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Abstract

Background: The aim of the study is to demonstrate that radiomics 
of preoperative multi-sequence magnetic resonance imaging (MRI) 
can indeed improve the predictive performance of microvascular in-
vasion (MVI) in hepatocellular carcinoma (HCC).

Methods: A total of 206 patients with pathologically confirmed 
HCC who underwent preoperative enhanced MRI were retrospec-
tively recruited. Univariate and multivariate logistic regression 
analysis identified the independent clinicoradiologic predictors 
of MVI present and constituted the clinicoradiologic model. Re-
cursive feature elimination (RFE) was applied to select radiomics 
features (extracted from six sequence images) and constructed the 
radiomics model. Clinicoradiologic model plus radiomics model 
formed the clinicoradiomics model. Five-fold cross-validation was 
used to validate the three models. Discrimination, calibration, and 
clinical utility were used to evaluate the performance. Net reclas-
sification improvement (NRI) and integrated discrimination im-
provement (IDI) were used to compare the prediction accuracy 
between models.

Results: The clinicoradiologic model contained alpha-fetoprotein 
(AFP)_lg10, radiological capsule enhancement, enhancement pat-
tern and arterial peritumoral enhancement, which were independent 
risk factors of MVI. There were 18 radiomics features related to MVI 
constructed the radiomics model. The mean area under the receiver 
operating curve (AUC) of clinicoradiologic, radiomics and clinico-
radiomics model were 0.849, 0.925 and 0.950 in the training cohort 
and 0.846, 0.907 and 0.933 in the validation cohort, respectively. 
The three models’ calibration curves fitted well, and decision curve 
analysis (DCA) confirmed the clinical usefulness. Compared with the 
clinicoradiologic model, the NRI of radiomics and clinicoradiomics 
model increased significantly by 0.575 and 0.825, respectively, and 
the IDI increased significantly by 0.280 and 0.398, respectively.

Conclusions: Radiomics of preoperative multi-sequence MRI can 
improve the predictive performance of MVI in HCC.

Keywords: Radiomics; Magnetic resonance imaging; Microvascular 
invasion; Hepatocellular carcinoma; Predictive performance

Introduction

Hepatocellular carcinoma (HCC) is the sixth most common 
cancer worldwide and the third leading cause of cancer-relat-
ed death [1, 2]. In 2020, there were 905,677 new cases and 
830,180 new deaths in the world [2]. New HCC cases and 
deaths in China account for about 50% of the world [3]. The 
etiology of liver disease is crucial, as recent studies have re-
vealed how it impacts the development and prognosis of HCC 
[4]. For HCC patients with well-preserved liver function and 
solitary neoplasm, surgical resection is the optimal treatment 
[5]. However, tumor recurrence within 5 years after hepatecto-
my is as high as 70%, and even liver transplantation is as high 
as 20% [6-9]. Studies have shown that microvascular invasion 
(MVI) is an independent risk factor for recurrence and poor 
prognosis of HCC after surgical resection or transplantation 
[10, 11].

MVI has a reported incidence of 15-57% according to 
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different diagnostic criteria and study population [12, 13]. Ac-
curate preoperative prediction of MVI is of great significance 
to the individualized treatment decision of HCC. For HCC pa-
tients with MVI, liver transplantation is not recommended ac-
cording to the new Milan criteria [14], and surgical resection is 
recommended anatomical hepatectomy or partial hepatectomy 
with wide resection margin [15]. In addition, for small HCC 
with MVI, the early recurrence rate of surgical resection group 
was significantly lower than that of radiofrequency ablation 
group [16]. However, the gold standard for MVI is pathological 
biopsy, it is invasive and lags behind. Therefore, a new method 
for preoperative evaluation of MVI status is needed [17].

Enhanced magnetic resonance imaging (MRI) demon-
strates strong predictive capabilities for MVI. The heightened 
sensitivity of hepatobiliary contrast agent-based MRI in diag-
nosing small HCC cases lacking arterial enhancement is of ut-
most importance for early HCC detection, ultimately reducing 
the incidence of HCC with MVI [18]. Many studies have re-
ported multiple MRI features to predict MVI of HCC, includ-
ing large tumor diameter [19], non-smooth margin [20, 21], 
non-radiological capsule enhancement [22], arterial peritu-
moral enhancement [16, 21], rim arterial phase hyperenhance-
ment [23], and non-peripheral “washout” [22, 24]. But these 
imaging features are subjective and different between observ-
ers. Radiomics is an emerging field. It performs high-through-
put data mining and quantification from radiological images, 
which provides important explanations for cancer phenotypes 
and tumor microenvironment [25, 26]. This is a noninvasive 
and objective method that can predict MVI of HCC preopera-
tively (before surgery).

In recent years, there have been many studies on the predic-
tion of MVI by radiomics, and many radiomics models have 
been established. However, compared with the traditional mod-
el, there is no report on the improvement of the prediction ac-
curacy of the radiomics model. The purpose of this study was to 
demonstrate the value of radiomics in predicting MVI of HCC.

