
R E V I E W

Inflammatory and Immune Mechanisms in COPD: 
Current Status and Therapeutic Prospects
Yanan Qi1,2, Yuanyuan Yan 1,2, Dawei Tang 1,2, Jingjing Han1,2, Xinyi Zhu 1,2, Mengting Cui1,2, 
Hongyan Wu3, Yu Tao1,2, Fangtian Fan1,2

1School of Pharmacy, Bengbu Medical University, Bengbu, People’s Republic of China; 2Anhui Engineering Technology Research Center of Biochemical 
Pharmaceutical, Bengbu, People’s Republic of China; 3Institute of Biomedical Technology, Jiangsu Vocational College of Medicine, Yancheng, Jiangsu, 
224005, People’s Republic of China

Correspondence: Yu Tao; Fangtian Fan, Anhui Engineering Technology Research Center of Biochemical Pharmaceutical Bengbu Medical College, 2600 Donghai 
Avenue, Bengbu, Anhui, 233003, People’s Republic of China, Tel +86-15852921284; +86-16655258065, Email YuTao@bbmc.edu.cn; 2019050@bbmu.edu.cn 

Background: Chronic obstructive pulmonary disease (COPD) currently ranks among the top three causes of mortality worldwide, 
presenting as a prevalent and complex respiratory ailment. Ongoing research has underscored the pivotal role of immune function in 
the onset and progression of COPD. The immune response in COPD patients exhibits abnormalities, characterized by diminished anti- 
infection capacity due to immune senescence, heightened activation of neutrophils and macrophages, T cell infiltration, and aberrant 
B cell activity, collectively contributing to airway inflammation and lung injury in COPD.
Objective: This review aimed to explore the pivotal role of the immune system in COPD and its therapeutic potential.
Methods: We conducted a review of immunity and COPD published within the past decade in the Web of Science and PubMed 
databases, sorting through and summarizing relevant literature.
Results: This article examines the pivotal roles of the immune system in COPD. Understanding the specific functions and interactions 
of these immune cells could facilitate the development of novel therapeutic strategies and interventions aimed at controlling 
inflammation, enhancing immune function, and mitigating the impact of respiratory infections in COPD patients.
Keywords: COPD, immune system, inflammation, immune regulation

Introduction
Chronic Obstructive Pulmonary Disease (COPD) represents a diverse lung condition marked by persistent respiratory 
manifestations stemming from both airway and alveolar irregularities that result in sustained airflow limitation.1 This 
prevalent global ailment disproportionately affects developing nations.2,3 While early indications may be subtle, disease 
progression intensifies symptoms notably during physical exertion leading to substantial impairment in patient’s quality 
of life.4 Primary risk factors encompass tobacco smoke exposure (both active and passive smoking), environmental 
pollution (indoor and outdoor pollutants) as well as occupational hazards like dust or chemicals5,6 (Figure 1). Prolonged 
tobacco use stands out as the foremost contributor to COPD with approximately 80–90% cases linked to smoking.7,8 

Typical signs comprise coughing fits accompanied by sputum production alongside dyspnea culminating in profound 
deterioration in overall well-being.9

The immune system serves as a vital biological defense mechanism that safeguards the human body against various 
pathogenic microorganisms.10 However, in patients with COPD, abnormal activation of immune cells and the release of 
immune mediators can exacerbate lung inflammation.11 Upon respiratory tract infection, the immune system promptly 
mobilizes to combat the invading pathogens.12 Innate immunity effectively eliminates infections by engulfing viruses, 
bacteria, and other microorganisms while enhancing inflammatory responses to aid in their clearance;13–15 adaptive 
immunity identifies, localizes, and eradicates specific pathogenic agents.16,17 Prolonged exposure to harmful gases and 
particulate matter in COPD patients results in increased airway wall thickness, lung function impairment, and alterations 
in immune function.18,19 Immune cells, particularly neutrophils and macrophages, often exist in a hyperactivated state 
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producing elevated levels of inflammatory mediators which perpetuate an expanded inflammatory response.20,21 

Additionally, intricate interactions occur between immune cells and oxidative damage: oxidative stress can activate 
immune cells leading to the release of inflammatory mediators;22,23 conversely, immune cells can generate oxygen free 
radicals and other oxidative substances contributing to further damage to lung tissue structure and function.24–26

Therefore, it is crucial to understand the role of the immune system in COPD prevention and treatment. This article 
begins by examining the significant role of the immune system in COPD progression. It then explored the relationship 
between COPD and immunity, offering new insights into potential directions for managing COPD.

