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Viruses act as “regulators” of the global carbon cycle because they impact the material

cycles and energy flows of food webs and the microbial loop. The average contribution

of viruses to the Earth ecosystem carbon cycle is 8.6‰, of which its contribution to

marine ecosystems (1.4‰) is less than its contribution to terrestrial (6.7‰) and freshwater

(17.8‰) ecosystems. Over the past 2,000 years, anthropogenic activities and climate

change have gradually altered the regulatory role of viruses in ecosystem carbon cycling

processes. This has been particularly conspicuous over the past 200 years due to rapid

industrialization and attendant population growth. The progressive acceleration of the

spread and reproduction of viruses may subsequently accelerate the global C cycle.

Keywords: virus, carbon cycle, regulator, anthropogenic activity, climate change

INTRODUCTION

The scale of perturbation to Earth systems caused by human activity during the Holocene,
and particularly over the last 2,000 years is now recognized as the Anthropocene epoch (1).
Changes to Earth’s ecosystems over millennia caused by human perturbation, including climate
change, accelerating population growth and the globalization of trade and travel, have overridden
biogeographic boundaries and allowed the rapid spread of viruses (2). This global phenomenon has
drawn attention to the role of viruses in wider ecosystem functioning through their interactions
with the global carbon cycle via the food web and the microbial loop in terrestrial and aquatic
environments (3) that impose an indirect influence on climate change (4).

Disease-causing viruses diminish the fitness of their hosts, hinder development and
reproduction, and may ultimately hasten their deaths (5, 6), driving the mineralization of organic
carbon to inorganic carbon and its loss from food webs before it can flow to higher trophic
levels (7). However, not all viruses are pathogens, and some are mutualistic, conferring benefits
on hosts that include bacteria and fungi, plants, wasps and aphids, mice and humans (8).
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Indeed, current innovation in the treatment of cancers are
developing the use of viruses to kill cancer cells selectively (9).
Thus, viruses change the function of entire ecosystems by altering
the abundances and community structures of organisms in food
webs at every trophic level, from simple microorganisms (10, 11)
to complex plants and animals (12).

Natural fluctuations in climate have given way to human-
induced global warming over the past 2,000 years, but most
particularly since the beginning of the Chinese Common Era
(CE) and European Industrial Revolution in themid-18th century
and latterly the “Great Acceleration” of the Anthropocene since
the 1950’s. Progressive increases in average global temperatures
have driven changes in rainfall patterns and caused more
frequent and intense extreme weather events that have direct
and indirect effects on viral epidemiology. Climate change affects
the frequencies and durations of viral epidemics by altering the
distribution, abundance and activity of hosts, changing resistance
to infection, the physiology of host-virus interactions, the rate of
virus evolution and host adaptation (13–16). Evidence suggests
that global warming is leading to increased epidemics and, in
turn, species extinctions. But the relationship between climate
and epidemics may be different for different regions and different
species (17). For example, recent evidence from European ice
cores showed a strong relationship between unusual weather (low
temperatures and high rainfall) and the severity of the Spanish
Flu epidemic during the First World War (18). As another
example, significant negative correlations are observed between
temperature and precipitation and China’s epidemic Outbreak
Index (i.e., caused by bacteria, viruses or parasites); epidemics
have tended to be relatively more frequent in China during colder
and drier periods and relatively rarer during warmer and humid
periods (Figure 1, Supplementary Table S1). Thus, it appears
that climate change and viral epidemics are closely intertwined
and interdependent with profound consequences for human,
animal and environmental health, calling for the development of
cross-disciplinary “One Health” strategies (19).