Materials and Methods

Study participants

This retrospective study was approved by the Ethics Commit-
tee of Eastern Hepatobiliary Surgery Hospital, the Third Affili-
ated Hospital of Shanghai Naval Military Medical University, 
China, and the requirement of obtaining written informed con-
sent was waived. The study was conducted in compliance with 
the ethical standards of the responsible institution on human 
subjects as well as with the Helsinki Declaration.

A total of 559 patients who underwent preoperative en-
hanced magnetic resonance (MR) for liver examination from 
January 2016 to January 2019 were searched in the hospital 
workstation. Totally, 206 primary HCC patients were finally 
recruited into this research (mean age: 55.19 ± 10.69 years, 34 
women and 172 men). The inclusion criteria were as follows: 1) 
The pathological diagnosis was HCC, and the treatment option 
was surgical resection; 2) Enhanced MR within 1 month before 
hepatectomy and with suitable image quality; 3) MVI status is 

reported in pathological report; 4) The preoperative imaging 
examination and postoperative pathological results showed that 
there was no macrovascular invasion, no bile duct tumor throm-
bosis or extrahepatic metastasis; 5) Without previous treatment 
history, such as local ablation, partial hepatectomy, radiothera-
py, chemotherapy or transarterial chemoembolization. The in-
clusion flow chart of the study patient is shown in Figure 1.

MRI image acquisition

All MR scans were performed at a 1.5T MR (optima MR360, 
GE Healthcare) with eight-channel abdominal coil. After fast-
ing for 4 h, the patient was injected with gadopentetate dime-
glumine (Gd-DTPA) into the median cubitus vein, with a total 
dose of 0.1 mmol/kg, using a high-pressure syringe at the rate 
of 2.0 mL/s, and then rinsed with 20 mL physiological saline. 
At 35 - 45 s, 55 - 70 s and 100 - 180 s after injection of contrast 
agent, arterial phase (AP), portal phase (PP) and delayed phase 
(DP) scans were performed respectively. T1-weighted imag-
ing (T1WI), Fat-suppressed T2-weighted imaging (T2WI) and 
diffusion-weighted imaging (DWI) were collected. The MRI 
settings used in the present study are detailed here (Supple-
mentary Material 1, www.wjon.org).

MR imaging analysis

Two radiologists with more than 5 years’ experience in abdom-
inal MRI performed blind review of MR images of all patients. 
In case of disagreement, the third radiologist with more than 
10 years’ experience in liver MRI will be invited to join the 
discussion and make a decision.

A total of 12 imaging features were evaluated: 1) Tumor 
diameter; 2) Radiological capsule enhancement; 3) Restrict-
ed diffusion; 4) Nonrim arterial phase hyperenhancement 
(APHE); 5) Rim APHE; 6) Non-peripheral “washout”; 7) tu-
mor number; 8) Shape; 9) Margin [21, 27]; 10) Enhancement 
pattern; 11) Arterial peritumoral enhancement [21, 28, 29]; 12) 
MRI liver cirrhosis. Criteria 1) to 6) were defined in LI-RADS 
v2018 [30], and the whole definition could be found here (Sup-
plementary Material 2, www.wjon.org).

Clinical variables, pathologic factors, and MVI

Laboratory indexes, demographic information, and pathologi-
cal results of patients were retrieved through the hospital case 
system.

Pathologist of the patient’s Hospital evaluated the MVI of 
HCC by referring to the latest practice guideline for pathologi-
cal diagnosis formulated in China. It was recommended that 
the risk be stratified according to the following quantities and 
distributions, as follows: M0: no MVI; M1 (low-risk): MVI of 
< 5 and at ≤ 1 cm away from the adjacent liver tissues; and M2 
(high-risk): MVI of > 5 or at > 1 cm away from the adjacent 
liver tissues [31]. In our study, M0 was MVI absent, M1 and 
M2 were MVI present.
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Radiomics analysis of MR images

The workflow of the radiomics analysis is shown in Figure 2.

Segmentation

Three-dimensional segmentation of HCC was manually de-
lineated by two radiologists (S.K.R and L.W.M, 5 years of 
experience in liver MRI), on the T1WI, T2WI, DWI with b 
values of 600 s/mm2, AP, PP and DP, covering the whole tu-
mor, by using ITK-SNAP software. Radiologist 3 (J.N.Y, 20 
years of experience in liver MRI) independently validated the 
segmentation. We also conducted test-retest procedures on 30 
randomly selected tumors. While testing the reproducibility of 
features extracted from repeated segmentation, features with 
intraclass correlation coefficients (ICCs) lower than 0.80 were 
also excluded [32].

Feature extraction

Before extracting features, images were resampled into a voxel 
size of 3 × 3 × 3 mm3 to standardize the voxel spacing, and 
voxel intensity values were discretized by using a fixed bin 

width of 5 HU to normalize intensities and reduce image noise, 
enabling the normalization of image intensity values and allow 
acquisition of isotropic voxels [33-35]. The radiomic features 
were extracted using the open-source package PyRadiomics. 
These include shape-based features, first order statistics, and 
textural features including gray level co-occurrence matrix 
(GLCM), gray level run length matrix (GLRLM), gray level 
size zone matrix (GLSZM) and gray level dependence matrix 
(GLDM). A total of 1,046 radiomic features are extracted from 
each three-dimensional segmentation, resulting in 6,276 fea-
tures for each lesion in total.