Immunosenescence in COPD
COPD is a chronic inflammatory disease, with environmental factors, such as smoking and air pollution, being the 
leading causes of chronic inflammation.27–29 Chronic inflammation can damage the airway mucosal cells, increase mucus 
secretion, and impair respiratory function.30–32 In response to this damage, the immune system initiates a series of 
responses to defend against aggressive factors.10,12 Innate and adaptive immune responses build the body’s immune 
defense system, protecting it from infection and disease.16 However, immune aging exacerbates disease progression in 
patients with COPD.11 During aging, the immune system may experience imbalanced regulation, leading to over-
activation or suppression of the inflammatory response.33,34 This imbalance can result in an attack on the lung tissue 
and exacerbate inflammation.35 Overall, the immune response in COPD is a complex process that involves interactions 
between multiple immune cells and inflammatory mediators (Figure 2).

Figure 1 COPD related risk factors. The risk factors include cigarette, bacteria, particulate matter and viruses.
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Inflammatory Response in the Lungs
When tobacco smoke, indoor and outdoor pollutants, dust, chemicals, etc., infiltrate the lungs or cause damage from 
various other irritants, the immune system triggers a cascade of inflammatory responses to counteract aggressive 
factors.36 For instance, IL-33, IL-25, and TSLP are released in response to stimuli-induced epithelial cell damage.37,38 

ILC2s are innate immune cells that become activated and secrete proinflammatory type 2 cytokines such as IL-5 and 
IL-13 to recruit eosinophils and promote mucus production.39,40 Meanwhile, T helper cells—adaptive immune cells—are 
activated by dendritic cells in an antigen-dependent manner. Inflammation is a crucial immune response to harmful 
substances and pathogens and plays a significant role in the immune response to COPD.41 When pathogens or irritants 
enter the lungs and cause damage, the immune system initiates a series of inflammatory responses to defend against these 
aggressive factors.42 For example, when lung tissue is irritated or infected, immune cells release various inflammatory 
mediators, these mediators guide the migration of other immune cells to the site of inflammation, regulate the 

Figure 2 Immune response in COPD. Innate and adaptive immune responses build the body’s immune defense system. Immunosenescence exacerbates disease progression 
in patients with COPD.
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inflammatory response, and increase vascular permeability and mucus secretion.43 Increased vascular permeability allows 
plasma, platelets, and other immune cells to enter the site of inflammation, providing sufficient resources and immune 
cells to fight infection and repair damaged lung tissues.44 Alveolar macrophages are an essential type of immune cell in 
the lungs that specialize in clearing pathogens and damaging substances.45,46 They engulf and remove harmful substances 
during infection or injury, thereby releasing inflammatory mediators to activate other immune cells. The inflammatory 
response also plays a key role in triggering the repair and regeneration of the lung tissue.47–49 After resolving 
inflammation, immune cells release various growth factors and cytokines to promote the regeneration and repair of 
lung cells, which helps restore function and structure within damaged lung tissue (Figure 3).

In summary, the complex process of the inflammatory response in the lungs fights infections associated with 
respiratory system injuries through coordinated actions, including the release of inflammatory mediators, dilation and 
leakage from blood vessels, and promotion of tissue repair for effective defense mechanisms within the lungs.

