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Abstract

The eyes of flower-visiting butterflies are often spectrally highly complex with multiple opsin genes generated by gene
duplication, providing an interesting system for a comparative study of color vision. The Small White butterfly, Pieris rapae,
has duplicated blue opsins, PrB and PrV, which are expressed in the blue (lmax = 453 nm) and violet receptors
(lmax = 425 nm), respectively. To reveal accurate absorption profiles and the molecular basis of the spectral tuning of these
visual pigments, we successfully modified our honeybee opsin expression system based on HEK293s cells, and expressed
PrB and PrV, the first lepidopteran opsins ever expressed in cultured cells. We reconstituted the expressed visual pigments
in vitro, and analysed them spectroscopically. Both reconstituted visual pigments had two photointerconvertible states,
rhodopsin and metarhodopsin, with absorption peak wavelengths 450 nm and 485 nm for PrB and 420 nm and 482 nm for
PrV. We furthermore introduced site-directed mutations to the opsins and found that two amino acid substitutions, at
positions 116 and 177, were crucial for the spectral tuning. This tuning mechanism appears to be specific for invertebrates
and is partially shared by other pierid and lycaenid butterfly species.
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Introduction

Visual pigment molecules consist of an opsin, an integral

membrane protein with seven transmembrane helices, and a

chromophore, most commonly 11-cis retinal, which is attached to

a lysine in the seventh helix in all opsins so far identified. Upon

absorption of a photon, the chromophore isomerizes into the all-

trans form, which subsequently causes transformation of the whole

visual pigment molecule into a metarhodopsin state. This then

triggers the intracellular transduction cascade, which eventually

produces a receptor potential in the photoreceptor cell. The

wavelength range where light effectively isomerizes the chromo-

phore depends on the amino acid residues that interact with the

chromophore. Most animals in fact have multiple opsins, which

together form the molecular basis of their color vision.

Accumulated evidence indicates that insect opsins can be divided

into three clades corresponding to opsins of the ultraviolet (UV)-,

blue (B)- and long wavelength (L)-absorbing visual pigment. For

example, honeybees employ one opsin from each clade, expressed

separately in the UV, B and green (G) receptors in the compound

eye [1]. However, this basic pattern is often modified in butterflies,

presumably because their life style strongly depends on their color

discrimination capacities. Butterfly eyes are in general very rich in

terms of the spectral organization, with even more than 6 classes of

spectral receptors in some species. This spectral multiplication is

partly based on a number of duplication events of the opsins. B

opsins duplicated independently in the families Pieridae and

Lycaenidae [2,3,4], duplication of L opsins was found in

Papilionidae [5,6] and Riodinidae [7], and UV opsins duplicated

in the genus Heliconius belonging to the Nymphalidae [8].

The opsin is the primary determinant of a photoreceptor’s

spectral sensitivity. The Small White butterflies, Pieris rapae, have

four opsins belonging to the ultraviolet (PrUV), blue (PrV, PrB)

and long wavelength (PrL)-absorbing visual pigment clades. But

interestingly, their eyes have at least 6 classes of receptors, namely

the ultraviolet (UV, peak wavelength lmax = 360 nm), violet (V,

425 nm), blue (B, 453 nm), green (G, 563 nm), red (R, 620 nm)

and deep-red (dR, 640 nm) receptors [9,10]. The UV, V, B and G

receptors express PrUV, PrV, PrB and PrL visual pigments,

respectively, and indeed their spectral sensitivity is similar to the

visual pigments’ absorption spectra. However, the R and dR

receptors express the same PrL as that of the G receptors. Their

sensitivity peak is strongly shifted to longer wavelengths, which is

caused by perirhabdomal, red and deep-red pigments that act as

effective red filters [11]. Moreover, the PrV-expressing V receptors

of Pieris are female-specific. The males also have PrV-expressing

photoreceptors, but they are double-peaked blue (dB) receptors

due to the filtering effect of a male-specific fluorescing pigment [2].

This proliferation of short-wavelength receptor types emphasizes

the biological significance of the duplication of the B opsin as well
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as the sex-dependent tuning of the spectral sensitivity of the

photoreceptors.

To understand the molecular evolution of the biologically

significant spectral tuning, direct analysis of purified visual

pigment molecules is indispensable. However, notwithstanding

numerous attempts for decades, such an analysis has remained

unsuccessful for invertebrate visual pigments. Only recently we

succeeded to express the UV and B opsins of the Japanese

honeybee, Apis cerana japonica, in HEK293s cells, which were the

first insect opsins ever expressed in cultured cells [12]. Encouraged

by this lead, we decided to expand the method to butterflies. We

chose the visual pigments of Pieris rapae, because their absorption

spectra are well-characterized via the photoreceptor spectral

sensitivities determined by combined intracellular electrophysiol-

ogy and optical modeling [2].

