nodes, 28 edges, and a score of 5.600, included six genes: Leptin
(LEP), Sterol Regulatory Element Binding Transcription Factor 1 (SREBF1), ATP Citrate
Lyase (ACLY), Pyruvate Dehydrogenase Kinase 4 (PDK4), Stearoyl-CoA Desaturase (SCD),
and Diacylglycerol O-acyltransferase 2 (DGAT2) (Figure 5B). Cluster 3, having 11 nodes,
38 edges, and score: 3.800, had eleven genes: namely, Complement Receptor type 1 (CR1),
Haptoglobin (HP), Kininogen 1 (KNG1), Tissue inhibitor of metalloproteinases 1 (TIMP1),
Apolipoprotein E (APOE), Type-I Collagen alpha-1 (COL1A1), Complement Factor I (CFI),
Versican (VCAN), Complement Factor B (CFB), Matrix Metalloproteinase 14 (MMP14), and
Type-V Collagen alpha-1 (COL5A1) (Figure 5C).

Clusters 4, 5, and 6 (each having three nodes, six edges, and a score of 3.000) had
three genes each. They were α1 antitrypsin (SERPINA1), Complement C4-A (C4A), and
Complement C4-B (C4B) (Cluster 4) (Figure 5D); JunD proto-oncogene (JUND), MAF bZIP
transcription factor F (MAFF), and NADPH quinone oxidoreductase 1 (NQO1) (Cluster
5) (Figure 5E); and serine hydroxymethyltransferase 1 (SHMT1), Betaine-Homocysteine
S-methyltransferase 2 (BHMT2), and Cystathionine β synthase-like (CBSL) (Cluster 6)
(Figure 5F), respectively.

2.4. Hub Gene Identification and TF–Gene Interactions

The topmost hub genes were identified by the cytoHubba plug-in using twelve topo-
logical algorithms, and the genes detected in at least three techniques were considered
candidate hub genes. A total of 19 such genes were identified, as shown in Table 1.

Table 1. Hub gene analysis with cytoHubba plug-in to identify the top candidate genes.

Sl No. Official Gene Symbol Number of Methods Involved

1 TOP2A 10
2 JUN 9
3 APOE 9
4 TIMP1 6
5 COL1A1 5
6 HMMR 5
7 KIF4A 5
8 KIF20A 5
9 TYMS 4
10 LEP 4
11 CENPF 4
12 GINS2 4
13 SREBF1 3
14 HP 3
15 NQO1 3
16 CCNB2 3
17 TTK 3
18 DTL 3
19 AURKA 3

The TF–gene interaction network revealed 90 hub gene–TF pairs (Figure 6, Supple-
mentary Table S4). These genes were involved in clusters 1, 2, 3, and 6. There were 210
and 79 targeting TFs between these hub genes, respectively, according to Encyclopedia
of DNA elements (ENCODE) and Transcriptional Regulatory Relationships Unravelled
by Sentence-based Text Mining (TTRUST)—two databases incorporated in miRNet for
uncovering the molecular basis of TF–binding. The Venn diagram tool was used to identify
the 24 common targeting TFs between these two databases.
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Figure 6. The hub gene-transcription factor (TF) network. The hexagons with brown outlines indicate
the TFs, and the round, rectangular nodes are the hub genes, those upregulated marked with the
red-purple border and those downregulated with the green border. The network had 17 hub genes
and 24 TFs, with 90 hub gene–TF interaction pairs.

2.5. MicroRNA and Hub Gene Network

Hub gene-targeting miRNA were predicted using miRNet based on the correlation
analysis between the hub genes and miRNAs, using a degree cut-off of 2.0. The regulatory
network predicting the miRNA-hub gene interaction is shown in Table 2 and Figure 7. In the
network, there were 19 genes and 115 miRNA. The top 20 targeting miRNA were selected
from the interaction table, with 228 mRNA–miRNA pairs (Supplementary Table S5).
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Table 2. Candidate hub genes with targeting transcription factors and miRNA.