Role of Innate Immunity and Adaptive Immune Responses
Upon exposure to external stimuli such as air pollution, harmful chemicals or infectious bacteria, COPD patients mount 
both innate and adaptive immune responses.50,51 The term “innate” refers to this type of immunity’s universal presence 
within the body along with its immediate action.52 Macrophages, natural killer cells, and phagocytes constitute key 
components of this defense mechanism against unfamiliar pathogens.53 When confronted with external threats, intrinsic 
immunity rapidly identifies and eliminates pathogens while also initiating an inflammatory reaction that aids in tissue 
repair.54,55 However, in individuals with COPD, this intrinsic immunity’s inflammatory response tends to be excessively 
activated. Exposure to hazardous substances triggers activation of macrophages, dendritic cells, and neutrophils within 
lung tissues, resulting in sustained inflammation, damage to airways.56,57 Oxidative stress induced by smoking or air 
pollutants leads to heightened production of free radicals.58 These free radicals not only directly harm lung tissue but also 
activate intrinsic immune cells, further exacerbating inflammatory responses.59

Figure 3 The autoimmune mechanism of COPD. Cigarette smoke induces lung damage, leading to increased vascular permeability. This allows the infiltration of 
macrophages, neutrophils, lymphocytes, and platelets into the inflammatory site, triggering a series of defense measures by the immune system. However, immune 
dysregulation has been observed in COPD patients, including the release of IL-1β and increased TNF-a from macrophages, as well as ROS and increased ARG1 from 
neutrophils. Additionally, there is an increase in autoreactive T and B cells and a decrease in immunosuppressive regulatory T and B cells which exacerbate inflammation. Due 
to impaired immune function, patients with COPD experience airway wall thickening and more frequent mucus secretion that significantly impacts their quality of life.
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The adaptive immune system is distinguished by its high specificity, memory function, and is mediated by T cells, 
B cells, and other lymphocytes.60 Upon initial exposure to a specific pathogen, the adaptive immune system generates 
corresponding antibodies, T-cells for combating said pathogen.61,62 Moreover, it possesses memory capabilities, enabling 
faster, stronger responses upon subsequent encounters with identical pathogens. This attribute empowers our bodies’ 
ability fight infections form immune memory.63 In individuals suffering from COPD CD8+ T cells CD4+ T cell 
accumulate within lung tissues contributing towards airway inflammation. CD8+ T cells cause direct damage to tissue 
through attacks on lung epithelial cells with CD4+ T cell regulating inflammation via cytokine release.64,65 B cell 
produced antibodies may be linked to airway inflammation among those afflicted with COPD. Although the main 
etiology of COPD is long term harmful exposure, abnormal antibody production may also aggravate inflammatory 
responses in some patients.66

In summary, innate and adaptive immune responses collaborate to establish the body’s immune defense system, 
safeguarding it from infection and disease. Their unique strengths and characteristics complement each other, harmo-
niously upholding the immune balance and homeostasis of the body. In academic research, a comprehensive under-
standing of the mechanisms of action of innate and adaptive immunity is crucial for disease prevention, control, and 
immune regulation.55,59,64

Immune Aging in COPD Patients
Immunosenescence refers to age-related dysfunction of the immune system, which leads to decreased ability to combat 
infection and inflammation.63,67 This process is particularly significant in patients with COPD, as studies have shown that 
the production and function of immune cells may be abnormally regulated, resulting in an overreaction to inflammation 
that exacerbates respiratory inflammation and airway obstruction.36,66 With age, the function of immune cells, such as 
macrophages, T cells, and B cells, gradually declines in patients with COPD.68 The activity and sensitivity of these 
immune cells decrease, resulting in a reduced ability to fight infections and clear pathogens, making patients more 
susceptible to diseases and inflammatory responses.69 Immune aging also affects the memory function of immune cells in 
patients with COPD. Memory T and B cells of the adaptive immune system may be affected, thereby reducing the ability 
to recognize and respond to repeated infections.70 This makes patients more susceptible to repeated infections by the 
same pathogen or exacerbates their condition. Furthermore, immune aging can lead to chronic inflammation in patients 
with COPD, a prominent feature that contributes to disease progression.71 The slow inflammatory state induced by 
immune aging may exacerbate respiratory inflammation, oxidative stress, and airway remodeling. Given these implica-
tions for patient health outcomes, immunological intervention strategies targeting immune aging within this population 
have become increasingly important.72,73 According to the characteristics associated with immune aging, some inter-
vention measures can be taken, including improving activity levels among key immune cell types, promoting balance 
within regulatory mechanisms, strengthening vaccination protocols, and enhancing overall immunity through improved 
memory functions, all aimed at reducing inflammatory responses while controlling disease progression.74,75

