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syndrome emergence. Several underlying pathological 
pathways stand behind insulin resistance syndrome. The 
remarkable advances in molecular biology lead to uncover-
ing a wide diversity of pathophysiologic alterations related 
to the metabolic syndrome development; primarily, endo-
thelial dysfunction initiates homeostatic disorders and ath-
erosclerotic events that eventually lead to cardiovascular 
events and insulin resistance and usually characterized by 
hypercoagulability due to dysbalance between the hemo-
static factors and fibrinolysis proteins including plasmino-
gen activator inhibitor-1(PAI-1).[1] Metabolic syndrome 
is multifactorial pathology that is defined as a cluster of 
systematic metabolic homeostatic abnormalities that work 
synergistically and leads to the appearance of insulin resis-
tance and cardiovascular pathologies.[2–5] Dyslipidemia, 
hyperglycemia, and hypertension are three classical signs of 

Introduction/background

The interest in studying metabolic syndrome dramatically 
increased in the few previous decades due to the urban-
ization and enhancement of the socio-economic state of 
the population accordingly promoted metabolic syndrome 
expansion. Therefore, it is extremely important to high-
light the pathogenetic mechanisms that underlie metabolic 
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Abstract
Current advances in molecular pathobiology of endotheliocytes dysfunctions are promising in finding the pathogenetic 
links to the emergence of insulin resistance syndrome. Physiologically, human organism homeostasis is strictly controlled 
to maintain metabolic processes at the acquainted level. Many factors are involved in maintaining these physiological 
processes in the organism and any deviation is undoubtedly accompanied by specific pathologies related to the affected 
process. Fortunately, the body’s defense system can solve and compensate for the impaired function through its multi-
level defense mechanisms. The endothelium is essential in maintaining this homeostasis through its ability to modulate 
the metabolic processes of the organism. Pathological activity or impairment of physiological endothelium function seems 
directly correlated to the emergence of metabolic syndrome. The most accepted hypothesis is that endothelium distribution 
is due to endoplasmic reticulum stress and unfolded protein response development, which includes inhibition of long non-
coding RNAs expression, cytokines disbalance, Apelin dysregulation, glycocalyx degradation, and specific microparticles. 
Clinically, the enhancement or restoration of normal endothelial cells can be a target for novel therapeutic strategies since 
the distribution of its physiological activity impairs homeostasis and results in the progression of metabolic syndrome, 
and induction of its physiological activity can ameliorate insulin resistance syndrome. Novel insights on the molecular 
mechanisms of endothelial cell dysfunction are concisely represented in this paper to enhance the present therapeutic 
tactics and advance the research forward to find new therapeutic targets.
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metabolic syndrome, which arise as cumulative homeostatic 
disorders.[6] Different lipid fractions have a different role 
in metabolic syndrome pathogenesis.[7] Pathophysiology 
of metabolic syndrome is extremely complex and has many 
factors attribute to that; firstly it’s the heterogeneity of the 
possible mechanisms and secondly is the limitation of pres-
ent data where there is a lack in grasping of the complete 
molecular pathological chain of development of the meta-
bolic syndrome.[8–10] Consequently, serious limitations are 
present in the current therapeutic targets of metabolic syn-
drome. Since there is a combination of etiologies that col-
lectively works to give rise to the dyslipidemic syndrome, 
therefore, the management mandatory must eliminate these 
risk factors separately or once. Neurohormonal disorders, 
dyslipidemia; especially hypercholesterolemia, protein and 
carbohydrate metabolism, endothelial dysfunction, oxida-
tive stress, chronic inflammation, and even gut microbiota 
dysbiosis are involved in the pathogenesis of the metabolic 
syndrome as well as vitamin D deficiency.[7, 11–21] Late 
events of insulin resistance syndrome are the dysfunction of 
endothelial cells, probably associated with hyperhomocys-
teinemia and hyperuricemia, which is directly connected to 
cardiovascular diseases’ appearance, indicated by the high 
serum level of von Willebrand factor.[22–26] A key regula-
tory role is played by the endothelium through its capac-
ity to release several physiological mediators that regulate 
vascular tone, immune response modulation, hemostasis, 
and control vascular cell growth. The endothelium is con-
tributing to maintaining the vascular tone by releasing nitric 
oxide and as a metabolic regulator by vascular endothelial 
growth factor B (VEGF-B) releasing.[27] The VEGF-B bio-
availability is crucial in insulin resistance and hypertension 
development, and endothelial cell health state, therefore, 
VEGF-B elevation is an indicator of a high risk of meta-
bolic syndrome development. Moreover, the disturbance of 
the physiologic balance between VEGF and NO was shown 
to be related to endothelial cell dysfunction.[28] The topog-
raphy of endothelial cells gives them anatomical and physi-
ological significance, while their function is regulated by 
neurohormonal signals and from the underlying basement 
membrane or vascular smooth muscle cells.[29].