Candidate Hub Gene Targeting Transcription Factors Targeting miRNA

TOP2A ATF1

miR-34a-5p, miR-16-5p, miR-124-3p, miR-103a-3p, miR-107,
miR-129-2-3p, miR-1-3p, miR-147a, miR-126-3p, miR-27a-3p,
miR-195-5p, miR-205-5p, let-7b-5p, miR-26a-5p, miR-23b-3p,

miR-128-3p, miR-449b-5p, miR-34c-5p, miR-203a-3p

JUN
CREB1, MYBL2, NFRKB, NRF1,

SMAD4, SP3, TFDP1, WT1,
ARNT, ZNF382, MEF2D

miR-34a-5p, miR-16-5p, miR-124-3p, miR-103a-3p, miR-107,
miR-129-2-3p, miR-1-3p, miR-147a, miR-126-3p, miR-195-5p,

miR-26a-5p, miR-23b-3p, miR-203a-3p, miR-155-5p

APOE ARNT, ETS1, ATF4, FOXM1, SP1 miR-34a-5p, miR-16-5p, miR-1-3p, let-7b-5p, miR-155-5p

TIMP1 ARNT, JUND, RELA, SP1, SP3,
STAT1

miR-34a-5p, miR-124-3p, miR-27a-3p, let-7b-5p, miR-26a-5p,
miR-128-3p

COL1A1
ATF1, CEBPB, FOXM1, SP1, USF1,
WT1, ETS1, MYBL2, RELA, SP1,

SP3

miR-34a-5p, miR-16-5p, miR-124-3p, miR-103a-3p, miR-107,
miR-129-2-3p, miR-1-3p, miR-27a-3p, let-7b-5p, miR-128-3p,

miR-34c-5p, miR-155-5p

HMMR ATF1, CREB1, JUNB, MEF2D,
NFRKB, SP1

miR-34a-5p, miR-16-5p, miR-124-3p, miR-103a-3p, miR-107,
miR-129-2-3p, miR-1-3p, miR-147a, miR-27a-3p, miR-195-5p,
miR-205-5p, miR-23b-3p, let-7b-5p, miR-203a-3p, miR-155-5p

KIF4A ATF1

miR-34a-5p, miR-16-5p, miR-124-3p, miR-103a-3p, miR-107,
miR-129-2-3p, miR-1-3p, miR-147a, miR-126-3p, miR-27a-3p,

miR-195-5p, miR-205-5p, miR-26a-5p, miR-23b-3p, miR-449b-5p,
miR-34c-5p, miR-203a-3p

KIF20A ZNF382

miR-34a-5p, miR-16-5p, miR-124-3p, miR-103a-3p, miR-107,
miR-129-2-3p, miR-147a, miR-126-3p, miR-27a-3p, miR-195-5p,

miR-205-5p, miR-23b-3p, miR-449b-5p, miR-34c-5p, miR-203a-3p,
miR-155-5p

TYMS ATF1, CEBPA, NFRKB, SP1,
TFDP1, USF1

miR-34a-5p, miR-16-5p, miR-103a-3p, miR-107, miR-129-2-3p,
miR-1-3p, miR-147a, miR-126-3p, miR-195-5p, let-7b-5p,

miR-26a-5p, miR-23b-3p, miR-449b-5p, miR-203a-3p, miR-155-5p

LEP ATF1, CEBPA, SP1 miR-27a-3p

CENPF STAT1

miR-34a-5p, miR-16-5p, miR-124-3p, miR-103a-3p, miR-107,
miR-129-2-3p, miR-1-3p, miR-147a, miR-126-3p, miR-27a-3p,

miR-195-5p, miR-205-5p, miR-26a-5p, miR-23b-3p, miR-128-3p,
miR-449b-5p, miR-34c-5p

