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Abstract: Paracetamol is commonly used to treat fever and pain in pregnant women, but there are
growing concerns that this may cause attention deficit hyperactivity disorder and autism spectrum
disorder in the offspring. A growing number of epidemiological studies suggests that relative risks
for these disorders increase by an average of about 25% following intrauterine paracetamol exposure.
The data analyzed point to a dose–effect relationship but cannot fully account for unmeasured
confounders, notably indication and genetic transmission. Only few experimental investigations
have addressed this issue. Altered behavior has been demonstrated in offspring of paracetamol-
gavaged pregnant rats, and paracetamol given at or prior to day 10 of life to newborn mice resulted
in altered locomotor activity in response to a novel home environment in adulthood and blunted the
analgesic effect of paracetamol given to adult animals. The molecular mechanisms that might mediate
these effects are unknown. Paracetamol has diverse pharmacologic actions. It reduces prostaglandin
formation via competitive inhibition of the peroxidase moiety of prostaglandin H2 synthase, while
its metabolite N-arachidonoyl-phenolamine activates transient vanilloid-subtype 1 receptors and
interferes with cannabinoid receptor signaling. The metabolite N-acetyl-p-benzo-quinone-imine,
which is pivotal for liver damage after overdosing, exerts oxidative stress and depletes glutathione
in the brain already at dosages below the hepatic toxicity threshold. Given the widespread use of
paracetamol during pregnancy and the lack of safe alternatives, its impact on the developing brain
deserves further investigation.

Keywords: paracetamol; acetaminophen; attention deficit hyperactivity disorder; autism spec-
trum disorder

1. Introduction

Paracetamol (acetaminophen, N-acetyl-para-aminophenol) is among the most popular
painkillers used by mothers during pregnancy [1] and by young children worldwide.
It is also used to treat fever and has been advocated for pharmacological closure of a
patent ductus arteriosus in preterm infants [2,3]. Until recently, paracetamol had been
considered safe for use in pregnancy. However, there is mounting (albeit controversial)
evidence that it may have long-term negative effects on the offspring when used by
pregnant women, increasing the risks for attention deficit hyperactivity disorder (ADHD)
and autism spectrum disorder (ASD). This narrative review presents retrieved data and
views which at times are difficult to reconcile but open avenues to further research.

2. Pharmacology of Paracetamol
2.1. Inhibition of Prostaglandin Synthesis

Despite its popularity and use for many years, the safety of its application and its
mechanism of action are not fully understood. Paracetamol is a manifold drug, and sev-
eral complex metabolic pathways are involved in its antipyretic and analgesic action (see
schematic overview in Figures 1 and 2). Some of the effects of paracetamol are medi-
ated by reduced prostaglandin formation [4] via competitive inhibition of the peroxidase
moiety of prostaglandin-endoperoxide synthase, also called prostaglandin H2 (PG H2)
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synthase [5,6]. Prostaglandin-endoperoxide synthase is a bifunctional enzyme that consists
of a cyclooxygenase (COX) site and a peroxidase site that work in series. The COX site
oxidizes arachidonic acid to prostaglandin G2 (PG G2). PG G2 is then rapidly converted
by the peroxidase site to PG H2, which goes on to serve as a substrate for several iso-
merases/synthases that ultimately result in the release of biologically active compounds
such as thromboxane A2, prostaglandin I2, or prostaglandin E2 [7]. The COX site can be
inhibited by non-steroidal anti-inflammatory drugs such as ibuprofen or indomethacin,
while paracetamol acts as a reducing co-substrate of the peroxidase site, lowering the rate
of conversion of PG G2 to PG H2 [8].
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transferase; SULT: sulfotransferase; N-DAC: N-deacetylase; GST: glutathione S-transferase; p-BQI:
p-benzoquinone; FAAH: fatty acid amide hydrolase; AM404: N-arachidonoyl-phenolamine.