Radiomics feature selection

Features with ICC less than 0.8 were removed, and the remain-
ing features were standardized by using z-scores. Recursive 
feature elimination (RFE) was applied to select the radiomics 
features of single sequence and multi-sequence fusion.

Radiomics model construction

The models of single sequence and fusion sequence were con-
structed by logistic regression. The optimal radiomics model 

Figure 1. The workflow of patient selection for this study. MR: magnetic resonance; MVI: microvascular invasion; HCC: hepato-
cellular carcinoma.
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was selected according to the prediction accuracy and the area 
under the receiver operating curve (AUC).

Clinicoradiologic model construction

The clinical and MRI features with P value less than 0.05 in 
the univariate logistic regression analysis were included in 

the multivariate logistic regression analysis (forward logistic 
regression), and the selected variables were used to build the 
clinicoradiologic model according to expert opinions.

Models’ evaluation and comparison

Three models were established to predict MVI of HCC. The 

Figure 2. The workflow of the radiomics analysis. ROC: receiver operating characteristic; DCA: decision curve analysis; NRI: net 
reclassification improvement; IDI: integrated discrimination improvement.
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previous section introduced the clinicoradiologic model and 
the radiomics model. As the third model, the clinicoradiom-
ics model was a combination of the features in the two mod-
els.

Evaluation

The discrimination was evaluated by the AUC of receiver 
operating characteristic (ROC). The predictive accuracy was 
quantified with accuracy and validated by calibration curves. 
The clinical utility was visualized through decision curve anal-
ysis (DCA) by quantifying the net benefits at different thresh-
old probabilities.

Comparison

The Delong test was used to compare the statistical signifi-
cance of AUC between models. The predictive accuracy im-
provement level and overall improvement level between the 
models were compared with net reclassification improvement 
(NRI) and integrated discrimination improvement (IDI) [36].

Statistical analysis

SPSS software (version 25.0, IBM), R software (version 3.6.0) 
and Python (version 3.5.6) were used for statistical analysis. In 
order to make the distribution of AFP (alpha-fetoprotein) and 
PIVKA-II (protein induced by vitamin K absence or antago-
nist-II) tend to be normal, lg10 transformation was performed 
on these two variables. ICC was used to determine the consist-
ency of differences between observers, with ICC > 0.8 indicat-
ing good agreement.

Results

Clinicoradiological model

Clinicoradiological characteristics

It includes clinical features and MRI features of the ICC > 0.8 
(Table 1). All baseline data can be found here (Supplementary 
Material 3, www.wjon.org). There were 206 patients in this 
study, including 172 males (83.5%) and 34 females (16.5%), 
with an average age of 55.19 ± 10.69 years. Totally, 134 pa-
tients were MVI negative, and 72 patients were MVI posi-
tive. Among the 206 patients, 181 had a history of hepatitis 
B (87.86%), five had hepatitis C (2.43%), one had schistoso-
mal cirrhosis (0.49%), three had alcoholic cirrhosis (1.46%), 
and the remaining 16 had no history of liver disease (7.77%). 
Among the 78 patients with postoperative pathological con-
firmation of liver cirrhosis, one had schistosomal cirrhosis 
(1.28%), three had alcoholic cirrhosis (3.85%), and the re-
maining 74 had hepatitis B cirrhosis (94.87%).

Univariable logistic regression

According to the test level of P < 0.05, AFP_lg10, PIVKA-
II_lg10, shape, margin, nonrim APHE, radiological capsule 
enhancement, rim APHE, non-peripheral “washout”, enhance-
ment pattern, arterial peritumoral enhancement and MRI liver 
cirrhosis were significantly related to MVI in univariate analy-
sis (Tables 1, 2).

Multivariable logistic regression

The 11 variables selected by univariate analysis were in-
cluded in multivariate logistic regression analysis (forward 
logistic regression), and four independent factors of MVI 
were screened (Table 2): AFP_lg10 (odds ratio (OR): 1.469; 
95% confidence interval (CI): 1.002 - 2.154; P = 0.049), ra-
diological capsule enhancement (incomplete/complete: OR: 
4.101, 95% CI: 1.721 - 9.770, P = 0.001; absent/complete 
OR: 5.193, 95% CI: 1.797 - 15.009, P = 0.002), enhancement 
pattern (OR: 2.793; 95% CI: 1.358 - 5.742; P = 0.005), and 
arterial peritumoral enhancement (OR: 8.222; 95% CI: 3.917 
- 17.259; P < 0.001).

Clinicoradiological model

The above four variables form the clinicoradiological model, 
with the mean AUC was 0.849 in the training cohort, and 0.846 
in the validation cohort after stratified five-fold cross-valida-
tion for improving prediction (Fig. 3a, b). The accuracy, sen-
sitivity and specificity were 0.779, 0.843, 0.727 in the training 
cohort and 0.743, 0.930, 0.667 in the validation cohort, respec-
tively (Table 3).