As a result, we could express and reconstitute at least the two

duplicated B opsins, PrB and PrV. Spectroscopic analyses revealed

that the reconstituted PrB and PrV have absorption peak

wavelengths at 450 nm and 420 nm, respectively. To identify the

amino acid residues responsible for the difference in the lmax-values,

we searched for the candidate positions by aligning the PrB and PrV

sequences with a visual pigment of the Japanese Common Squid,

Todarodes pacificus, whose three dimensional structure was recently

determined [13]. We looked for amino acids that are close to the

chromophore having different polarity between PrB and PrV, and

thus focused on two amino acid residues and tested their

contributions by introducing site-directed mutations followed by

spectroscopic analyses of the mutant molecules. Moreover, we

compared the corresponding amino acids in some other butterfly

species to clarify the evolutionary process of butterfly B opsins.

Materials and Methods

Animals
We used the Small White butterfly, Pieris rapae crucivora Boisduval,

from a laboratory culture, which was derived from eggs laid by

females captured in Kanagawa, Japan. Hatched larvae were raised

under a light regime of 10L14D at 19uC, which induces pupal

diapause. The diapausing pupae were kept at 4uC for at least three

months, after which they were allowed to emerge at 25uC.

Expression and purification of expressed visual pigments
The coding region of the cDNAs of the opsins of PrUV, PrB, PrV

and PrL visual pigments [2,11] were amplified from the eyes of Pieris

rapae by RT-PCR. The amplified cDNAs were tagged by the

monoclonal antibody rho-1D4 epitope sequence (ETSQVAPA)

[14,15]. The tagged cDNA was inserted into three different plasmid

vectors: pcDNA3.1 containing the human cytomegalovirus (CMV)

immediate early promoter (Invitrogen, Carlsbad CA, USA); SRa
containing the simian virus 40 (SV-40) early promoter [16]; and EF-

1a containing the human elongation factor 1a (Invitrogen, Carlsbad

CA, USA). Site-directed mutations were made using a commercial

kit, QuikChange (Stratagene). A hundred micrograms of plasmid

DNA was used for the transient expression in 10 dishes (Q10 cm) of

cultured human embryonic kidney (HEK) 293s cells. Transfection

of plasmid vectors into HEK293s cells was carried out by the

calcium-phosphate method [15]. The transfected cells were

harvested after 2 days and collected by centrifugation.

The expressed proteins were incubated with excess amount of 11-

cis 3-hydroxyretinal, the native chromophore of Pieris visual

Figure 1. Expression of Pieris visual pigments in HEK293s cells.
(A) Immunoblot analysis of 1D4 epitope-tagged proteins. The bands of
about 38 kD (arrowhead) correspond to the full-length PrUV, PrB and
PrV proteins expressed with three vectors, PcDNA, SRa and pEF. (B)
Bistability of the crude extracts of PrB. Absorbance spectra were
subsequently recorded in the dark, after irradiation with 460 nm and
with 550 nm. Curve 1 is the difference before and after 460 nm
irradiation, and curve 2 is the difference before and after 550 nm
irradiation. The inset shows the average of the two difference spectra
(black line), the predicted absorbance spectra of an R450 visual pigment
(R) taken from Fig. 2B, and its metarhodopsin peaking at 485 nm
derived from the Govardovskii template (M). (C) Bistability of the crude
extracts of PrV. Samples were irradiated subsequently with 420 nm and
500 nm. Curves 3 and 4 are the differences of the absorbance spectra
before and after 420 nm irradiation and before and after 500 nm
irradiation, respectively. The inset shows the average of the two
difference spectra (black line), the predicted absorbance spectra of an

R420 rhodopsin (R), taken from Fig. 2C, and its metarhodopsin peaking
at 482 nm derived from the Govardovskii template (M).
doi:10.1371/journal.pone.0015015.g001
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pigments [17]. The reconstitution efficiency with 11-cis 3-hydro-

xyretinal appeared to be much lower than when using 11-cis retinal,

however, and therefore we decided to use 11-cis retinal in most of

our experiments. The reconstituted visual pigments were extracted

with 1% dodecyl b-D-maltoside (DM) in 50 mmol/L HEPES buffer

(pH 6.5) containing 140 mmol/L NaCl (buffer A). For purifying

expressed proteins from the crude extract, the proteins were bound

to agarose beads conjugated with 1D4 antibody, washed with

0.02% DM in buffer A (buffer B) and eluted with buffer B

containing the C-terminal peptide of bovine rhodopsin.