There are two prostaglandin-endoperoxide synthase isoenzymes, formerly called
COX1 (constitutively expressed) and COX2 (inducible). Paracetamol is a partially selective
COX2 inhibitor; concentrations of paracetamol necessary to achieve 50% inhibition of the
prostaglandin-endoperoxide synthase activity by the inducible isoenzyme (26 µM) are
approximately 25% of that by the constitutively expressed isoenzyme (114 µM) [9]. Parac-
etamol has little anti-inflammatory effect [10] because it inhibits intracellular prostaglandin-
endoperoxide synthase but not molecules released from damaged cells [11]. Of note, COX2
knockout mice display autism-related behavior [12].
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Figure 2. Paracetamol metabolism and pharmacology. Unchanged paracetamol (acetaminophen) is excreted in the urine 
to a small extent. It may also act as an antagonist of the vanilloid-subtype 4 receptors (TRPV4) in various tissues. Parace-
tamol is mainly metabolized in the liver. The metabolites generated by glucuronidation and sulfation are not toxic and 
subject to urinary excretion, while a minor fraction undergoes oxidative metabolism. This results in formation of N-acetyl-
p-benzo-quinone-imine (NAPQI), a highly toxic intermediary produced by cytochrome P450 enzymes. NAPQI builds ad-
ducts with mitochondrial proteins and induces oxidative stress, nuclear DNA fragmentation, and subsequent cell necrosis. 
Paracetamol is becoming de-acetylated to p-aminophenol, which in turn is metabolized by the hepatic microsomal cyto-
chrome P450 enzyme system to the toxic compound p-benzoquinone (p-BQI). Under physiological conditions, detoxifica-
tion of NAPQI and p-BQI occurs by binding to glutathione (GSH) and subsequent renal excretion. The prostaglandin 
endoperoxide H synthase (PGHS) complex consists of a cyclooxygenase (COX) and a peroxidase (POX) moiety. Arachi-
donic acid is first transformed to the unstable prostaglandin G2 (PGG2) by COX, which is further reduced to prostaglandin 
H2 (PGH2) by POX. PGH2 gives rise to various endogenous regulators such as prostaglandins, prostacyclins, and throm-
boxane. Paracetamol induces analgesia and antipyresis by blocking prostaglandin synthesis at the POX site of PGHS com-
plex. p-aminophenol undergoes conjugation with arachidonic acid by fatty acid amide hydrolase (FAAH) to N-arachi-
donoyl-phenolamine (AM404), which is a potent activator of TRPV1 and transient receptor potential ankyrin 1 (TRPA1) 
as well as a weak agonist of cannabinoid receptors type 1 and 2 (CBR1/2). Activation of these receptors by AM404 may 
mediate analgesic effects. NAPQI and p-BQI may also produce analgesic and antipyretic effects by activating TRPA1. 
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Figure 2. Paracetamol metabolism and pharmacology. Unchanged paracetamol (acetaminophen) is excreted in the urine to
a small extent. It may also act as an antagonist of the vanilloid-subtype 4 receptors (TRPV4) in various tissues. Paracetamol
is mainly metabolized in the liver. The metabolites generated by glucuronidation and sulfation are not toxic and subject to
urinary excretion, while a minor fraction undergoes oxidative metabolism. This results in formation of N-acetyl-p-benzo-
quinone-imine (NAPQI), a highly toxic intermediary produced by cytochrome P450 enzymes. NAPQI builds adducts with
mitochondrial proteins and induces oxidative stress, nuclear DNA fragmentation, and subsequent cell necrosis. Paracetamol
is becoming de-acetylated to p-aminophenol, which in turn is metabolized by the hepatic microsomal cytochrome P450
enzyme system to the toxic compound p-benzoquinone (p-BQI). Under physiological conditions, detoxification of NAPQI
and p-BQI occurs by binding to glutathione (GSH) and subsequent renal excretion. The prostaglandin endoperoxide H
synthase (PGHS) complex consists of a cyclooxygenase (COX) and a peroxidase (POX) moiety. Arachidonic acid is first
transformed to the unstable prostaglandin G2 (PGG2) by COX, which is further reduced to prostaglandin H2 (PGH2) by POX.
PGH2 gives rise to various endogenous regulators such as prostaglandins, prostacyclins, and thromboxane. Paracetamol
induces analgesia and antipyresis by blocking prostaglandin synthesis at the POX site of PGHS complex. p-aminophenol
undergoes conjugation with arachidonic acid by fatty acid amide hydrolase (FAAH) to N-arachidonoyl-phenolamine
(AM404), which is a potent activator of TRPV1 and transient receptor potential ankyrin 1 (TRPA1) as well as a weak
agonist of cannabinoid receptors type 1 and 2 (CBR1/2). Activation of these receptors by AM404 may mediate analgesic
effects. NAPQI and p-BQI may also produce analgesic and antipyretic effects by activating TRPA1. UGT: UDP-glucuronyl
transferase; SULT: sulfotransferase; N-DAC: N-deacetylase; GST: glutathione S-transferase.