Recently, the study of metabolic syndrome dramatically 
increased in the few previous years since the number of 
affected and candidates of metabolic syndrome exponen-
tially increased, and this was finally culminated by the lock-
down of most countries which also contributed to the lack of 
physical activity and increase in obese people and metabolic 
syndrome emergence.[30, 31].

New insights into the possible mechanism of 
endothelial cells dysfunction

Physiological regeneration of endothelial cells is sufficient 
for maintaining a healthy vascular lining layer and keeping 
the endothelium-secreted agents at the required level. How-
ever, due to specific niche factors, the endothelium can be 
damaged to an irreversible level that leads to the loss of its 
normal function. Consequently, disturbance in the endothe-
lial protection role, permeability regulation, and secretion 
function are extremely important in controlling vasoactivity 
and releasing anticoagulant factors such as protein c, s, and 
calmodulin in addition to presenting on the endothelial sur-
face antithrombin III. The primary signs of endothelial cell 
dysfunction are fluctuation in the serum level of adhesion 
molecules (sVCAM-1, sICAM-1, E-selectin), plasminogen 
activator inhibitor-1 (PAI-1), tissue plasminogen activa-
tor (tPA), von Willebrand factor, lectin-like oxidized low-
density lipoprotein receptor-1 (LOX-1), circulating mature 
endothelial cells, endothelial progenitor cells, vasoconstric-
tor agent endothelin-1 (ET1), microalbuminuria as well as 
endothelial microparticles.[32–35] Indeed, only the PAI-
1, LOX-1, ET1, and tPA are specific for endothelial dys-
function which was directly related to metabolic syndrome 
appearance.[36] Pathological changes in the previously 
mentioned markers can be translated to clinical practice as 
an early sign of the metabolic syndrome.

Endothelial cells are insulin-independent, in healthy 
endothelial cells insulin enhances nitro oxide synthesis, 
thereby vasorelaxation. However, in a state of insulin resis-
tance, the dysfunction of the endothelial cells will be by 
high energy intake and not due to insulin resistance because 
endothelial cells are insulin-independent. Accordingly, vas-
cular complications of endothelial dysfunction appear, but 
these complications are not only due to the damage of the 
inner lining layer of blood vessels but also due to distur-
bance of tunica media by insulin resistance, impairment of 
the barrier function of endothelial cells as well as permeabil-
ity-increasing.[37] Usually, increasing in the endothelin-1 
secretion is accompanied by the activation of Erk1 / 2 and 
MAP kinase cascade which promotes vasoconstriction.[38] 
While in the physiological condition, endothelin-1 secretion 
is controlled by phosphatidylinositol 3-kinase (PI3K)-Akt-
eNOS axis and mitogen-activated protein kinase (MAPK) 
axis of the insulin signaling pathways.