Radiomics model and clinicoradiomics model

The number of radiomics features with the best model perfor-
mance of each sequence and fusion sequence was selected be-
tween 10 and 20. The radiomics model performance of single 
sequence and fusion sequence after stratified five-fold cross-
validation is shown in Table 3. Each fold cross-validation’s 
AUC (Supplementary Material 4, www.wjon.org) and feature 
names in every radiomics model could be seen here (Supple-
mentary Material 5, 6, www.wjon.org).

Among the single sequence radiomics models, no model 
had better performance than the clinicoradiological model. 
Therefore, we combined two, three, four or all sequences to 
form a fusion radiomics model. After comparison, we selected 
all the sequence fusion model as the best radiomics model, 
with 18 radiomics features. The mean AUC (Fig. 3c, d), ac-
curacy, sensitivity and specificity were 0.925, 0.883, 0.844, 
0.848 in the training cohort and 0.907, 0.820, 0.820, 0.848 in 
the validation cohort, respectively (Table 3).

Four clinicoradiological variables and 18 radiomics fea-
tures constituted clinicoradiomics model. The mean AUC (Fig. 
3e, f), accuracy, sensitivity and specificity were 0.950, 0.779, 
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Table 1.  Baseline Characteristics for Predicting MVI

Characteristic Total (n = 206) MVI absent 
(n = 134)

MVI present 
(n = 72)

Univariable logistic regression
OR (95%CI) P

Clinical features
  Age 55.19 ± 10.69 54.69 ± 10.85 56.13 ± 10.38 1.013 (0.986, 1.041) 0.357
  Gender
    Male 172 (83.5%) 108 (52.4%) 64 (31.1%)
    Female 34 (16.5%) 26 (12.6%) 8 (3.9%) 0.519 (0.222, 1.216) 0.131
  BCLC stage 0.080
    0 52 (25.2%) 32 (15.5%) 20 (9.7%)
    A 139 (67.5%) 96 (46.6%) 43 (20.9%) 0.717 (0.369, 1.393) 0.326
    B 15 (7.3%) 6 (2.9%) 9 (4.4%) 2.400 (0.742, 7.767) 0.144
  Child-Pugh stage
    A 198 (96.1%) 127 (61.7%) 71 (34.5%)
    B 8 (3.9%) 7 (3.4%) 1 (0.5%) 0.256 (0.031, 2.119) 0.206
  Liver disease
    HBV 181 (87.9%) 116 (56.3%) 65 (31.6%)
    None or other 25 (12.1%) 18 (8.7%) 7 (3.4%) 0.694 (0.275, 1.749) 0.439
  AFP-L3
    Negative 131 (63.7%) 87 (42.2%) 44 (21.4%)
    Positive 75 (36.4%) 47 (22.8%) 28 (13.6%) 1.178 (0.652, 2.129) 0.588
  AFP_lg10 1.47 (0.66 - 2.34) 1.18 (0.52 - 2.13) 1.8 (0.99 - 2.65) 1.607 (1.175, 2.196) 0.003*
  PIVKA-II_lg10 2.05 (1.52 - 2.79) 2.03 (1.44 - 2.72) 2.17 (1.67 - 2.98) 1.412 (1.004, 1.986) 0.047*
  CA199 (U/mL) 16.45 (8.5 - 28.3) 17.3 (9.05 - 28.25) 15.1 (8.05 - 28.5) 0.992 (0.976, 1.008) 0.306
  HBsAg
    Negative 32 (15.5%) 22 (10.7%) 10 (4.9%)
    Positive 174 (84.5%) 112 (54.4%) 62 (30.1%) 1.218 (0.542, 2.736) 0.633
Pathologic factors
  Microscopic cirrhosis
    Absent 128 (62.1%) 83 (40.3%) 45 (21.8%)
    Present 78 (37.9%) 51 (24.8%) 27 (13.1%) 0.976 (0.541, 1.763) 0.976
  Satellite nodules
    Absent 183 (88.8%) 124 (60.2%) 59 (28.6%)
    Present 23 (11.2%) 10 (4.9%) 13 (6.3%) 2.732 (1.132, 6.592) 0.025*
  Edmondson-Steiner grade
    I -II 26 (12.6%) 20 (9.7%) 6 (2.9%)
    III - IV 180 (87.4%) 114 (55.3%) 66 (32%) 1.930 (0.738, 5.047) 0.180
MRI features
  Tumor diameter (cm) 3 (2.18 - 4.43) 2.9 (2.2 - 4.13) 3.45 (2.03 - 5.28) 1.105 (0.945, 1.293) 0.212
  Tumor number
    Solitary 188 (91.3%) 126 (61.2%) 62 (30.1%)
    Multiple 18 (8.7%) 8 (3.9%) 10 (4.9%) 2.540 (0.955, 6.756) 0.062
  Shape
    Regular 125 (60.7%) 89 (43.2%) 36 (17.5%)
    Irregular 81 (39.3%) 45 (21.8%) 36 (17.5%) 1.978 (1.102, 3.549) 0.022*
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0.879, 0.889 in the training cohort and 0.933, 0.869, 0.890, 
0.839 in the validation cohort, respectively (Table 3).