SDS polyacrylamide gel electrophoresis and
immunoblotting

The crude extract samples were loaded on 12% SDS

polyacrylamide gels and transferred to polyvinylidene difluoride

membrane. The membranes were blocked with 1% bovine serum

albumin in phosphate-buffered saline containing 0.1% Tween 20

(TPBS) and incubated at room temperature with culture

supernatant containing 1D4 antibody overnight. After washing

with TPBS, the membranes were incubated with biotinylated

secondary antibody. The membranes were then incubated with

VECTASTAIN ABC reagent (Vector Laboratories, Burlingame,

USA). The membranes were further incubated in peroxidase

substrate solution until adequate stain intensity developed.

Spectrophotometry
Absorbance spectra of the crude and purified samples were

recorded at 0uC with a UV2450 spectrophotometer (Shimadzu,

Kyoto, Japan). A 1-kW halogen lamp was used for irradiating the

samples. Two blue lights (420 and 460 nm) were supplied by the

light source with a 460 nm band-pass filter in combination with a

Y-43 low-pass filter and with a 420 nm band-pass filter with a L-

39 low-pass filter (Toshiba, Tokyo, Japan), respectively. Two green

lights (500 and 550 nm) were supplied similarly with a 550 nm

band-pass plus a O-53 low-pass filter and a 500 nm band-pass plus

a Y-47 low-pass filter, respectively. The full-width half maximum

of the band-pass filters was ,10 nm. Absorbance difference

spectra were calculated from the absorbance spectra measured

before and after the blue or green irradiations. When necessary,

measured absorbance spectra were corrected by subtracting an

empirical Rayleigh-scattering baseline.

Results

Spectroscopy of expressed PrB and PrV
We first confirmed that the HEK293s cell system properly

functioned by immunoblot analyses using the anti-rhodopsin 1D4.

The 1D4 antibody predominantly labeled bands around 40k

(arrowhead in Fig. 1A), which are most likely PrUV, PrB and PrV

opsins. We could not detect any bands around 40k for PrL (data

not shown) (Fig. 1A). The bands corresponding to smaller and

larger molecular weights are probably degraded and aggregated

products, respectively.

We incubated the expressed opsins in all vectors with 11-cis

retinal in vitro, extracted the reconstituted visual pigments in the

dark, and irradiated the pigments with monochromatic lights to

check their photointerconvertibility, which was confirmed only in

PrB expressed in SRa and PrV in pcDNA3.1. The extracted PrB

(in SRa) and PrV (in pcDNA3.1) were irradiated sequentially with

blue light (420 or 460 nm) and green light (500 or 550 nm)

between which we recorded absorbance spectra. Using these

spectra, we calculated the absorbance difference spectra

(Fig. 1B,C), which indicated that PrB and PrV were expressed

successfully. The expressed PrB and PrV visual pigments had two

photointerconvertible states (Fig. 1B,C).

After confirming photoconversions in the crude extracts, we

purified the expressed visual pigments and measured the

absorbance spectra of reconstituted and purified PrB and PrV

(Fig. 2). Figure 2 also shows the phylogenetic relationship of the

opsins with other insect B opsins (see Arikawa et al. 2005). The

Figure 2. Phylogenic relationship of insect blue opsin and absorption spectra of Pieris blue visual pigments. (A) Phylogeny of insect B
opsins, constructed with the NJ method. Letters in red and blue indicate the amino acids at 116 and 177, respectively (see Fig. 3A). Red and blue lines
indicate the substitution of Ala for Ser at 116 and the substitution of Tyr for Phe at 177, respectively. Only for PrV, both substitutions occurred. (B)
Absorbance spectrum of PrB reconstituted with 11-cis retinal and purified together with the spectrum predicted for R450 (dotted line). (C)
Absorbance spectrum of PrV reconstituted with 11-cis retinal and purified together with the predicted for R420 (dotted line).
doi:10.1371/journal.pone.0015015.g002
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absorbance spectra of the purified PrB and PrV were fitted by eye

with a visual pigment template [18] yielding peak wavelengths

450 nm and 420 nm, respectively. We note here that the visual

pigments were reconstituted using 11-cis retinal (A1 retinal), but in

fact the native chromophore of butterfly visual pigments is 11-cis 3-

hydroxyretinal (A3 retinal) [17]. To uncover possible spectral

effects due to the different chromophores, we repeated the

reconstitution using A3 retinal. The resulting absorbance spectra

appeared to be very similar to those measured with A1 retinal, but

the reconstitution efficiency was much lower with A3 retinal due to

unknown reasons, and therefore we could not accurately

determine the lmax values.