MALAT1 is a long non-coding RNA (lncRNA) involved 
in endothelial dysfunction possibly through the miR-181b-
5p-MEF2A-ET-1 pathway and modulation of MEF2A 
expression by miR-181b-5p.[39] Clinical research by Cuit-
ing and his colleagues was performed on patients with 
persistent coronary slow flow, their data were indicating 
that MALAT1 overexpression was probably responsible 
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for endothelial dysfunction, and MALAT1 depletion has 
enhanced endothelial cell function and normalize nitric 
oxide levels.[40] Several indicators were used to confirm 
the improvement in the endothelial cell activity including; 
decreasing ET-1 and MALAT1 serum level, and increasing 
the miR-181b-5p expression.[41] These changes in serum 
level are of clinical importance to predict and detect early 
endothelial cell dysfunction.

Undeniably, membrane lipids play an extremely sig-
nificant role in the physiology and pathology of each cell 
separately depending on its lipid content mixture.[42] 
Disruption of the physiological membrane lipid content 
undoubtedly results in subclinical or even clinical pathol-
ogy. Herein, endoplasmic reticulum stress of the endothelial 
cells has been shown directly related to endothelial dysfunc-
tion. On the molecular level, specific microparticles have 
been found circulating in vesicles; extravascular that induce 
endothelial cell dysfunction.[43–46] Interestingly, these in 
vitro findings were correlated with significant impairment 
in the physiological releasing of nitric oxide and induced 
inflammation mediators secretion, cytotoxicity, and oxida-
tive stress, besides impaired autophagy and apoptosis mech-
anism regulation of the endothelial cells.[47] A single study 
has shown that coronary microvascular dysfunctions are 
induced by endoplasmic reticulum stress which is promoted 
by the activation of the PERK/CaN/NFATc4 signaling axis.
[48] Recent findings have indicated that hypoglycemic 
drugs in particular exendin-4, empagliflozin, metformin 
alleviated endoplasmic reticulum stress and enhanced pro-
tein folding activity by AMPK-dependent ERO1α upregula-
tion of the endothelial cells as well as arteries, indicated by 
lowering expression endothelial dysfunction markers.[49, 
50] However, the classical pathophysiological pathway of 
endothelial dysfunction is lipid peroxidation of the cell lipid 
membrane and organelles lipid membrane, especially the 
mitochondrion and endoplasmic reticulum lipid membrane, 
where unfolded protein response occurs after high energy 
uptake by the cells after uncontrollable hyperglycemia.[51] 
This illustrates the role of hyperglycemia in the pathophysi-
ological cascade of metabolic syndrome. Primary respon-
sibility for the elimination of the misfolded proteins by 
inducing the release of small heat shock proteins (sHSP), 
particularly, HspB1, HspB5, and HspB6.[52] Where eleva-
tion in the HspB6 level is significantly enhanced insulin 
signaling and endothelial cell survival by its antiapoptotic 
features.[53, 54] The elimination of mitochondrial peroxi-
dation products, particularly, mitochondrial superoxide, 
is affected by the activation of HXK2, which is mediated 
by the Wnt/β-catenin/c-Myc axis.[55] Physiologically, the 
antioxidant defense system is enough to eliminate lipid 
peroxidation products, but in a state when the free radicals 
levels exceed the limit of the antioxidant defense system of 

the cell this leads to the progression of endothelial cell dys-
function.[42, 56].

Endothelial cell dysfunction is strongly related to vis-
ceral obesity and dyslipidemia where there is an elevation in 
low-density lipoprotein (bad lipoprotein) and or decrease in 
the amount of healthy lipoprotein.[57, 58] Usually, the bad 
lipoprotein binds to a specific receptor on the endothelial 
cell surface and activates a secondary signaling cascade and 
reducing nitric oxide formation and releasing in addition to 
induction of intracellular oxidative stress and inflammatory 
reaction. The high concentration of specific free fatty acids 
serum concentration has been shown related to metabolic 
syndrome development.[7, 59–62] Collectively, each patho-
logical process has its role in endothelial cell dysfunction 
and later apoptosis. Therefore, dyslipidemia is considered 
the initiator of the pathological chain, and endothelial dys-
function is only one link that due to its damage arises athero-
sclerotic diseases and their sequelae. Effective management 
of endothelial cell dysfunction can cut the pathological chain 
and is sufficient to promote the life expectancy of patients 
with atheromatic coronary artery disease and reduce insulin 
resistance. The fluctuation of vitamin D serum level can be 
used as a sign of uncontrolled hyperglycemia.[21].