2.2. Interaction with Central Receptors Involved in Nociception

An additional mechanism has been proposed to mediate paracetamol-induced central
analgesia and lowering of body temperature. While paracetamol itself acts as an antag-
onist of transient vanilloid-subtype 4 receptor (TRPV4) [13], the paracetamol metabolite
N-arachidonoyl-phenolamine (AM404) activates transient vanilloid-subtype 1 receptors
(TRPV1) [14] and transient receptor potential ankyrin 1 (TRPA1) [15]. AM404 is generated
by de-acetylation of paracetamol to p-amino-phenol (in the liver) and subsequent conju-
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gation with arachidonic acid by the enzyme fatty acid amide hydrolase (FAAH; in brain
and spinal cord) [16,17]. AM404 can be detected in cerebrospinal fluid after administration
of paracetamol [18] and mediates central analgesia by increasing local concentrations of
γ-amino-butyric acid (GABA), glutamate, and endocannabinoids, thereby decreasing the
connectivity of cortex, amygdala, hypothalamus, and periaqueductal grey [19]. Synaptic en-
docannabinoid availability is achieved by AM404-mediated inhibition of the anandamide
membrane transporter, while AM404 itself acts as a weak agonist of the cannabinoid recep-
tors type 1 and 2. The paracetamol metabolites N-acetyl-p-benzo-quinone-imine (NAPQI)
and p-benzoquinone (p-BQI) generated by the CYP450 isoform CYP2E1 expressed in brain
and spinal cord [20] is also a direct stimulator of TRPA1 [21], but this interaction is limited
by its short half-life.

2.3. Pharmacokinetics and Toxicology

Paracetamol is mainly excreted following conjugation with glucuronic acid or sulfate.
A variable fraction, however, is oxidized in the liver by a number of CYP450 isoforms
(CYP2E1, CYP1A2, CYP3A4, and CYP2A6) to NAPQI. NAPQI is a highly reactive com-
pound neutralized by reduced glutathione (GSH), resulting in the generation of L-cysteinyl-
S-acetaminophen. If concentrations of NAPQI exceed the available GSH, NAPQI wreaks
havoc by covalently binding to thiol groups of various cellular proteins and lipids. The
involvement of mitochondria triggers an oxidative stress cascade that leads to accumu-
lation of reactive oxygen species, formation of peroxynitrite, mitochondrial membrane
permeability transition, and ultimately cell death [22]. Acute paracetamol toxicity may
be antagonized by restoration of GSH stores via early administration of high-dose N-
acetyl-cysteine administration [23]. At a later stage, moderate hypothermia to induce
RNA-binding motif protein 3 [24] appears to be a promising strategy that is awaiting
clinical evaluation.

Metabolization of paracetamol to NAPQI occurs mostly in hepatocytes, and acute
liver failure constitutes the principal cause of death following intentional (suicidal) or unin-
tentional (unsupervised prolonged administration) paracetamol overdose. Encephalopathy
seen in this situation is therefore attributed to liver failure. However, NAPQI is also gen-
erated in the brain by the CYP450 isoform CYP2E1 [20]. As NAPQI is covalently bound
to GSH, it depletes GSH in the brain and may aggravate oxidative stress. In rats, cortical
neuronal death involving cytochrome c release and caspase 3 activation is induced by
paracetamol at doses below those required to produce hepatotoxicity [25].

It is also relevant that paracetamol crosses both the placental barrier and the fetal
blood–brain barrier and remains in the bloodstream of the infant for prolonged periods
time [26,27], increasing the risks of altered development of the fetal brain.