The current “black swan event” of COVID-19 has created an
opportunity to observe how rapidly viral disease outbreaks can
fracture ecosystem carbon flows by changing human behavior.
Vastly reduced fossil fuel use during national lockdowns
swiftly moved the global carbon balance toward a new
state via regulatory feedback mechanisms (20) which may
cause long-term and far-reaching changes to earth system
interactions (21, 22). Thus, evidence is emerging that viruses
can act as “regulators” of ecosystem carbon cycling through
their effect on host (human) fitness and behavior, and that
anthropogenic activity and climate change can alter viral
epidemiology. However, the strength of the contributing factors
to this exchange need to be identified to develop “One
Health” solutions. Therefore, the objectives of this study
were to (i) systematically clarify how viruses regulate carbon
cycling processes, and (ii) reveal how anthropogenic activity
and climate change influence the way that viruses regulate
carbon cycling processes using published relevant data and
findings. This study also proposes adaptive countermeasures
to help combat any future influences of viruses on global C
cycling processes.

METHODS

In order to systematically elucidate how virus regulate carbon
cycling processes, we adopted the most commonly used
calculation formula of contribution rate of C (CRC) in the
world and the results of two published models to decompose
the mechanism of virus in C cycle. We scraped data on virus
abundance, as well as soil, ocean, and atmospheric C pools
from different literature, and combined them into a mechanism
diagram (Figure 4) to illustrate the impact scale of virus. To
reveal the modulation of this process by anthropogenic activity
and climate change, we use a China-wide dataset containing
precipitation, dust storm index (DSI), temperature, population,
and epidemic outbreak index.

Modeling Viral Impacts on Ecosystem
Carbon Cycles
This study applied the following formulae to estimate the CRC
between viral lysing of bacteria and ecosystem DOC:

CRC =
VLBC

TCOE
(1)

VLBC = FMVL× BCP (2)

MCP = PP× 20× 10−9 (3)

FMVL =
FVIC

[γ ln2× (1− ε − FVIC)]
(4)

where TCOE is the total ecosystem DOC concentration (soil:
mg C·kg−1/water: µg C·L−1); VLBC is the carbon released by
viral lysing of bacteria (soil: mg C·kg−1/water: µg C·L−1); BCP is
bacterial carbon production (soil: mg C·kg−1/water: µg C·L−1);
BP is bacterial production (cell·L−1); FMVL is the fraction
of mortality from viral lysis; FVIC is the frequency of visibly
infected cells as seen under an electron microscope; γ is the ratio
between the latent period and generation time; ε is the fraction of
the latent period during which viral particles are not yet visible
(23, 24). If γ = 1, ε = 0.186.

A steady-state model was used (shown in Figure 4) to
determine the influence of virus under marine carbon cycling
processes (25), which is a modification of the steady-state model
developed by Jumars et al. (26) in that it allows for lysis of
marine phytoplankton and marine bacterioplankton production.
All values represent flux in photosynthetically fixed carbon
(100%) and assume that all carbon in the pelagic zone eventually
respires with negligible loss due to export. The data indicated that
between 6 and 26% of the carbon fixed by primary producers
enters the DOC pool via viral-induced lysis at different trophic
levels (25).

This study applied the modified steady-state carbon flow
model to determine a hypothetical aquatic microbial food web
(27). The model showed that compared to a system devoid of
virus, an otherwise identical food web with and without a viral
component that is responsible for 50% of bacterial mortality
and 7% of phytoplankton mortality underwent: (1) 33% more
bacterial respiration and production; (2) 33% less bacterial
grazing by protists; (3) 7% less microzooplankton production.
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FIGURE 1 | Global trends in climate change and anthropogenic activity and relationships with Chinese epidemic status over the last 2000 years. (A) The epidemic

Outbreak Index of China [the number of years epidemics (bacteria, viruses and parasites) were recorded in China], and incidence of major global viral epidemic events.

Each red vertical bar represents a viral epidemic event. See Supplementary Table S1 for detailed data information. (B) Temperature in the northern hemisphere

(Continued)
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FIGURE 1 | (Temperature-NH); (C) temperature in China (Temperature-CH); (D) precipitation in the East Asian monsoon region; (E) dust storm index of North China;

(F) population of China; (G) War Index, i.e., the total number of armed conflicts that occurred within China. Epidemic Outbreak Index values illustrating historical

outbreak events can be roughly divided into three stages: the first stage (0 CE∼1,000 CE) where values were all below 5; the second stage (1,000 CE∼1,450 CE) of

progressive increase in values from <5 toward 10; the third stage (1,450 CE∼1,949 CE) where values plateau close to 10 (wherein epidemics occurred almost every

year). CE, Chinese Common Era.