GINS2 -
miR-34a-5p, miR-16-5p, miR-124-3p, miR-103a-3p, miR-107,
miR-129-2-3p, miR-1-3p, miR-147a, miR-195-5p, miR-205-5p,

miR-34c-5p, miR-203a-3p

SREBF1
ATF4, NFRKB, NRF1, RELA,

SMAD4, SP3, TFDP1, ZNF382,
SP1

miR-16-5p, miR-27a-3p, miR-128-3p, miR-155-5p

HP CEBPB, SMAD4 miR-124-3p, miR-147a, let-7b-5p

NQO1 NFRKB, NRF1, JUNB, JUND,
NFE2L2

miR-34a-5p, miR-124-3p, miR-103a-3p, miR-107, miR-129-2-3p,
miR-1-3p, miR-147a, miR-126-3p, miR-27a-3p, miR-205-5p,

miR-128-3p

CCNB2 ZNF382, ARNT, NFRKB
miR-34a-5p, miR-16-5p, miR-124-3p, miR-103a-3p, miR-107,

miR-129-2-3p, miR-147a, miR-195-5p, miR-205-5p, miR-126-3p,
miR-23b-3p, let-7b-5p, miR-449b-5p, miR-34c-5p

TTK -
miR-34a-5p, miR-16-5p, miR-124-3p, miR-103a-3p, miR-107,
miR-129-2-3p, miR-1-3p, miR-147a, miR-126-3p, miR-195-5p,

miR-205-5p, miR-26a-5p, miR-128-3p, miR-449b-5p, miR-34c-5p
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Table 2. Cont.

Candidate Hub Gene Targeting Transcription Factors Targeting miRNA

DTL JUNB, JUND, MYBL2, NFE2L2,
SP1

miR-34a-5p, miR-16-5p, miR-124-3p, miR-103a-3p, miR-107,
miR-129-2-3p, miR-1-3p, miR-147a, miR-126-3p, miR-195-5p,

miR-205-5p, miR-26a-5p, miR-128-3p, miR-449b-5p, miR-34c-5p

AURKA ARNT, NFRKB, ZNF382

miR-34a-5p, miR-16-5p, miR-124-3p, miR-103a-3p, miR-107,
miR-129-2-3p, miR-1-3p, miR-147a, miR-195-5p, miR-205-5p,

miR-26a-5p, miR-23b-3p, let-7b-5p, miR-128-3p, miR-449b-5p,
miR-203a-3p, miR-155-5p

The top five targeting miRNA for each candidate hub gene are marked in bold font. GINS2 and TTK had no
common transcription factor between the two databases—TTRUST and ENCODE.
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Figure 7. The predicted miRNA-hub gene network shows the interaction between the top 20 miRNA
and the hub genes (mRNAs). The hexagons indicate the hub genes, those upregulated marked in
the red-purple border and those downregulated in the green border. The round, rectangular nodes
are the predicted targeting miRNA. The network contains 19 genes and the top 20 miRNA, with 228
pairs of interactions between them.
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The top five targeting miRNA according to a maximum number of interaction pairs
were miR-34a-5p, miR-16-5p, miR-124-3p, miR-103a-3p, and miR-107. The functional anal-
ysis yielded eight items for cell specificity, four for the clusters, 262 for disease, four for
miRNA family, 56 functions, and four for tissue specificity. All items were sorted according
to the statistical significance per the false discovery rate (FDR), and relevant functions
and disease categories were visualized. The selected functional annotations included glu-
cose and lipid metabolism, brain development, immune response, vascular inflammation,
smooth muscle cell proliferation, hormone-mediated signaling pathway, and T-cell differen-
tiation (Figure 8A). The significant disease categories included inflammatory bowel disease,
type 2 diabetes mellitus, diabetic nephropathy and retinopathy, solid childhood tumor,
prediabetes, depression, polycystic ovarian syndrome, and multiple sclerosis (Figure 8B).
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3. Discussion