3. Epidemiological Studies Investigating the Impact of Paracetamol on the
Developing Brain
3.1. Paracetamol Use during Pregnancy

Paracetamol has been widely recommended for the treatment of pain and fever in
pregnant women, and it is being estimated that about every other pregnant woman resorts
to the use of paracetamol during pregnancy. However, there are a number of prospective
cohort studies to suggest that intake of paracetamol increases the likelihood of autism
spectrum disorder (ASD) and attention deficit hyperactivity disorder (ADHD) in the
offspring (Table 1). The seminal analysis of the Danish National Birth Cohort comprised
64,322 pregnant women who had been recruited between 1996 and 2002 [28] and answered
two telephone interviews before (at 12 and 30 weeks of gestation) and a further interview
6 months after delivery. There was a moderately increased risk of physician-diagnosed
ADHD, prescription of ADHD medication, or parental reports of ADHD-like behavior at
7 years of age when the child was ever exposed to paracetamol before birth (average hazard
ratios [HR] 1.37, 1.29 and 1.13, respectively). HR increased for all three outcome variables
when children were exposed to paracetamol for more than 20 weeks (1.84, 1.53 and 1.46).
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Prenatal paracetamol was also associated with an increased risk of ASD with, but not
without, hyperkinetic traits (HR 1.51 and 1.06, respectively) [29]. ASD risks were increased
in children whose mothers had taken paracetamol during 3 trimesters (HR 1.77 and 1.25).
In a small sub-cohort of 1491 children assessed at 5 years of age by trained psychologists,
intrauterine paracetamol exposure was also associated with poorer cognitive [30] and
attention scores [31].

Table 1. Paracetamol intake estimated based on maternal self-report.

Cohort Country
Code

Years of
Birth n Age

(Years) Outcome Assessed
by Association References

Danish National Birth
Cohort (DNBC) DK 1996–2002 64,322 7

Behavior
Q
D

Yes

[28]ADHD Yes
ADHD

medication Yes
Autism D Yes [29]

Lifestyle During
Pregnancy Study

(DNBC sub-cohort)
1491 5 IQ T Yes [30]

Attention T
Q Yes [31]

40,934 11 Behavior Q Yes [32]

Nurses’ Health Study II US 1993–2005 8856 ≥8 ADHD D Yes [33]

Craniofacial
malformation,

hemifacial microsomia
study

US, CA 1996–2002 560 6–12 Behavior Q Yes/No [34]

Norwegian Mother and
Child Cohort Study

(MoBa)
NO 1999–2008 15,256 3 Behavior Q

Yes
[35]Yes

Yes
51,200 1 1

2 Behavior Q Yes [36]
112,973 3–13 ADHD D Yes [37]

32,934 5 Behavior Q
Yes

[38]Yes
Yes

Auckland Birthweight
Collaborative Study NZ 1995–1997 871 7, 11 Behavior Q Yes [39]

Avon Longitudinal
Study of Parents and
Children (ALSPAC)

UK 1991–1992 7796 7 Behavior Q Yes [40]

12,418 1
2 –15 IQ

Behavior
T No

[41]Q Yes

INfancia y Medio
Ambiente (INMA) ES 2004–2008 2644 5 Behavior T Yes [42]

Viva US 1999–2002 1217 3 Cognition T No [43]

Pelotas BR 2015 3818 2 Cognition T No [43]
2004 3624 4 Behavior Q No [44]

ALSPAC UK 1991–1992 6200 7

Behavior Q Yes [45]

Generation R NL 2001–2005 3904 8
INMA ES 2004–2008 1513 4–5
GASPII IT 2003–2004 489 4
DNBC DK 1996–2002 61,430 7
RHEA GR 2007–2008 345 6

Modes of outcome assessment: Q, questionnaire or structured interview (parents); T, test (psychologist, possibly computer-assisted); D,
diagnosis (physician).

A statistically significant association between intrauterine paracetamol exposure, as
recalled by mothers, and a diagnosis of ADHD was also observed in the Nurses’ Health
Study [33] and the Norwegian Mother and Child Cohort Study [37]. In the Norwegian
study, however, no increased likelihood of ADHD was observed when paracetamol had
been taken for less than eight days or in only one trimester. Notably, an association
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also emerged between paternal use of paracetamol and offspring ADHD while maternal
paracetamol six months before pregnancy had no effect.