Using the absorbance spectra of PrB and PrV determined in

purified samples, we calculated the absorbance characteristics of

their metarhodopsin states based on the difference absorbance

spectra (Fig. 1). We took the spectrum of R450 predicted by the

Govardovskii template [18], added the normalized average of two

difference spectra for PrB (Fig. 1B) multiplied by factors in the

range 1.560.5, and then chose the best-fitting curve using again

the Govardovskii template; the template describes metarhodopsin

spectra reasonably well [19]. We thus found that the metarho-

dopsin of PrB has a peak wavelength around 485 nm (Fig. 1B,

inset). Applying the same procedure with a rhodopsin R420 for

PrV yielded a metarhodopsin with peak wavelength around

482 nm (Fig. 1C).

Effects of site-directed mutagenesis
To analyze the mechanism underlying the observed difference in

lmax of the wild type PrB and PrV, we analyzed site-directed

mutants of these visual pigments. First we aligned the amino acid

sequences of PrB and PrV with that of the rhodopsin of the Japanese

Common Squid, Todarodes pacificus, because the 3D structure of this

rhodopsin is known [13] (Fig. 3). We then searched amino acid

residues located within 5 Å from any carbon of the chromophore,

and found 24 residues in total. Among the 24 residues we identified

two residues having different polarities between PrB and PrV, which

were Ser116 (PrB) vs Ala116 (PrV) and Phe177 (PrB) vs Tyr177

(PrV) (Fig. 3B, arrowheads, numbering according to the squid

rhodopsin). Next we genetically manipulated the opsins; for PrB,

Ser116 and/or Phe177 were replaced by Ala and/or Tyr, and for

PrV, Ala116 and/or Tyr177 were replaced by Ser and/or Phe. We

expressed these mutant visual pigments using SRa for the PrB

mutants and pcDNA3.1 for the PrV mutants. We then analyzed

them spectroscopically in the native, dark state.

The normalized absorbance spectra of the mutant pigments (red

lines) with predicted spectra based on the Govardovskii template

(dotted lines) are shown in Fig. 4. In both PrB mutants, the lmax

shifted to shorter wavelengths: substituting Ser116 to Ala resulted

in a 13 nm hypsochromic shift, from 450 nm to 437 nm (Fig. 4A,

red line), and substituting Phe177 to Tyr resulted in a 4 nm shift,

to 446 nm (Fig. 4B, red line). In these single mutants of PrB, the

absorbance spectra matched well with the predicted spectra.

However, the expression level of the double mutant of PrB and all

mutants of PrV was rather low, indicated by the noise of the

recorded spectra (Fig. 4C,D). In the double mutant of PrB,

Ser116Ala plus Phe177Tyr, lmax shifted 25 nm hypsochromically

to 425 nm (Fig. 4C). This value approximates the lmax = 420 nm

of the expressed wild type PrV (Fig. 4D, black line). For PrV, we

could only record a spectrum for the mutant Ala116Ser. This

mutant exhibited a 10 nm bathochromic shift of lmax to 430 nm

(Fig. 4D, red line), a shift close to that of the reverse case, i.e., the

Ser116Ala substitution in the PrB mutant (Fig. 4A). The noisy

spectra did not match with the predicted spectra, which will

presumably be improved with increasing expression level. Taken

together, the two amino acid residues at positions 116 and 177 are

most likely responsible for the spectral tuning of the blue absorbing

visual pigments of Pieris rapae.

Discussion

Absorbance spectra of the native PrB and PrV
After a long struggle to express insect visual pigments in cultured

cells in the past decades, Terakita et al (2008) were finally successful

in expressing the ultraviolet- and blue-absorbing visual pigments of

the Japanese honeybee, Apis cerana japonica. The present account is

the second report of this line of study. Based on the present

spectroscopic analyses of reconstituted PrB and PrV, we have

concluded that PrB is a visual pigment with peak absorbance at

450 nm (R450) and that PrV peaks at 420 nm (R420; Fig. 2B,C).

The absorbance peak wavelengths of their metarhodopsin states are

485 nm for PrB and 482 nm for PrV (Fig. 1B,C).

We identified the photoreceptors expressing these visual

pigments [2,11] and also electrophysiologically measured their

Figure 3. Amino acids responsible for spectral tuning in
butterfly B opsins. (A) Partial 3D structure of the rhodopsin of the
Common Squid, Todarodes pacificus, and the positions of Gly116 and
Tyr177 (14). (B) Alignment of partial amino acid sequences of butterfly B
opsins with the squid opsin. Arrowheads indicate the amino acid
residues replaced in the mutation experiments. See Fig. 2 for opsin
names. III and IV, third and fourth transmembrane regions.
doi:10.1371/journal.pone.0015015.g003
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spectral sensitivities [9,10]. The sensitivity profile of the PrB-

expressing photoreceptors well matched the calculated absorbance

spectrum of a rhodopsin R453 [2]. The spectral sensitivity of the

PrV-expressing photoreceptors of females peaks at 425 nm and

corresponds to the absorbance spectrum of a rhodopsin R425.