Childhood obesity is a prevalent global health issue that needs our immediate attention.
A dysfunctional AT is believed to be responsible for the development of obesity-associated
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metabolic disorders. Several studies have used microarray data profiling to elucidate the
pathogenic mechanisms of pediatric obesity. Aguilera and colleagues identified a distinct
gene expression pattern in VAT in obese children [14]. The validated genes in their study
were involved in lipid and amino acid metabolism, oxidative stress, adipogenesis, and
inflammation. Findings from another experiment suggested a dysfunctional PI3K/Akt
signaling pathway in the VAT of obese children, which may be driven by changes in DNA
methylation [15]. The present study identified 184 overlaps and differentially-expressed
RNAs from both datasets. Following functional enrichment analysis, the upregulated DEGs
were involved in hormone response, cellular response to fatty acids, regulation of adipocyte
differentiation, positive regulation of Akt signaling, and regulation of cell adhesion, which
are in line with the previous findings. The disease–gene interactions further revealed
several conditions, some of which are known to be associated with obesity, such as heart
disease, fatty liver disease [16], and nephropathy.

Other significant biological processes were the TGF-β receptor signaling pathway
and the integrin-linked kinase (ILK) signaling pathway. The former is well-researched in
obesity and takes part in multiple pathophysiological roles in cardiometabolic diseases [17].
An imbalance of TGF-β and interleukin-10 (IL-10) levels in neutrophils aggravates the
inflammatory cytokine expression in childhood obesity [18]. It is already known that VAT
exosomes can induce TGF-β pathway dysregulation in hepatocytes in vitro, indicative
of a possible role in the pathogenesis of non-alcoholic fatty liver disease (NAFLD) [19].
Recently, a distinctive NAFLD-associated transcriptomic signature, which included a highly
expressed TGF-β1, has been reported in the white AT of severely obese females [16]. Besides
vascular inflammation, weight gain, kidney failure, and liver and heart diseases, the disease–
gene interaction also revealed unipolar depression, various cancers, and scoliosis, all known
risks for obese children [3,20,21]. Several cancer-related TFs such as JUNB, JUND, Forkhead
box protein M1 (FOXM1), and ETS1 were part of the TF–mRNA regulatory network. These
TFs all augment the TGF-β signaling pathway [22–24]. Studies on obese mice models have
identified JUND as a key metabolic regulator of lipid metabolism and obesity-induced
cardiomyopathy [23]. FOXM1 is upregulated in obesity and helps in β-cell proliferation as
a compensatory mechanism in IR [25]. SMAD4, one of the targeting TFs in our study, is
a central mediator in the TGF-β pathway. The latter is involved with and modulated by
miR-124 (found to target 15 out of 19 candidate hub genes in the current study) through a
feedback loop that includes SMAD4 [26]. The ILK pathway has a cause–effect relationship
with muscle IR in obese mice [27].

The downregulated genes were involved in the complement cascade, neutrophil
degranulation, apoptosis-related network, and IL-18 signaling pathway. The delayed
resolution of acute inflammation in obesity due to the deficiency of an effective apoptotic
adipocyte removal process can contribute to the underlying inflammatory process, immune
system dysfunction, and IR [28]. M2 macrophages can help efficiently clear these apoptotic
cells to reduce the burden of inflammation and long-term complications. Adiposity-related
inflammatory factors also form inflammasome complexes, which activate and release
pro-inflammatory cytokines, including IL-18, one of the crucial cytokines involved in the
development of IR [29]. Recently, the role of the complement system has also emerged in
obesity-associated metabolic disorders and adipocyte inflammation. Decreased levels of
the lectin pathway components reduce the clearance of apoptotic adipocytes and increase
AT inflammation [30]. This is supported by the complement component 4a deficiency in
our analysis.