Various other studies have linked intrauterine paracetamol exposure, as recalled
and reported by mothers, to results of questionnaires as proxy measures of ADHD
[32,34–36,38–42,44,45]. Four sequential systematic reviews concluded that the evidence
available suggests that the risk of ADHD and ASD is increased following prenatal parac-
etamol exposure [46–49].

There are, however, several points of concern [50,51]. First, the questionnaires used
have poor internal and external validity, as they were developed as screening instruments
rather than diagnostic tools. This adds to the heterogeneity of the results, and some
studies using questionnaires indeed failed to detect a significant impact of intrauterine
paracetamol [43,44]. Second, ADHD and ASD are partially heritable traits which may
go undiagnosed in adults. This source of confounding is difficult to control for in epi-
demiological studies. In a sample of 7921 genotyped mothers participating in the Avon
Longitudinal Study of Parents and Children (ALSPAC) study, maternal polygenic risk
scores for ADHD (but not ASD) were slightly but significantly linked both to infections
(odds ratio [OR] 1.11) and use of acetaminophen during late pregnancy (OR 1.11) [52].
However, in the Nurses’ Health Study II cohort that included 8856 children (721 with
ADHD), only paracetamol use at the time of pregnancy was associated with childhood
ADHD (OR 1.34), while there was not effect for paracetamol ingestions during periods 4
years before or 4 years after the pregnancy [33]. Third, fever is one of the leading indications
for use of paracetamol, and fever during pregnancy itself has been associated with lower
performance intelligence quotients [30], increased risks of ASD [53,54] and ADHD [55].
These associations were similar whether the woman had used paracetamol or not. In
separate investigations, maternal infections during pregnancy have been associated with
ASD in the offspring [56]. None of the studies accounted for maternal migraine which may
be another important confounding indication [57]. Fourth, the epidemiological studies
mentioned rely on maternal reports to quantitate paracetamol intake during pregnancy
which may lead to exposure misclassification.

The last concern has been addressed by an analysis of public health insurance data
from Taiwan [58] and cohort studies measuring perinatal, fetal, or neonatal paracetamol and
paracetamol metabolites [59–62] (Table 2). The first approach reported a weak association
between prescription of paracetamol during pregnancy and physician-diagnosed ADHD
in the offspring [58]. However, paracetamol may be obtained without prescription, and
paracetamol prescribed before pregnancy or to other household members may be taken
by a pregnant woman encountering fever or pain. Attempts to measure paracetamol and
its metabolites met with the challenge that paracetamol has become an almost universal
component of human blood or urine [63]. Unchanged paracetamol was indeed detected in
all 140 urine samples provided by mothers participating in the Swedish Environmental
Longitudinal, Mother and child, Asthma and allergy study [59]; all 1180 maternal plasma
obtained 1–3 after birth of women of the Boston Birth cohort [60]; and in all 996 cord
blood samples of infants enrolled in the same cohort [61]. While neither raw nor log-
transformed urinary paracetamol concentrations displayed a normal distribution [63], data
of the Swedish cohort study demonstrated a linear association between log-transformed
urinary paracetamol concentrations and mother-reported paracetamol use during mid-
pregnancy [59], as well as a small impact of paracetamol intake (by maternal report or
urinary concentration) on language development at 3 years of age. In the Boston Birth
cohort, paracetamol burden according to blood samples obtained from mothers and infants
was related to physician-diagnosed ADHD [60,61]. Neonatal meconium collected after birth
may actually be the best way to capture prolonged intrauterine exposure to paracetamol
and other drugs, as it accumulates chemicals from the fetal bile and the fetal urine passed
into the amniotic fluid which is ingested by the fetus. In the Canadian Gestation and the
Environment Cohort, paracetamol in meconium was unrelated to the children’s intelligence
examined at 6–8 years of age [64] but showed a dose–response association with physician-
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diagnosed ADHD [62]. Each doubling of exposure increased the odds of ADHD by
10% among 345 children analyzed, 199 (57.7%) of whom had detectable paracetamol in
meconium, and 33 (9.6%) were diagnosed with ADHD. In a subset of 48 children who
underwent resting-state functional magnetic resonance imaging (MRI) at 9–11 years of
age, paracetamol detected in meconium was linked to altered brain connectivity between
fronto-parietal and default mode network nodes to sensorimotor cortex clusters, mediating
an association of intrauterine paracetamol exposure and ADHD [62].