However, the PrV-expressing photoreceptors of males are double-

peaked blue (dB) receptors, peaking at 460 nm [2,9]. This is due to

a male-specific fluorescing pigment in the rhabdom, which acts as

a short-wavelength absorbing, long-pass filter for the colocalized

photoreceptors, and thus modifies the PrV-expressing photore-

ceptors in the fluorescing ommatidia into dB receptors (Fig. 5).

The peak absorbance wavelengths of PrB and PrV were a few

nm shorter: 453 vs 450 nm for PrB and 420 vs 425 nm (Fig 2BC).

Presumably these spectral differences are due to the lens-

waveguide optics of the butterfly compound eye, or may be due

to the A1 retinal used to reconstitute the visual pigments instead of

their native A3 retinal chromophore.

Establishment of an expression system in cultured cells has been

a major hurdle in the study of spectral tuning of butterfly

photoreceptors, which has become a central topic of the evolution

of color vision. Although the HEK293s system has finally proved

to be successful in expressing the short-wavelength visual pigments

of two insect species, the bee Apis cerena and the butterfly Pieris

rapae, it still requires further improvement. For instance, we have

tried to express PrL, the opsin of the long-wavelength absorbing

visual pigment of Pieris rapae, in the same system, but, as was also

experienced in Apis cerana, we could not detect any sign of a

functional visual pigment. This indicates that the L-type opsins

expressed in cultured cells are susceptible to denaturation during

post-translational modification. Co-expression of an adequate

molecular chaperone may perhaps solve this technical problem.

Molecular basis of the spectral tuning
We carried out spectroscopy of the reconstituted PrB, PrV and

their site-directed mutants. Analyses of mutated insect visual

pigments have only been reported for the Drosophila UV and G

opsin mutants, which were ectopically expressed in Drosophila R1-6

photoreceptors [20,21]. To the best of our knowledge, the present

account is the first report based on in vitro reconstitution and

analyses of mutant visual pigments of invertebrates.

PrB and PrV, sharing 78% of amino acids, are produced by a gene

duplication event. To find the amino acid residues responsible for the

spectral tuning, we surveyed the amino acid sequence of PrB and PrV

in comparison with that of the squid rhodopsin (Fig. 3A). Among

several candidates localized within a range of 5 Å from any carbon in

the chromophore, we selected two amino acids whose properties

were different between PrB and PrV. These residues were Ser116

and Phe177 in PrB and Ala116 and Tyr177 in PrV, corresponding to

Gly116 and Tyr177 of the squid rhodopsin. In squid, the distance

between the a carbon of Gly116 and the C19 methyl carbon of 11-cis

retinal is 3.47 Å, and the distance of the hydroxyl group of Tyr177

and the C19 methyl carbon of 11-cis retinal is 4.04 Å.

Here we found that the substitution of Ser to Ala in PrB at

position 116 caused a 13 nm hypsochromic peak wavelength shift

(Fig. 4A), whereas the substitution of Ala to Ser in PrV caused a

10 nm bathochromic shift (Fig. 4D). This indicates that the

hydroxyl group of Ser at 116 interacts with the chromophore. A

similar phenomenon has been observed in bovine rhodopsin,

which has Thr at 118 (equivalent to squid 116). The substitutions

Thr118Ala and Thr118Val, both removing the hydroxyl group,

resulted in an 18 nm and 15 nm hypsochromic shift, respectively

[22]. Although these substitutions were induced experimentally,

they appear not to have happened in nature: all wild type visual

Figure 4. Absorbance spectra of purified PrB and PrV and their mutants with spectra predicted by the Govardovskii template
(dotted lines). (A) Absorbance spectra of the wild type PrB (black line) and of the mutant whose Ser at position 116 was substituted with Ala
(S116A, red line). (B) Absorbance spectra of wild type PrB (black) and the Phe177Tyr mutant (red). (C) Absorbance spectra of wild type PrB (black) and
the double mutant Ser116Ala and Phe177Tyr (red). (D) Absorbance spectra of the wild type PrV (black) and its mutant Ala116Ser (red).
doi:10.1371/journal.pone.0015015.g004

Evolution of Color Vision in Butterflies
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and non-visual opsins of vertebrates have Thr or Ser, both with a

hydroxyl group, at the corresponding positions. This suggests that

the spectral shift due to removing a hydroxyl group at 116

specifically occurs in invertebrate visual pigments.