Role of Immune Cells and Mediators in COPD
In COPD, various immune cells and mediators are involved in the inflammatory responses and immune regulation.76 The 
first were macrophages and neutrophils, which are among of the earliest immune cells involved in the inflammatory 
response.77 Macrophages are among the initial immune cells that respond to inflammation. In COPD, irritants, such as 
smoking and air pollution, induce lung inflammation, activating macrophages to release inflammatory mediators, such as 
IL-1β and TNF-α, which subsequently trigger an inflammatory response.78,79 Inflammatory mediators, such as elastase, 
released by neutrophils can lead to airway tissue destruction; the resulting reactive oxygen species (ROS) can further 
exacerbate oxidative stress and promote airway inflammation and damage.80 Second, T lymphocytes play a crucial role in 
the immune response in COPD patients.81 T cells consist of CD4+ helper T cells and CD8+ cytotoxic T cells, which 
regulate the inflammatory response and maintain immune balance by secreting cytokines and activating other immune 
cells.80,82,83 Additionally, B lymphocytes contribute to COPD by producing antibodies that neutralize pathogens and 
antigens while participating in the fight against inflammation.84 In addition to these immune cells and these inflammatory 
mediators, chemokines, leukocyte adhesion molecules, and humoral factors regulate and participate in inflammatory 
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responses.85 In conclusion, complex interactions exist between immune cells and mediators in COPD pathogenesis, 
which regulate the inflammatory response and maintain the immune balance, thereby influencing disease development 
and progression86 (Figure 4).

Neutrophils and Macrophages
Neutrophils and macrophages play an important role in the development and inflammatory process of COPD.87,88 

Neutrophils release a large number of proinflammatory cytokines, such as interleukin-8 (IL-8) and TNF-α, which can 
recruit more inflammatory cells to the airway and further aggravate inflammation.89 They secrete enzymes, such as 
elastase, collagenase and acid phosphatase, which can disrupt airway structure and function, leading to airway remodel-
ing and tissue damage.90,91 Neutrophils produce large amounts of reactive oxygen species, which can oxidize cells and 
tissues, leading to oxidative stress and inflammation.92 ROS production is not only directly toxic to airway epithelial 
cells, but also aggravates airway inflammation.93,94 Elastase and other proteases released by neutrophils break down 
components of the extracellular matrix (ECM), leading to destruction of airway walls and airway remodeling.95,96 This 
tissue destruction is one of the important features of COPD.95,97 Macrophages are normally responsible for engulfing and 
removing harmful substances from the body, such as bacteria, viruses, and inhaled particles.98 In COPD patients, 
macrophages release large amounts of proinflammatory cytokines such as tumor necrosis factor-alpha (TNF-α), inter-
leukin-1β (IL-1β), interleukin-6 (IL-6), and interleukin-8 (IL-8) in the airways of COPD patients due to long-term 
exposure to tobacco smoke and other harmful substances.99 These factors are able to enhance the inflammatory response 
and recruit other inflammatory cells such as neutrophils to the airway, thereby exacerbating inflammation and tissue 

Figure 4 Role of immune cells and mediators in COPD. (A) Neutrophils and macrophages play crucial roles in immune responses. (B) TNF-αand IL-1 increase vascular 
permeability. IL-8 cooperatively increases vascular permeability and recruit neutrophils. (C) Neutrophils and macrophages phagocytose pathogens. Damaged tissue is 
removed by proteolytic enzymatic digestion. (D) Mechanisms of T cell and B cell.
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damage.100 Chemokines released by macrophages, such as CCL2 and CXCL8, promote the migration and accumulation 
of inflammatory cells, which lead to persistent inflammation and injury of the airways.101 One of the major roles of 
macrophages in COPD is to maintain the chronic inflammatory state of the airways.102 They maintain an inflammatory 
environment within the airways through the continuous release of inflammatory mediators and cytokines. It is more 
inclined to secrete proinflammatory cytokines and enzymes, which further aggravates airway inflammation and tissue 
damage. Macrophages secrete a variety of enzymes, such as elastase and metalloproteinase, which can decompose 
important components of the extracellular matrix (ECM), such as elastin and collagen.103,104 This destructive effect leads 
to airway wall damage and remodeling, which further aggravates the condition of COPD.105 Macrophages in COPD not 
only participate in the inflammatory response by secreting proinflammatory cytokines, but also may regulate the immune 
response by secreting anti-inflammatory factors such as IL-10 and transforming growth factor-beta (TGF-β).106 However, 
this regulation may be out of balance in COPD, leading to persistent inflammatory responses.107