Performance and clinical practicability of the three models

The three models have good discrimination (Fig. 4a, b) after 
stratified five-fold cross-validation and the calibration curves 
(Fig. 4c) show that the predicted MVI present probability of 
the three models is consistent with the estimated value of the 
actual MVI present probability.

The DCA curve of the three models is shown in Figure 4d, 
the black dotted line represents the hypothesis that all patients 

have MVI, and the black solid line represents the assumption 
that no patient has MVI; these are two extreme conditions. 
The purple solid line represents the clinicoradiological model, 
the blue solid line represents the radiomics model, and the red 
solid line represents the clinicoradiomics model. In the DCA, 
when the threshold probability is greater than 5%, the net ben-
efit of the three models for predicting MVI of HCC is higher 
than the two extreme conditions, indicating that these models 
have potential clinical benefits. At the same time, the clinical 
net benefit of clinicoradiomics model is higher than radiomics 
model, and the radiomics model is higher than clinicoradio-
logical model, which indicates that radiomics has a very large 
potential clinical benefit.

Characteristic Total (n = 206) MVI absent 
(n = 134)

MVI present 
(n = 72)

Univariable logistic regression
OR (95%CI) P

  Margin
    Smooth 103 (50%) 78 (37.9%) 25 (12.1%)
    Non-smooth 103 (50%) 56 (27.2%) 47 (22.8%) 2.619 (1.445, 4.744) 0.002*
  Radiological capsule enhancement < 0.001*
    Complete 79 (38.3%) 68 (33%) 11 (5.3%)
    Incomplete 86 (41.7%) 44 (21.4%) 42 (20.4%) 5.901 (2.747, 12.675) < 0.001*
    Absent 41 (19.9%) 22 (10.7%) 19 (9.2%) 5.339 (2.204, 12.931) < 0.001*
  Restricted diffusion
    Present 193 (93.7%) 123 (59.7%) 70 (34%)
    Absent 13 (6.3%) 11 (5.3%) 2 (1%) 0.319 (0.069, 1.483) 0.145
  Nonrim APHE
    Present 123 (59.7%) 97 (47.1%) 26 (12.6%)
    Absent 83 (40.3%) 37 (18%) 46 (22.3%) 4.638 (2.515, 8.554) < 0.001*
  Rim APHE
    Absent 136 (66%) 104 (50.5%) 32 (15.5%)
    Present 70 (34%) 30 (14.6%) 40 (19.4%) 4.333 (2.337, 8.034) < 0.001*
  Non-peripheral “washout”
    Present 123 (59.7%) 92 (44.7%) 31 (15 %)
    Absent 83 (40.3%) 42 (20.4%) 41 (19.9%) 2.897 (1.602, 5.238) < 0.001*
  Enhancement pattern
    Typical 118 (57.3%) 91 (44.2%) 27 (13.1%)
    Atypical 88 (42.7%) 43 (20.9%) 45 (21.8%) 3.527 (1.937, 6.423) < 0.001*
  Arterial peritumoral enhancement
    Absent 134 (65%) 109 (52.9%) 25 (12.1%)
    Present 72 (35%) 25 (12.1%) 47 (22.8%) 8.197 (4.273, 15.723) < 0.001*
  MRI liver cirrhosis
    Absent 57 (27.7%) 44 (21.4%) 13 (6.3%)
    Present 149 (72.3%) 90 (43.7%) 59 (28.6%) 2.219 (1.101, 4.470) 0.026*

*P < 0.05. The original units of lg10 converted variables are AFP (ng/L), PIVKA-II (mAU/mL). P is the P value of univariate logistic regression analysis. 
MVI: microvascular invasion; OR: odd ratio; CI: confidence interval; BCLC: Barcelona Clinic Liver Cancer; HBV: hepatitis B virus; AFP: alpha-fetopro-
tein; PIVKA-II: protein induced by vitamin K absence or antagonist-II; CA199: carbohydrate antigen 19-9; APHE: arterial phase hyperenhancement; 
MRI: magnetic resonance imaging.

Table 1.  Baseline Characteristics for Predicting MVI - (continued)
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Comparison between models

It can be seen from the mean ROC curve (Fig. 4a, b) and de-
cision curve (Fig. 4d) of the three models that the prediction 
performance of clinicoradiologic, radiomics and clinicoradi-
omics model is getting better and better, and radiomics plays 
an important role in improving the prediction performance of 
MVI. However, the predictive value of radiomics cannot be 
quantified and proved to be statistically significant. Therefore, 
we introduced NRI and IDI to demonstrate that radiomics can 
indeed improve the predictive performance of MVI in HCC 
and quantify its value.