The lmax of the Phe177Tyr mutant of PrB exhibited a 4 nm

hypsochromic shift (Fig. 4B). Although the reverse case, the

Tyr177Phe mutant of PrV, could not be successfully expressed, the

effect of a hydroxyl group at 177 is probably opposite to that of a

hydroxyl group at 116, i.e. it will cause a bathochromic shift. So

far, there was no concrete information about the role of the amino

acid at 177 for spectral tuning in any visual pigment. Indeed, in

bovine rhodopsin the amino acid at 178 (equivalent to squid 177)

is located rather far from the chromophore (6.26 Å), but in the

squid it is closer (4.04 Å), suggesting that the role of the amino acid

residue at 177 is also specific to invertebrates.

Evolution of blue visual pigments in butterflies
Figure 2A shows a phylogenetic relationship of B visual

pigments of lepidopteran species. The most common pattern is

Ser and Phe at positions 116 and 177, indicating that this is the

ancestral combination in insect B opsins. Duplication of B opsin

appears to have happened in the families Pieridae and Lycaenidae.

The evolution of opsins and the spectral organization of insect

visual systems are summarized in Fig. 5 with a particular emphasis

Figure 5. Evolution of B opsins in Pieridae. The top panel shows the ancestral set of opsins and their expression pattern in three ommatidial
types. The ancestral pattern with three opsins, U, B and L, in three fixed combinations is retained in a number of insect species; e.g. the butterflies
Papilio xuthus [27], Vanessa cardui [28], Danaus plexippus [29], the moth Manduca sexta [30], and the bees Apis mellifera [1] and Bombus impatiens [31].
In the lineage of Pieridae, the B opsin duplicated, forming the ancestral B and V opsins. The middle and bottom panels show the opsins and
ommatidia of Colias erate [3] and Pieris rapae [2,11], showing subfunctionalization of photoreceptors R1 and R2. The Colias eyes have two V opsins,
CeV1 and CeV2, coexpressed in a subset of R1/R2: the B opsin was lost in Colias (see Fig. 2A). In Pieris, the B opsin in one of the ancestral ommatidial
types is replaced by the V opsin, PrV. The photoreceptor spectral sensitivities were further modified by perirhabdomal red pigments (indicated by red
dots), and in males by a fluorescing pigment in the rhabdom (yellow star in type II). A fluorescing pigment is also present in Colias in ommatidial type
I. Capital letters and colors indicate names and types of the opsins. Italic letters indicate spectral sensitivities (S(l): UV, ultraviolet; B, blue; dB, double-
peaked blue; G, green; R, red; dR, dark red). Red and blue letters indicate amino acid at positions 116 and 177, respectively (see Fig. 2A).
doi:10.1371/journal.pone.0015015.g005
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on the B opsins of Pieridae. A number of species, including

butterflies, moths and bees, have three opsins of the UV, B and L

type. The opsins are expressed in the nine photoreceptors of each

ommatidium in three different patterns, making the eye a mesh of

three spectrally heterogeneous ommatidia (Fig. 5, top panel). The

heterogenous organization of the eye with three ommatidial types

is shared by many species so far studied, and therefore appears to

be ancestral. Below the ancestral pattern, Fig. 5 shows actual

examples of eye organization of two pierid species, Colias erate and

Pieris rapae.

Starting from the ancestral pattern, the ancestral B opsin

duplicated in the lineage of Pieridae. The duplicated B opsin

accumulated amino acid substitutions forming the ancestral V

opsin, which still retained Ser116 and Phe177. The phylogeny of

opsins (Fig. 2A) indicates that in Coliadinae the ancestral B was

somehow removed and that the ancestral V duplicated again. In

Colias erate, CeV1 and CeV2 evolved from the duplicated V opsins.

In the process of CeV2 evolution, the substitution Phe177Tyr took

place, which most likely shifted the absorption peak wavelength

several nanometers hypsochromically (see Fig. 4B). The V opsin of

Pieris, PrV, evolved from the common ancestor of CeV2 (see

Fig. 2A), by substituting Ser116Ala, which caused an additional

19 nm hypsochromic shift (see Fig. 4C).

Two B type opsins, BRh1 and BRh2, have been identified in a

lycaenid species, Lycaena rubidus [23]. Their absorption maxima

were estimated as 437 nm (BRh1) and 500 nm (BRh2) by

microspectrophotometry of the intact eye. Judging from the

substitution at 116, BRh1 corresponds to PrV (Ala), whereas BRh2

corresponds to PrB (Ser), matching well with the present results.