Although neutrophils and macrophages play an essential role in COPD development, an overactivated and dysregu-
lated immune response can also cause inflammation and tissue damage. Therefore, it is essential to balance and control 
the activity of neutrophils and macrophages for treating COPD.108

T Cells and B Cells
T lymphocytes and B lymphocytes provide specific immune protection by recognizing and eliminating pathogens and 
other harmful substances.109,110 These two types of adaptive immune cells are crucial for the immune response in 
COPD.111 T cells, an essential part of the adaptive immune system, can be divided into CD4+ helper T cells and CD8+ 

helper T cells. They are involved in immune regulation and the regulation of inflammation in COPD.112 The CD4+ helper 
T cells can differentiate into different subpopulations, such as Th1, Th2, Th17, and regulatory T cells (Treg cells).113 In 
COPD, there is an increase in the activity of Th1 and Th17 cells, leading to the production of cytokines, such as 
interferon-gamma (IFN-γ), from Th1 cells that stimulate inflammatory responses and cell damage.114 Additionally, IL-17 
produced by Th17 cells can lead to inflammation by stimulating the production of GM-CSF and CAM-1. Furthermore, 
Th2 cells contribute to excessive pathological remodeling of the respiratory tract, leading to airway obstruction, whereas 
the weakened function of Treg cells results in reduced immune tolerance and immune dysregulation.115 B cells are 
another important component of the adaptive immune system that produces antibodies and participates in antibody- 
mediated immune responses. When activated, B cells differentiate into plasma cells that produce large quantities of clear 
pathogens.116 In COPD, B cell activity increases, resulting in increased antibody production. Although antibodies play 
a role in pathogen clearance, it is essential to note that overactivated B cells may overproduce antibodies, leading to an 
autoimmune response.84 B cells can also release cytokines and inflammatory mediators, further promoting the develop-
ment of an inflammatory response.117 In a chronic inflammatory state, such as COPD, the activity of B cells may 
increase, further stimulating the inflammatory response and oxidative stress.118

In COPD treatment, immunomodulatory strategies focusing on regulating the activity of T and B cells are anticipated 
to alleviate the inflammatory response and oxidative stress in COPD, thereby reducing symptoms and delaying disease 
progression.119 Immunosuppressants, including those that inhibit T cell activity, can help reduce inflammatory lesions 
caused by immune response overactivation.120 Regulating the Th1/Th2/Th17/Treg balance is expected to decrease 
inflammation in COPD.121 Antibody drugs may also selectively interfere with B cell activity, reducing antibody 
production and the release of inflammatory mediators.122 Collectively, T and B cells play important roles in the 
pathogenesis and inflammatory processes of COPD.123 Therefore, immune regulation and antioxidant therapy may be 
crucial in COPD treatment.124 Balancing the immune response, inhibiting the overactivation of inflammation, and 
alleviating oxidative stress are expected to improve symptoms and quality of life in patients with COPD while delaying 
disease progression.125,126 This approach provides new ideas for personalized treatment in this field.127

The Treatment Strategy for COPD
While current treatments for COPD effectively manage symptoms and slow disease progression, they possess inherent 
limitations.128 In contrast, emerging immunotherapy presents distinct advantages by targeting specific inflammatory 
mediators or cells with precision to mitigate airway inflammation more effectively than conventional medications like 

Journal of Inflammation Research 2024:17                                                                                          https://doi.org/10.2147/JIR.S478568                                                                                                                                                                                                                       