The glycocalyx degradation by the heparanase, matrix 
metalloproteinase, hyaluronidase, hyaluronic acid synthase, 
and neuraminidase were shown to be related to endothelial 
dysfunction too.[63, 64] This endorses the hypothesis of 
synergistic work of metabolic syndrome components.

Impairment of nitric oxide releases by the endothelial 
cells, catalyzed by nitric oxide synthetase (eNOS) from 
L-arginine, is the initiator for endothelial dysfunction since 
nitric oxide absence leads to persistent vasoconstriction and 
accordingly hyperplasia of vascular smooth muscle cells 
and later its dysfunction.[65, 66] Furthermore, endothelial 
dysfunction stimulates lipid peroxidation, oxidative stress: 
increases reactive oxygen species in the endotheliocytes 
which later forms oxidant peroxynitrites (ONOO−), vascular 
smooth muscles, and macrophages as well as inhibits endo-
thelial cells proliferation.[67–69] Besides, endothelial dys-
function decrease glutathione and endogenous antioxidant 
system activity as well as decreases releasing of hydrogen 
sulfide by endothelial cells.[70, 71] The current advances 
in molecular biology have identified a group of interactions 
between lncRNAs, microRNAs (miRNAs or miRs), and the 
Ser/Thr kinase AKT that synergistically act to impair endo-
thelial cell function.[72, 73] In sustained hyperglycemic and 
uncontrolled glucose state, the lncRNA MIR181A2 is down-
regulated with reducing the ability to sponge miR68325p, 
miR68425p, and miR8056 which consequently leads to 
elevation of the miR68325p, miR68425p, and miR8056 
concentration. It is known that human umbilical vein endo-
thelial cell proliferation and migration is regulated by AKT2 
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patients into homogenous groups according to the present 
changes in their organs.

Furthermore, Current investigations have shown that 
dysregulated erythrocytes programmed cell death is directly 
correlated with endothelial dysfunction which is involved in 
the metabolic syndrome emergence.[85] Eryptosis is prob-
ably due to hyperglycemia that leads to high energy uptake 
by erythrocytes also the metabolic products of active glu-
cose (glyoxal and methylglyoxal) and glycated proteins of 
the vascular endothelium have a damaging effect on blood 
cells which later leads to initiate the intrinsic pathway of 
apoptosis, and or the direct effect of vasoconstriction on the 
viscosity and motion of the erythrocytes that leads to acti-
vation of the extrinsic pathway of eryptosis.[57, 86] More-
over, a recent study has shown that erythrocytes can directly 
cause endothelial dysfunction by A1R and P2 × 7R target-
ing, purinergic signaling, in diabetic patients.[87].

The molecular mechanism of endothelial dysfunction 
probably includes the formation of endothelial cell meta-
bolic memory which involved several signaling pathways of 
nuclear factor-κB (NF-κB)/miR-27a-3p/ erythroid-2 related 
factor 2 (NRF2)/ROS/ transforming growth factor-β (TGF-
β)/ endothelial-to-mesenchymal transition (EndMT). The 
targeting of endothelial cell metabolic memory by NRF2 
activator or miR-27a-3p inhibitor is sufficient to prevent 
cardiovascular complications of diabetic patients by impair-
ment of endothelial cell metabolic memory.[88, 89].

Interestingly, recent clinical analyses were shown that 
not only hyperglycemia can induce endothelial dysfunction 
but low glucose level too.[90] This is probably related to the 
decrease in the fuel of endotheliocytes which is required for 
maintaining their homeostasis. Energy depletion is directly 
connected to the activation of specific apoptotic genes that 
leads to endothelial cell death.