Because the B opsin duplication events in Pieridae and Lycaenidae

are thought to have occurred independently [24], the contribution

of the amino acid at 116 to spectral tuning in both families is

probably a consequence of parallel evolution. We note here that

the difference in the lmax of the two visual pigments of Lycaena

(63 nm) is much larger than in Pieris (33 nm), implying that Lycaena

employs an additional mechanism that functions in an additive

manner.

The evolution of the opsins in the butterfly eyes affected of

course their spectral organization. In Colias, the mRNAs of CeV1

and CeV2 opsins are always coexpressed in a subset of R1 and R2

photoreceptors [3], suggesting that these receptors have a broad-

band sensitivity. Indeed, we have encountered broad-band blue

receptors in our electrophysiological study on Colias eyes [25]. In

Pieris rapae, the evolution of PrV resulted in subfunctionalization of

short wavelength receptors, R1 and R2 (Fig. 5). The type II

ommatidia of Pieris express PrV both in R1 and R2, which in the

ancestral form expressed B opsin. Interestingly, the PrV-expressing

photoreceptors are sexually dimorphic due to the male-specific

fluorescing pigment [2]. Acquisition of PrV and the sexual

dimorphism of spectral sensitivity may be crucial in mate

recognition that is driven by the female-specific UV wing

reflection of Pieris rapae crucivora [26].

Acknowledgments

We thank Drs Hisao Tsukamoto and Takashi Nagata for technical advice

on the expression of visual pigments. We also thank Dr Adriana Briscoe for

critical reading of the manuscript. MW started the work as a JSPS research

fellow.

Author Contributions

Conceived and designed the experiments: MW AT YS KA. Performed the

experiments: MW AT MK. Analyzed the data: MW AT DGS YS KA.

Wrote the paper: MW AT DGS KA.

References

1. Wakakuwa M, Kurasawa M, Giurfa M, Arikawa K (2005) Spectral

heterogeneity of honeybee ommatidia. Naturwiss 92: 464–467.

2. Arikawa K, Wakakuwa M, Qiu X, Kurasawa M, Stavenga DG (2005) Sexual

dimorphism of short-wavelength photoreceptors in the Small White butterfly,

Pieris rapae crucivora. J Neurosci 25: 5935–5942.

3. Awata H, Wakakuwa M, Arikawa K (2009) Evolution of color vision in pierid

butterflies: blue opsin duplication, ommatidial heterogeneity and eye regional-

ization in Colias erate. J Comp Physiol A 195: 401–408.

4. Sison-Mangus MP, Bernard GD, Lampel J, Briscoe AD (2006) Beauty in the eye

of the beholder: the two blue opsins of lycaenid butterflies and the opsin gene-

driven evolution of sexually dimorphic eyes. J Exp Biol 209: 3079–3090.

5. Briscoe AD (2000) Six opsins from the butterfly Papilio glaucus: Molecular

phylogenetic evidence for paralogous origins of red-sensitive visual pigments in

insects. J Mol Evol 51: 110–121.

6. Kitamoto J, Sakamoto K, Ozaki K, Mishina Y, Arikawa K (1998) Two visual

pigments in a single photoreceptor cell: Identification and histological

localization of three mRNAs encoding visual pigment opsins in the retina of

the butterfly Papilio xuthus. J Exp Biol 201: 1255–1261.

7. Frentiu FD, Bernard GD, Cuevas CI, Sison-Mangus MP, Prudic KL, et al.

(2007) Adaptive evolution of color vision as seen through the eyes of butterflies.

Proc Natl Acad Sci USA 104: 8634–8640.

8. Briscoe AD, Bybee SM, Bernard GD, Yuan F, Sison-Mangus MP, et al. (2010)

Positive selection of a duplicated UV-sensitive visual pigment coincides with

wing pigment evolution in Heliconius butterflies. Proc Natl Acad Sci USA 107:

3628–3633.

9. Qiu X, Arikawa K (2003) Polymorphism of red receptors: Sensitivity spectra of

proximal photoreceptors in the small white butterfly, Pieris rapae crucivora. J Exp

Biol 206: 2787–2793.

10. Qiu X, Arikawa K (2003) The photoreceptor localization confirms the spectral

heterogeneity of ommatidia in the male small white butterfly, Pieris rapae crucivora.

J Comp Physiol A 189: 81–88.

11. Wakakuwa M, Stavenga DG, Kurasawa M, Arikawa K (2004) A unique visual

pigment expressed in green, red and deep-red receptors in the eye of the Small

White butterfly, Pieris rapae crucivora. J Exp Biol 207: 2803–2810.