DovePress                                                                                                                       
6609

Dovepress                                                                                                                                                                Qi et al

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


bronchodilators or inhaled glucocorticoids which only alleviate symptoms without reversing or curing COPD 
entirely.129,130 Furthermore, the variable efficacy of these medications among individuals underscores their limited 
impact on certain patients due to inadequate consideration of individual immune status and pathological features during 
treatment selection.131,132 Immunotherapy holds promise in regulating immunity with greater specificity, potentially 
reducing both frequency and severity of acute exacerbations while enhancing overall quality of life through improved 
immune function in managing infections and injuries133 (Figure 5).

Current Treatment Options for COPD
According to the 2024 guidelines from the Global Initiative for Chronic Obstructive Pulmonary Disease (GOLD), the 
management of chronic obstructive pulmonary disease (COPD) focuses on personalized treatment, symptom control, 
enhanced quality of life, and reduced acute exacerbations.134 Smoking cessation stands as the foremost measure in COPD 
treatment.135 Irrespective of the patient’s disease stage, smoking cessation is imperative for enhancing lung function, 
alleviating symptoms, and slowing disease progression.136 Pulmonary rehabilitation encompasses tailored exercise training, 
education, and nutritional guidance to enhance exercise capacity, symptom management, and quality of life.137 Long-term 

Figure 5 The treatment strategy for COPD. (A)The normal lung, trachea, and alveoli were compared with those of COPD patients. On the left are the lung, trachea, and 
alveoli of the COPD patient, while the normal tissues are shown on the right. (B) Therapeutic interventions that reduce COPD mortality.
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oxygen therapy enhances both quality of life and survival in patients with persistent hypoxemia.138,139 Pharmacotherapy is 
individualized based on symptom severity and risk of acute exacerbation140 (Table 1). While long-term use of inhaled 
glucocorticoids can mitigate inflammation, it may also lead to side effects such as oral candidiasis, osteoporosis, and 
diabetes.141 Prolonged use of certain medications may result in systemic side effects that could impact a patient’s long-term 
health.142 Despite medical therapy reducing exacerbation frequency overall; some patients with severe disease still 
experience frequent exacerbations leading to a significant decline in their quality of life.143,144 Patients with COPD often 
have comorbidities (cardiovascular disease or diabetes) that may not be adequately managed by current treatment options.145

Role of Immune Regulation in COPD Treatment
Immune regulation is crucial in treating COPD and can affect disease development and progression by controlling 
inflammatory responses, cellular immunity, and oxidative stress.146 The chronic inflammatory response in COPD is 
central to its development. The over-activated inflammatory response destroys lung tissue, increases mucus secretion, 
worsens patient symptoms, and decreases lung function. Immune regulation can reduce the degree of inflammatory 
response by inhibiting the release of inflammatory mediators and regulating the activity of inflammatory cells, thereby 
improving lung symptoms and patients’ quality of life.68 T cells play a significant role in the immunopathological 
processes of COPD. Immune regulation can influence T-cell differentiation and function, increase Tregs, inhibit the 
activity of inflammatory T cells (Th1 and Th17 cells), balance cellular immune processes, and reduce the intensity of the 
inflammatory response.103 Oxidative stress also plays a critical role in COPD pathogenesis and development by causing 
damage to the lung tissue through oxygen free radicals, which accelerate the decline in lung function.147 Oxidative stress 
is a pivotal factor in COPD pathogenesis by inducing oxidative damage to lung tissue through oxygen free radicals which 
accelerates pulmonary function decline.108 Immunoregulation has potential for mitigating oxidative stress progression 
while safeguarding against free radical-induced injury via antioxidant supplementation like vitamin C and vitamin E.26 

Tailoring immunomodulatory interventions based on individual immune status and disease characteristics is crucial for 
optimizing therapeutic outcomes in COPD management.70 Immune monitoring and assessment enable selection of 
tailored immunomodulatory therapies that enhance efficacy while minimizing adverse effects.46 Overall, immunomodu-
lation significantly impacts COPD treatment by modulating inflammatory response, cellular immunity and oxidative 
stress thereby reducing disease burden while enhancing pulmonary function and quality-of-life whilst lowering acute 
exacerbation risks.148,149