The radiomics model outperformed the clinicoradiolog-
ic model (AUCs: 0.925 vs. 0.849, Delong test P = 0.0017). 
The proportion of correct reclassification of radiomics model 
was higher than clinicoradiologic model (NRI = 57.5%, P = 
0.0014). The predictive performance of the radiomics model 
was 28% better than that of the clinicoradiologic model (IDI = 
28%, P < 0.05).

The clinicoradiomics model was superior to the clini-
coradiologic model (AUCs: 0.950 vs. 0.849, Delong test P < 
0.0001), the proportion of correct reclassification was higher 
(NRI = 82.5%, P < 0.0001), and the predictive performance 
was also better (IDI = 39.8%, P < 0.05).

The discrimination of the clinicoradiomics model was bet-
ter than that of the radiomics model (AUCs: 0.950 vs. 0.925, 
Delong test P = 0.0122). Not only the accuracy of reclassifica-
tion prediction was improved by 31.3% (NRI = 31.3%, P = 
0.0085), but also the accuracy of prediction was improved by 
11.7% (IDI = 11.7%, P < 0.05).

The results show that both the models established by the 
radiomics itself and the models with the radiomics features are 
of great significance to improve the diagnostic efficiency. The 

detailed parameters of model comparison are shown in Table 4.

Discussion

In order to explore whether radiomics of preoperative multi-
sequence MRI can improve the predictive performance of 
MVI in HCC, three models were established and validated by 
stratified five-fold cross-validation. A traditional clinicoradio-
logic model with clinical and MRI features, a radiomics model 
with only radiomics characteristics, and a clinicoradiomics 
model with a combination of the first two models.

Elevated AFP_lg10 level [32, 37, 38], incomplete or ab-
sent radiological capsule enhancement [37, 39], atypical en-
hancement pattern and arterial peritumoral enhancement [32, 
37, 39, 40] were independent risk factors for predicting MVI 
and composed the clinicoradiologic model. In addition to atyp-
ical enhancement patterns, other independent risk factors have 
been reported in previous studies. Atypical enhancement pat-
tern refers to other enhancement patterns except “washin” in 
AP and “washout” in PP. It contains more imaging information 
than nonrim APHE and non-peripheral “washout”, and it is a 
description of the dynamic enhancement process. In univariate 
logistic regression analysis, these three factors were all related 
to MVI, but in multivariate logistic regression analysis, only 
enhancement pattern was included in the final model, which 
was in line with our expectations. Due to the overlapping im-
age information, only zero or one of these three variables could 
enter the clinicoradiologic model.

Our study established a radiomics model with 18 radiomics 
features screened from six MR sequences (T1WI, T2WI, DWI, 
AP, PP, DP), extracted from original and derived images. Eight 
first order statistics describe the distribution of voxel intensities 

Table 2.  Univariate and Multivariate Logistic Regression Analysis for Predicting MVI

Variable
Univariable logistic regression Multivariable logistic regression

OR 95% CI P OR 95% CI P
AFP_lg10 1.607 1.175, 2.196 0.003 1.469 1.002, 2.154 0.049
PIVKA-II_lg10 1.412 1.004, 1.986 0.047
Shape (irregular) 1.978 1.102, 3.549 0.022
Margin (non-smooth) 2.619 1.445, 4.744 0.002
Radiological capsule enhancement < 0.001 0.002
  Incomplete 5.901 2.747, 12.675 < 0.001 4.101 1.721, 9.770 0.001
  Absent 5.339 2.204, 12.931 < 0.001 5.193 1.797, 15.009 0.002
Nonrim APHE (absent) 4.638 2.515, 8.554 < 0.001
Rim APHE (present) 4.333 2.337, 8.034 < 0.001
Non-peripheral “washout” (absent) 2.897 1.602, 5.238 < 0.001
Enhancement pattern (atypical) 3.527 1.937, 6.423 < 0.001 2.793 1.358, 5.742 0.005
Arterial peritumoral enhancement (present) 8.197 4.273, 15.723 < 0.001 8.222 3.917, 17.259 < 0.001
MRI liver cirrhosis (present) 2.219 1.101, 4.470 0.026

P is the P value of univariate and multivariate logistic regression analysis. MVI: microvascular invasion; OR: odd ratio; CI: confidence interval; AFP: 
alpha-fetoprotein; PIVKA-II: protein induced by vitamin K absence or antagonist-II; APHE: arterial phase hyperenhancement; MRI: magnetic reso-
nance imaging.
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within the image region defined by the mask through commonly 
used and basic metrics [40]. PP_wavelet-LLH_firstorder_Maxi-
mum and PP_wavelet-HLL_firstorder_Maximum represent 
the maximum gray level intensity within the region of interest 
(ROI); AP_wavelet-LHL_firstorder_90Percentile represents the 
90th percentile of all voxels in the ROI in the AP; PP_wavelet-
HLH_firstorder_InterquartileRange is the 75th percentile mi-

nus the 25th percentile of the image array; T1_wavelet-LLH_
firstorder_Kurtosis and T1_wavelet-HLH_firstorder_Kurtosis, 
represent the “peakedness” of the distribution of values in the 
image ROI, a higher kurtosis implies that the mass of the distri-
bution is concentrated towards the tail(s) rather than towards the 
mean, a lower kurtosis implies the reverse: that the mass of the 
distribution is concentrated towards a spike near the mean value; 