Conclusions

To date, little is explored about molecular mechanisms of 
endothelial dysfunction and its sequelae role in insulin-
resistant and cardiovascular disease development. The 
recent advances in the molecular mechanisms of endothelial 
role in the appearance of insulin resistance and cardiovascu-
lar still need elucidation since endothelial dysfunction is the 
most common component of metabolic syndrome. Defining 
the complete pathogenetic link of endothelial cells’ role in 
metabolic syndrome is sufficient to introduce a novel thera-
peutic strategy for future therapeutic possibilities in people 
with diabetes type II and coronary artery disease. Indeed, 
endothelial dysfunction and its siblings participate not only 
in the appearance or progression of metabolic syndrome but 

expression, and elevation of the miR68325p, miR68425p, 
and miR8056 targets the 3’UTR of AKT2 mRNA, subse-
quently leads to decrease AKT2 expression, accordingly 
reducing proliferation and migration of the endotheliocytes.
[72].

In vitro and in vivo findings were showing that hyper-
glycemia has downregulated insulin receptor substrate 
p53 (IRSp53) and upregulated the gal-3 that consequently 
activates the NF-κB which finally impairs endothelial cell 
migration.[74] Therefore, Hyperglycemia is involved in the 
pathogenesis of endothelial cell dysfunction too. Moreover, 
hyperglycemia currently is a well-known inducer for cel-
lular hypoxia including endothelial cells.[75] Mechanically, 
the abnormal flow pattern of the blood in diabetic patients 
results in the damaging of the endothelial layer and trig-
gering atherosclerosis formation and its complications( e.g. 
hypertension and peripheral neuropathy).[76] Probably the 
calcium-dependent phospholipase C signaling pathway is 
disrupted in dysfunctional endothelial cells since this path-
way is involved in the phosphorylation of eNOS at Ser-1179 
and de-phosphorylation at Thr-497 which maintains nitric 
oxide level.[77] Besides, inhibition of miR-19b by fibrino-
gen was sufficient to protect endothelial cells from destruc-
tion. The miR-19b performs anti-endotheliopathy activity 
via stabilizing syndecan-1.[78].

Cytokines include IL-1β also engaged in endothelial cell 
dysfunction, particularly through reducing eNOS expres-
sion. Moreover, NLRP3 inhibition by melatonin has res-
cued eNOS expression and improved endothelial-dependent 
nitric oxide release.[79, 80] Significant elevation of IL-33 
serum level was found in obese individuals, which indicates 
a higher risk of developing metabolic syndrome as well as 
can be used as a marker of risk score.[81].

Apelin dysregulation is another possible mechanism for 
endothelial dysfunction in metabolic syndrome, clinical 
data founded that increasing Apelin adipokine in diabetic 
patients was sufficient to induce endothelial cell dysfunction 
by APJ activated NFκB pathways.[82] The favorable effects 
of Apelin on endothelial cells are suspected to be through 
decreasing the expression of sVCAM-1, sICAM-1, and 
E-selectin, in addition to reducing apoptosis and angiogen-
esis, as well as by increasing proliferation, and expression 
of E-cadherin, VEGFR 2, and Tie-2.[83].

Recent data were showing that in a state when the met-
abolic syndrome is persistent it acts differently on organs 
of the same system and this leading us, how to predict the 
future changes going to be and at what stage the metabolic 
syndrome.[84] According to these findings, the therapeutic 
strategies are probably variable following the stage of meta-
bolic syndrome even in the same individual. Enhancement 
in the present therapies can be achieved by a triage of the 
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impairment. Usually, central obesity and dyslipidemia are 
considered the frontline in the endothelial cells pathophysi-
ology. The paper emphasizes the pathophysiological role of 
endothelial cells in the pathogenesis of metabolic syndrome. 
Whereas, the recent clinical data emphasize the role of an 
early healthy lifestyle in the prevention of metabolic syn-
drome.[107].
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