Table 1 Commonly Used Maintenance Medications in 
COPD

Type Generic Drug Name

SABA Fenoterol/Levalbuterol/Salbutamol

LABA Arformoterol/Formoterol/Indacaterol

SAMA Ipratropium bromide
Oxitropium bromide

LAMA Tiotropium/Umeclidinium

LABA+LAMA Formoterol/aclidinium

LABA+ICS Salmeterol/fluticasone propionate

LABA+LAMA+ICS Fluticasone/umeclidinium/vilanterol

PDE-4 Inhibitors Roflumilast

Abbreviations: SABA, short-acting beta2-agonist; LABA, long-acting 
beta2-agonist; SAMA, short-acting anti-muscarinic; LAMA, long-acting 
anti-muscarinic; ICS, inhaled corticosteroid; PDE-4, Phosphodiesterase-4.
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Summary and Discussion
COPD is a complex disease involving airway inflammation, airflow limitation and immune dysfunction.150 Although 
current treatment methods include bronchodilators and anti-inflammatory drugs, there are still many patients who do not 
achieve satisfactory results. Therefore, immunotherapy for COPD patients has gradually attracted wide attention.7,151 The 
application of immunotherapy in COPD has some potential advantages, which are different from traditional treatment 
methods and can provide new treatment options in specific clinical scenarios.152 First of all, understanding the specific 
functions of immune cells and their roles in the inflammatory process can provide a basis for the selection of appropriate 
immunotherapy strategies. For example, inhibition of proinflammatory cytokines such as TNF-α and IL-6 may help to 
alleviate the inflammatory response of COPD.153 The development of biological agents targeting specific immune cells 
or signaling pathways may become an important direction for the treatment of COPD in the future. Secondly, the immune 
status of COPD patients varies significantly, so individualized immunotherapy is particularly important. By assessing the 
patient’s immune function, inflammatory markers, and disease severity, more precise treatment can be developed to 
improve the efficacy and reduce side effects. Immunotherapy can target specific biomarkers or signaling pathways that 
play a key role in inflammation and disease progression in COPD.154 By precisely targeting these pathways, immu-
notherapy can reduce side effects and improve therapeutic efficacy. Finally, some immunotherapies, such as monoclonal 
antibody injections, can be administered in a clinic or home setting, which improves patient adherence to treatment. 
Traditional treatment of COPD often relies on inhalers, which may cause pharyngitis, oral microbial changes and other 
related side effects. Immunotherapy can reduce the dependence on these agents and the associated side effects.

The utilization of immunotherapy in the management of COPD holds significant promise, yet it also confronts 
numerous challenges.51 Firstly, the chronic inflammation associated with COPD is not solely driven by immune cells but 
is also influenced by environmental factors (such as smoking and air pollution) and genetic factors.18 Consequently, 
a singular immunotherapy approach may prove insufficient in addressing all inflammatory mechanisms. Secondly, the 
long-term efficacy and safety of immunotherapy necessitate validation through extensive clinical trials.155 The majority 
of current studies have focused on short-term effects, leaving the long-term effects ambiguous.156 Different types of 
immunotherapy may yield varying effects within distinct patient populations.51 The accurate assessment and optimization 
of these diverse therapeutic effects remain an ongoing challenge.157 Lastly, newer immunotherapies often entail higher 
costs, posing a financial burden for certain patient groups. Addressing this issue requires finding ways to reduce treatment 
costs while ensuring efficacy.158

In conclusion, the immune system plays a crucial role in the pathogenesis of COPD, and immunotherapy holds 
significant promise for its treatment. While current research is still exploratory, a comprehensive understanding of immune 
system function, personalized treatment strategies, and targeted immune pathway investigations are anticipated to offer new 
therapeutic prospects for COPD patients. Future research and clinical practice should prioritize addressing these challenges 
and integrating immunomodulation with drug therapy to enhance efficacy and improve patient quality of life. 
Advancements in this area will contribute to enhancing the quality of life for COPD patients and reducing disease burden.
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