Among the hub genes, APOE is significantly reduced in the peripheral blood of
obese children [31]. Two recent studies highlight the role of SREBF1 in childhood obe-
sity [32,33]. Kochmanski et al. [32] studied DNA methylation patterns in neonatal blood
spots and found both LEP and SREBF1 to be associated with growth and adiposity. No-
tably, epigenetic-based pharmacological strategies are being explored in VAT to ameliorate
obesity-related comorbidities [34]. TIMP1 is a negative regulator of adipogenesis. It is
increased in the AT of obese mice models [35]. HMMR is another regulatory molecule,
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the downregulation of which induces adipogenesis in vitro [36]. Signal transducer and
activator of transcription 1 (STAT1) is a TF involved in IR and cancer; STAT1 regulates cel-
lular proliferation, inflammation, and angiogenesis and mediates between reactive oxygen
species (ROS)-induced damage, attenuation of macrophage differentiation and endothelial
dysfunction in diabetic complications [37]. CEBPB and CEBPA (CCAAT/enhancer-binding
protein-beta and alpha) are known TFs in the adipogenic differentiation cascade. Previous
studies have elucidated their roles in AT’s developmental stage-specific transcriptional
networks [38]. Several hub genes, such as TOP2A, CENPF, TYMS, AURKA, KIF4A, and
KIF20A, are related to the cell cycle and DNA replication, implicating the close relationship
between obesity and cancer [39,40]. AURKA is a prognostic marker in obese patients with
early breast cancer [40]. Loss of AURKA in the intestinal epithelia causes gut microbiota
dysbiosis and higher levels of propionate, leading to Akt activation, which in turn promotes
obesity [41].

Obesity-associated or AT-derived miRNA has potential as biomarkers for managing
and preventing obesity and as promising therapeutic targets. This study identified five
miRNAs that targeted the network’s maximum number of hub genes. A recent in silico
analysis determined miR-124-3p to be a key regulatory molecule in the pathogenesis of
type 2 diabetes mellitus [42]. This miRNA targets the immune status of individuals through
interacting with obesity-related immune cytokines [43]. Moreover, miRNAs such as miR-
155-5p, miR-1-3p, and let-7b-5p—among the targeting miRNAs found in this study—are
involved in the PI3k/Akt pathway, endocrine resistance, and advanced glycation end prod-
ucts/receptor for advanced glycation end products (AGE/RAGE) signaling pathway [42].
A comprehensive transcriptomic analysis involving type 2 diabetes mellitus patients further
revealed that miR-124-3p and miR-16-5p affect the expression of genes such as CREB1, SP1,
(both TFs in our analysis) SREBF1, and JUN (hub genes) [44].

Circulating levels of miR-16-5p have predictive value as a biomarker of gestational
diabetes mellitus in obese pregnant women [45]. Increased miR-34 in AT exacerbates the
inflammatory process by suppressing Kruppel-like factor 4 (KLF4), thereby increasing the
accumulation of proinflammatory M1 macrophages [46]. MiR-103a-3p and miR-107 are
known to act in the insulin signaling pathway [47]. Zhang and colleagues studied the effects
of miR-103/107 on preadipocyte apoptosis. They showed that these two miRNAs promote
endoplasmic reticulum-mediated apoptosis through the Wnt3a/β-catenin pathway [48],
suggesting that activating these miRNAs could potentially serve as novel therapies for
treating obesity and metabolic syndrome-related diseases.

Interestingly, inflammatory bowel diseases (IBD) and multiple sclerosis were signif-
icant disease annotations in the miRNA enrichment analysis. Recently, several lines of
evidence have come up to suggest a link between visceral adiposity and IBD. The links
involve a chronic inflammatory state, alteration in the gut microbiome, and diet. The
adipokines released from the AT can be proinflammatory in immune-mediated disorders.
Visceral adiposity and obesity have an impact on several IBD-related outcomes, such as
response to therapy and quality of life [49]. A survey of the existing literature also shows
a link between young overweight or obese individuals and the occurrence of multiple
sclerosis, which was significant for girls [50].