Table 2. Paracetamol intake measured by perinatal metabolites.

Cohort Country
Code

Years of
Birth n Age

(Years) Outcome Association References

Swedish Environmental
Longitudinal, Mother and child,
Asthma and allergy (SELMA)

SE 2007–2010 754 3 Language Yes [59]

Boston Birth cohort US 1998–2013 1180 Physician-diag-
nosed ADHD Yes [60]

1998–2018 996 10 Physician-diag-
nosed ADHD Yes [61]

Gestation and the Environment
Cohort (GESTE) CA 2007–2009 195 6–8 IQ No [64]

CA 345
48

6–7
9–11

Physician-diag-
nosed ADHD

Functional MRI

Yes
Yes [62]

While in 2015 the Food and Drug Administration (FDA) continued to support the
use of paracetamol for pain and fever during pregnancy [65], the Pharmacovigilance Risk
Assessment Committee of the European Medicines Agency (EMA/PRAC/157165/2019)
stated in 2019 that a large amount of data on pregnant women indicated neither malfor-
mative nor fetal/neonatal toxicity, while epidemiological studies on neurodevelopment in
children exposed to paracetamol in utero showed inconclusive results. It recommended
that paracetamol can be used during pregnancy if clinically needed, but it should be used
at the lowest effective dose for the shortest possible time and at the lowest possible fre-
quency [66]. The cautious stance of the regulatory authorities in the USA and Europe
partially reflects the lack of safe alternatives to treat fever and pain in pregnant women.
A very recently published consensus statement supported by 91 scientists, clinicians, and
public health professionals recommends to implement specific actions to caution pregnant
women at the beginning of pregnancy to forego paracetamol unless its use is medically
indicated, to consult with a physician or pharmacist if they are uncertain whether its use is
indicated and before using paracetamol on a long-term basis, and to minimize exposure by
using the lowest effective dose for the shortest possible time [67].

3.2. Postnatal Use of Paracetamol in Term and Preterm Newborn Infants

Paracetamol and ibuprofen have equal efficacy for the treatment of fever in infants [24],
and paracetamol has evolved into a cornerstone of effective pain relief in neonates. Parac-
etamol allows for reduced dosing of opioids and may be used to effectively treat moderate
pain after surgery, while there is insufficient evidence to support its use for painful proce-
dures [68,69]. Paracetamol given after assisted vaginal birth may even increase the response
to subsequent painful procedures [70]. Paracetamol has been furthermore advocated for the
pharmacological closure of a patent ductus arteriosus in very preterm infants, although its
efficacy is not superior to oral ibuprofen [2,3]. Follow-up examinations of preterm infants
at 2 and 5 years of age currently do not point to altered neurodevelopmental outcome
following postnatal paracetamol administration [71–73], while analysis of data from a
survey among parents on 1515 US children found an increased risk of ASD following
postnatal paracetamol administration before age two in boys but not in girls [74]. As a
matter of concern, none of the trials employing paracetamol for closure of a patent ductus
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arteriosus in preterm infants registered with www.clinicialtrials.gov list ADHD and ASD
as secondary outcome.

4. Animal Models

In contrast to the loads of epidemiological studies analyzing the associations between
gestational exposure to paracetamol and behavior in offspring, very few investigations
have addressed this issue in experimental animals. Injecting pregnant rats day 15–19 of
pregnancy with low-dose paracetamol (15 mg/kg body weight) has been shown to result
in a large number of genes up- or down-regulated in fetal brains [75], while injecting
pregnant mice on day 12.5 of pregnancy with paracetamol at dosages causing acute liver
toxicity, as shown by elevated plasma alanine transferase concentrations, has been shown
to reduce birth weight, decrease the frequency of hematopoietic stem cells in offspring
liver [76], and result in greater severity of airway inflammation in grown-up animals [77],
demonstrating long-lasting effects in offspring. However, no behavioral assessment has
been reported in these experiments. Offspring of pregnant mice receiving paracetamol at
150 mg/kg/d by gavage from gestational day 7 to delivery did not display altered open
field locomotor activity at 30 days of life [78]. However, male mice showed reduced sexual
behavior associated with decreased neuronal number in the sexually dimorphic nucleus
of the preoptic area [79]. After 350 mg/kg/d, there was impaired nest-seeking behavior,
augmented stereotypy, and decreased rostral grooming in male animals, as well as reduced
exploratory behavior in three-chamber sociability in both sexes [80,81].