Figure 3. Each fold cross-validation’s AUC and mean AUC in training/validation cohort of the three models. Clinicoradiological 
model’s training cohort (a) and validation cohort (b). Radiomics model’s training cohort (c) and validation cohort (d). Clinicoradi-
omics model’s training cohort (e) and validation cohort (f). AUC: area under the receiver operating curve; ROC: receiver operating 
characteristic.
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DP_wavelet-HHL_firstorder_Skewness and T2_log-sigma-5-
0-mm-3D_firstorder_Skewness represent the asymmetry of the 
distribution of values about the mean value [41].

The other 10 radiomics features produced by texture analy-
sis also contain important information, which may reflect the 
heterogeneity of MVI-present and MVI-absent HCCs [32, 42]. 
DP_wavelet-HHH_glcm_ClusterShade and DWI_wavelet-
HLL_glcm_ClusterShade, are measures of the skewness and 
uniformity of the GLCM, the higher the cluster shadow, the 
greater the asymmetry of the mean value; PP_log-sigma-3-0-
mm-3D_glcm_DifferenceVariance and DP_wavelet-LHL_
glcm_DifferenceVariance are a measure of heterogeneity that 
places higher weights on differing intensity level pairs that de-
viate more from the mean; DP_wavelet-HLH_glcm_Autocor-
relation represents the magnitude of the fineness and coarseness 
of texture; DWI_original_glcm_InverseVariance represents het-
erogeneity [41, 43]. T1_wavelet-LHL_glszm_SizeZoneNonU-
niformityNormalized measures the variability of size zone vol-
umes throughout the image, with a lower value indicating more 
homogeneity among zone size volumes in the image; T1_log-
sigma-3-0-mm-3D_glszm_LargeAreaLowGrayLevelEmphasis 
and T1_log-sigma-4-0-mm-3D_glszm_SmallAreaLowGray-
LevelEmphasis measure the proportion in the image of the joint 

distribution of larger/smaller size zones with lower gray-level 
values; AP_wavelet-HLL_gldm_LargeDependenceHighGray-
LevelEmphasis measures the joint distribution of large depend-
ence with higher gray-level values [41, 44].

The radiomics approach possesses fundamental strengths, 
demonstrating the ability to predict specific factors with a high 
degree of accuracy and serving as a predictive biomarker, all 
while remaining noninvasive [45]. In contrast to numerous 
studies focused on biomarkers primarily prognostic in nature 
[46-48], informing patients about their life expectancy, radi-
omics, as a predictive biomarker, offers crucial insights associ-
ated with treatments, thereby directly impacting patients’ well-
being. Our current study illustrates the predictive potential of 
radiomics in forecasting MVI in HCC. This predictive capacity 
results in significant alterations in patient management, partic-
ularly in the choice of surgical interventions, firmly establish-
ing it as a predictive biomarker. Furthermore, the noninvasive 
nature of clinicoradiomics enables longitudinal assessments, 
allowing for multiple evaluations over time.

In the past 2 years, more and more studies on predicting 
MVI by radiomics analysis of HCC have been published [13]. 
A meta-analysis about radiomics for the preoperative evalu-
ation of MVI in HCC showed high pooled sensitivity (0.84; 

Table 3.  The Mean Performances of Diverse Sequences After Stratified 5-Fold Cross-Validation for Predicting MVI

Sequences (feature 
number)/model

AUC f1_score Accuracy Sensitivity Specificity
Train-
ing

Valida-
tion Training Validation Training Validation Training Valida-

tion
Train-
ing

Valida-
tion

AP (20) 0.842 0.805 0.721 0.624 0.825 0.767 0.667 0.610 0.848 0.838
PP (15) 0.831 0.808 0.635 0.539 0.778 0.718 0.839 0.817 0.697 0.697
DP (13) 0.808 0.777 0.634 0.542 0.783 0.738 0.688 0.653 0.808 0.808
DWI (14) 0.827 0.802 0.634 0.526 0.609 0.743 0.827 0.750 0.697 0.778
T2 (13) 0.772 0.736 0.612 0.429 0.584 0.694 0.693 0.734 0.727 0.667
T1 (16) 0.810 0.770 0.626 0.596 0.647 0.576 0.683 0.610 0.778 0.798
AP + DWI (16) 0.870 0.855 0.711 0.671 0.818 0.786 0.708 0.634 0.848 0.919
AP + PP (17) 0.855 0.819 0.746 0.616 0.842 0.762 0.673 0.628 0.889 0.889
AP + DP (15) 0.845 0.823 0.680 0.639 0.805 0.776 0.721 0.749 0.798 0.737
PP + DP (17) 0.854 0.810 0.719 0.618 0.824 0.772 0.702 0.791 0.838 0.667
PP + DWI (18) 0.872 0.855 0.720 0.659 0.822 0.787 0.770 0.807 0.848 0.798
T1 + T2 (20) 0.857 0.824 0.726 0.626 0.830 0.762 0.813 0.903 0.737 0.667
AP + PP + DP (15) 0.859 0.835 0.718 0.669 0.822 0.791 0.727 0.791 0.838 0.737
AP + PP + DWI (19) 0.889 0.860 0.783 0.656 0.858 0.777 0.857 0.834 0.778 0.768
AP + DP + DWI (20) 0.916 0.897 0.809 0.788 0.876 0.859 0.803 0.790 0.889 0.889
PP + DP + DWI (20) 0.906 0.878 0.810 0.712 0.881 0.815 0.813 0.831 0.848 0.778
AP + PP + DP + DWI (20) 0.920 0.904 0.829 0.707 0.888 0.811 0.824 0.790 0.889 0.879
ALL/radiomics (18) 0.925 0.907 0.823 0.722 0.883 0.820 0.844 0.820 0.848 0.848
Clinicoradiologic 0.849 0.846 0.643 0.576 0.779 0.743 0.843 0.930 0.727 0.667
Clinicoradiomics 0.950 0.933 0.887 0.812 0.779 0.869 0.879 0.890 0.889 0.838