12. Terakita A, Tsukamoto H, Koyanagi M, Sugahara M, Yamashita T, et al.

(2008) Expression and comparative characterization of Gq-coupled invertebrate

visual pigments and melanopsin. J Neurochem 105: 883–890.

13. Murakami M, Kouyama T (2008) Crystal structure of squid rhodopsin. Nature

453: 363–367.

14. Koyanagi M, Terakita A, Kubokawa K, Shichida Y (2002) Amphioxus

homologs of Go-coupled rhodopsin and peropsin having 11-cis- and all-trans-

retinals as their chromophores. FEBS Lett 531: 525–528.

15. Terakita A, Yamashita T, Shichida Y (2000) Highly conserved glutamic acid in

the extracellular IV-V loop in rhodopsins acts as the counterion in retinochrome,

a member of the rhodopsin family. Proc Natl Acad Sci USA 97: 14263–14267.

16. Kayada S, Hisatomi O, Tokunaga F (1995) Cloning and expression of frog

rhodopsin cDNA. Comp Biochem Physiol B 110: 599–604.

17. Seki T, Fujishita S, Ito M, Matsuoka N, Tsukida K (1987) Retinoid composition

in the compound eyes of insects. Exp Biol 47: 95–103.

18. Govardovskii VI, Fyhrquist N, Reuter T, Kuzmin DG, Donner K (2000) In

search of the visual pigment template. Vis Neurosci 17: 509–528.

19. Stavenga DG. On visual pigment templates and the spectral shape of

invertebrate rhodopsins and metarhodopsins. J Comp Physiol A: in press.

20. Salcedo E, Farrell DM, Zheng L, Phistry M, Bagg EE, et al. (2009) The green-

absorbing Drosophila Rh6 visual pigment contains a blue-shifting amino acid

substitution that is conserved in vertebrates. J Biol Chem 284: 5717–5722.

21. Salcedo E, Zheng L, Phistry M, Bagg EE, Britt SG (2003) Molecular basis for

ultraviolet visioin in invertebrates. J Neurosci 23: 10873–10878.

22. Nagata T, Oura T, Terakita A, Kandori H, Shichida Y (2002) Isomer-specific

interaction of the retinal chromophore with threonine-118 in rhodopsin. J Phys

Chem A 106: 1969–1975.

23. Bernard GD, Remington CL (1991) Color vision in Lycaena butterflies: Spectral

tuning of receptor arrays in relation to behavioral ecology. Proc Natl Acad Sci

USA 88: 2783–2787.

24. Briscoe AD (2008) Reconstructing the ancestral butterfly eye: focus on the

opsins. J Exp Biol 211: 1805–1813.

25. Pirih P, Arikawa K, Stavenga DG (2010) An expanded set of photoreceptors in

the Eastern Pale Clouded Yellow butterfly, Colias erate. J Comp Physiol A 196:

501–517.

26. Obara Y, Hidaka T (1968) Recognition of the female by the male, on the basis of

ultra-violet reflection, in the white cabbage butterfly, Pieris rapae crucivora

Boisduval. Proc Jap Acad 44: 829–832.

27. Arikawa K (2003) Spectral organization of the eye of a butterfly, Papilio. J Comp

Physiol A 189: 791–800.

Evolution of Color Vision in Butterflies

PLoS ONE | www.plosone.org 7 November 2010 | Volume 5 | Issue 11 | e15015



28. Briscoe AD, Bernard GD, Szeto AS, Nagy LM, White RH (2003) Not all

butterfly eyes are created equal: rhodopsin absorption spectra, molecular
identification and localization of UV- blue- and green-sensitive rhodopsin

encoding mRNA in the retina of Vanessa cardui. J Comp Neurol 458: 334–349.

29. Sauman I, Briscoe AD, Zhu H, Shi D, Froy O, et al. (2005) Connecting the
navigational clock to sun compass input in monarch butterfly brain. Neuron 46:

457–467.

30. White RH, Xu H, Munch T, Bennett RR, Grable EA (2003) The retina of

Manduca sexta: rhodopsin-expression, the mosaic of green- blue- and UV-sensitive

photoreceptors and regional specialization. J Exp Biol 206: 3337–3348.

31. Spaethe J, Briscoe AD (2005) Molecular chracterization and expression of the

UV opsin in bumblebees: three ommatidial subtypes in the retina and a new

photoreceptor organ in the lamina. J Exp Biol 208: 2347–2361.

Evolution of Color Vision in Butterflies

PLoS ONE | www.plosone.org 8 November 2010 | Volume 5 | Issue 11 | e15015