In rodents, developmental phases of brain development that take place during the
last trimester of pregnancy in humans are being observed during the first 7–10 days of
life, allowing to employ newborn rat or mouse pups to study human fetal intrauterine
events [82–84]. Administration of paracetamol (30 or 60 mg/kg body weight) to 3- or
10-day-old mice was shown to result in altered locomotor activity in response to a novel
home environment and impaired spatial learning in adulthood [85]. Neonatal paracetamol
also blunted the analgesic effect of paracetamol given to adult animals. Notably, exposure
on day 19 of age had no long-lasting effects [86]. These data point to a critical time window
during brain development that corresponds to the last trimester of pregnancy in humans.
Male mice exposed on day 10 of life to a single dose of paracetamol (30 mg/kg body
weight) did not differ from controls while mice receiving a repeat dose 4 h apart showed
altered locomotor and rearing activity when tested as adults [87]. In a separate series
of experiments, effects of paracetamol could not be prevented by co-administration of
cysteine and mannitol as antioxidants [88]. Low-dose paracetamol (5 or 15 mg/kg/d)
during pregnancy, followed by postnatal administration until 60 days of life, also evoked
changes in behavior and reduced social interaction of grown-up animals [89].

5. Chronic Exposure to Ultra-Low Concentrations of Paracetamol

The wide use of paracetamol as an analgesic and antipyretic available without pre-
scription translates into paracetamol becoming a constant ingredient of sewage water [90].
Human urine samples in developed countries contain paracetamol at low concentrations
irrespective of active paracetamol intake [63]. The common presence of paracetamol in
the aquatic environment has prompted investigations on the effects of low concentra-
tions of paracetamol in evolutionary distant marine species. Changes in development,
behavior, enzyme activities, and DNA methylation patterns have been observed in ze-
brafish larvae and embryos exposed for several days to paracetamol at concentrations
as low as 5 µg/L [91]. In small planktonic crustaceans of the genus Daphnia (water flea),
paracetamol at 40 µg/L was found to alter glutathione S-transferase activity and behavior
(swimming distance) [92], while sea mussels (Mytilus edulis) show altered gene expression
patterns even at 40 ng/L [93]. While these observations bear little direct relevance for the
developing human brain, they demonstrate that minute amounts of paracetamol may exert
biological responses in evolutionary distant species.

www.clinicialtrials.gov
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6. Concluding Remarks

An array of diverse epidemiological studies link (prolonged) intrauterine exposure of
paracetamol to ADHD and ASD in offspring, while there is little evidence that paracetamol
taken during pregnancy is associated with brain function and development in a more
general sense. Epidemiological studies cannot answer the question of whether or not this
association represents a causal interference or is mediated by unaccounted confounders.
The (few) experimental investigations published to date do show an impact of paracetamol
on immature rodent animals, but the precise mechanisms are unknown. Despite decades
of use for fever and pain, the actions of paracetamol on neurons have only recently been
studied on a molecular level, and future work will have to elucidate how paracetamol may
interfere with the developing brain.
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ADHD Attention deficit hyperactivity disorder
AM404 N-arachidonoyl-phenolamine
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COX Cyclooxygenase
FAAH Fatty acid amide hydrolase
FDA Food and Drug Administration
GABA γ-amino-butyric acid
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GST Glutathione S-transferase.
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MRI Magnetic resonance imaging
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OR Odds ratio
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PG G2 Prostaglandin G2
PG H2 Prostaglandin H2
PGHS Prostaglandin endoperoxide-H synthase
POX Peroxidase
SULT Sulfotransferase
TRPA Transient receptor potential ankyrin
TRPV Transient vanilloid-subtype receptor
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