The training and validation cohort’s performances of each fold for predicting MVI was shown here (Supplementary Material 5, www.wjon.org). ALL 
= (AP + PP + DP + DWI + T1 + T2), was also the radiomics model. MVI: microvascular invasion; AUC: area under receiver operating characteristic 
curve; T2: T2-weighted imaging; T1: T1-weighted imaging; DWI: diffusion-weighted imaging; AP: arterial phase; PP: portal phase; DP: delayed phase.
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95% CI: 0.81, 0.87), specificity (0.83; 95% CI: 0.78, 0.87), and 
AUC (0.90; 95% CI: 0.87, 0.92) values [17]. A systematic re-
view of radiomics models for predicting MVI in HCC showed 
the added value of radiomics in imaging modalities used in 
clinical routines has been explored extensively, with an AUC 
as high as 0.80 - 0.84 in two independent validation cohorts 
[13]. However, in all these studies [32, 33, 37, 39, 40, 49], the 
radiomics scores of the corresponding subjects were obtained 
through the optimal radiomics model in the training cohort, 
combined with independent risk clinicoradiologic factors to 
predict MVI of HCC, and verified in the validation cohort 

to prove that the model performed well. No study has shown 
whether the independent radiomics model can independently 
or even improve the predictive performance of MVI, and how 
much they can improve, compared with the traditional clinical 
or clinicoradiologic model [12, 21, 38, 50, 51]. However, our 
study confirmed this. Through the comparison between mod-
els, it was found that the NRI and IDI of the optimal radiomics 
model were 57.5% and 28.0% higher than the traditional clini-
coradiologic model, respectively, with statistical significance. 
The NRI and IDI of the clinicoradiomics model composed of 
radiomics features and clinicoradiologic variables were signif-

Figure 4. The three models’ mean ROC curves of training cohort (a) and validation cohort (b). Calibration curves (c) and DCA 
curves (d) of three models for predicting MVI of HCC. AUC: area under the receiver operating curve; ROC: receiver operating 
characteristic; DCA: decision curve analysis; MVI: microvascular invasion; HCC: hepatocellular carcinoma.

Table 4.  Comparison Between Models

P (AUC) NRI P (NRI) IDI P (IDI)
Radiomics vs. clinicoradiologic 0.0017 0.575 0.0014 0.280 < 0.05
Clinicoradiomics vs. clinicoradiologic < 0.0001 0.825 < 0.0001 0.398 < 0.05
Clinicoradiomics vs. radiomics 0.0122 0.313 0.0085 0.117 < 0.05

P is the probability when Delong test is used to compare the ROC curve of two models. AUC: area under receiver operating characteristic curve; NRI: 
net reclassification improvement; IDI: integrated discrimination improvement.
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icantly higher than the clinicoradiologic model by 82.5% and 
39.8%, respectively, with statistical significance. This not only 
shows that radiomics of preoperative multi-sequence MRI can 
indeed improve the predictive performance of MVI in HCC, 
but also provides strong data support.

This study also has limitations. First, this is a retrospec-
tive study with possible selective bias. Second, this is a sin-
gle-center study, and multi-center datasets should be used in 
subsequent studies to verify the results. Third, instead of us-
ing internal validation that divides the data into real training 
and validation cohorts, we used the stratified five-fold cross-
validation to take full advantage of the data and balance the 
interclass bias, which may have some overfitting.

In conclusion, this study demonstrates that radiomics of 
preoperative multi-sequence MRI can indeed improve the pre-
dictive performance of MVI in HCC. We need to pay more 
attention to the role of radiomics in predicting MVI.

Learning points

Clinicoradiologic model, radiomics model, and clinicoradiom-
ics model were established respectively.

Through the comparison between models, it was found 
that the radiomics of preoperative multi-sequence MRI can 
indeed improve the predictive performance of MVI in HCC.

It is important to emphasize the significance of radiomics 
in predicting MVI.
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