This study has several limitations. The total sample size was small and only included
individuals of specific ethnicities. Larger cohort studies are needed for the verification of
our findings. The miRNA expression in obesity may also be gender-dependent, as shown in
previous studies on different ethnicities [10,51]. This needs to be explored further in other
populations. Finally, although we have identified the potential regulatory genes, TF, and
miRNA, and the networks and pathways associated with childhood obesity, the molecular
mechanisms of these potential regulators are still open to laboratory investigation in vitro
or in vivo.
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4. Materials and Methods
4.1. Microarray Datasets and Screening of DEGs

The expression profiling datasets GSE9624 [14] and GSE88837 [15] were obtained from
the Gene Expression Omnibus (GEO) Datasets on the NCBI website (https://www.ncbi.
nlm.nih.gov/gds) (accessed on 11 July 2022), organized according to Homo sapiens. The
following inclusion criteria were set while selecting the samples for this study: VAT or
omental AT from obese children or adolescents (2–19 years), with lean individuals used as
control samples. GSE9624 had 11 samples (five obese and six normal-weight children), and
GSE88837 had 29 samples (14 obese and 15 lean).

Both datasets were based on GPL570 [HG-U133_Plus_2] Affymetrix Human Genome
U133 Plus 2.0 Array. The available data were processed using the interactive web tool
GEO2R. The DEGs of our interest were segregated under the following threshold: p-value
< 0.05 and |log2 (fold change)| ≥ 1.

4.2. DEG Functional Enrichment and Disease–Gene Interactions

Gene Ontology (GO) and pathway analysis for the overlapping DEG were analyzed
on Metascape [52], an online tool for gene annotation. The genetic underpinning of the
related diseases was determined through DisGeNet, an integration platform of curated
databases within Metascape. Terms with an adjusted p-value < 0.05, a minimum count of
3, and an enrichment factor > 1.5 are collected and grouped into clusters based on their
membership similarities.

4.3. PPI Network and Hub Gene Identification

PPI network of overlapping DEGs was constructed using the STRING database (https:
//string-db.org/) (accessed on 11 July 2022), which analyzes the functional interaction
between proteins. To explore the regulatory mechanisms, interactions with the confidence
of a combined score > 0.400 were retained and imported to Cytoscape (version 3.9.1,
Cytoscape team, Institute for Systems Biology, Seattle, WA, USA) for visualization [53].
The molecular complex detection (MCODE) plug-in in Cytoscape was used for selecting
the top clustering modules with the default settings. The cytoHubba app (Cytoscape 3.9.1,
Cytoscape team, Institute for Systems Biology, Seattle, WA, USA) [54] was used to identify
hub genes with the twelve topological methods. The top 10 genes were detected for each
technique, and the genes present in at least three ways were considered hub genes.

4.4. Hub-Gene Targeting TF, miRNA Network, and Functional Enrichment

Hub gene-targeting miRNAs were predicted using miRNet 2.0 [55], an integrated
platform for miRNA-centric network visual analytics. It integrates data from 14 different
miRNA databases. Additionally, the hub gene-targeting TFs were analyzed as per two
other platforms included in miRNet- ENCODE and TRRUST. The common transcription
factors identified in both databases were used for the hub gene–TF interaction network
visualized on Cytoscape.

TAM 2.0 (http://www.lirmed.com/tam2/) (accessed on 18 July 2022) is a miRNA
set enrichment analysis tool for mining the functional and disease implication behind
miRNAs of interest. The miRNAs are grouped into six categories according to family,
cluster, condition, function, TF, and tissue specificity. The top five gene-targeting miRNAs
in our analysis, chosen based on the number of interaction pairs, were used for enrichment
analysis. By default, the overrepresentation option was chosen. We selected the “Up and
down” option to analyze the up/downregulated miRNA sets.

5. Conclusions

VAT is linked to the development of obesity and obesity-related complications. How-
ever, the exact mechanism underlying the interconnection of VAT in obesity and related
metabolic complications is still unclear. We identified 184 VAT-specific DEGs in the pedi-
atric obese population from the selected datasets. A total of 19 candidate hub genes were

https://www.ncbi.nlm.nih.gov/gds
https://www.ncbi.nlm.nih.gov/gds
https://string-db.org/
https://string-db.org/
http://www.lirmed.com/tam2/
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selected from there to analyze targeting TF and miRNA. The miRNA identified in this
study involves pathways and diseases related to obesity and associated complications. In
the future, there is scope to explore these molecular pathways in larger cohorts and develop
novel, miRNA-based therapeutics for obesity and metabolic diseases.
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