The model confirmed the existence of a mechanism that showed
that the viral lysis of phytoplankton would deprive the larger
grazers and move material to smaller lifeforms.

Data Sources
In this study, the data sets for precipitation, dust storm index
(DSI), temperature, population, epidemic index and epidemic
outbreak index data over the past 2,000 years were summarized
from published data as well as published research. The 20-yr
resolution precipitation data set shown in Figure 1 was based on
pollen analysis from sediment cores in a reconstruction using
the two-component weighted averaging partial least squares
regression (WA-PLS) model (28). The dust storm index data
set was reconstructed based on the coarse silt component
(CSC) percentage in the sediment cores of Lake Gonghai (29).
Northern Hemisphere temperature (Temperature-NH) data
were reconstructed using the LOCal (LOC) method (30), and
China temperature (Temperature-CH) data were reconstructed
using principal component regression (PCR) and partial least
squares (PLS) regression (31). Population, epidemic index and
epidemic Outbreak Index data were extracted from regional
publications and literature (32–34).

This study obtained total CO2 emissions (TCOE), frequency
of visible infected cells (FVIC), fraction of mortality from viral
lysis (FMVL), bacterial carbon production (BCP) and bacterial
production (BP) data through analysis of relevant literature
(Supplementary Table S2). Since bacteria comprise most soil
microorganisms and there exists an integral relationship between
soil microorganisms and viruses (35), soil BCP was substituted
for soil microbial carbon production in this study. Moreover,
Equation (2) assumes that the carbon content in each bacterial
cell is constant (20 fg C·cell−1) (36). To date, no studies have
been published on bacterial mortality caused by viral lysis in
forest and desert soil. Therefore, we only estimated the CRC
of wetland, cropland, pastureland and tundra ecosystem types.
When the original data were presented in means or medians,
the value was used directly; when the original data were a
range, we used maximum and minimum values of the range
for calculation.

Some data sets shown in Figures 3, 4 were extracted
from published references (Supplementary Tables S3, S4). If the
original data were a range, the median of the range was used.
Floodplains and river reservoirs were regarded as lakes in this
study. Data used in Supplementary Table S5were extracted from
the most recent global, regional and country-level estimates on
cause-specific disability-adjusted life year (DALYs), years of life
lost (YLL) and years lost due to disability (YLD) metrics for the
years 2000, 2010, 2015 and 2016 (37).

VIRAL REGULATION OF ECOSYSTEM
CARBON CYCLING

Viruses regulate carbon cycling via their direct and indirect
effects on the microbial loop and wider food web in terrestrial
and aquatic ecosystems in three main ways.

(i) Infection and cell lysisViruses (phages) accelerate the direct
release of carbon from the microbial pool through microbial cell
lysis (i.e., the “viral shunt”), especially bacteria in soils (35, 38–40)
and plankton in aquatic systems (41–43) (Figure 2A).

(ii) Gene transfer Viruses indirectly regulate soil carbon
cycling processes by affecting microbial host genes that encode
for key biogeochemical functions, e.g., carbon metabolism and
sporulation (44) through gene transfer (10, 11, 45), including
the reprogramming of metabolic processes (becoming a “puppet
master”) of the host cell (46), thereby regulating carbon (and
nutrient) cycling (47–49) (Figure 2B). These genes include
auxiliary metabolic genes (AMGs) that can regulate host
photosynthesis (46, 50), carbon metabolism (51) and other such
processes, which can alter the number, community structure and
function of microorganisms (52).

(iii) Altered community structure Viruses alter the abundance,
diversity and structure of microorganisms, including changing
the dominance of microbial species [e.g.; “Killing the Winner”
mechanism (53)] by modifying the magnitude of organic inputs.
Viral infections of plants and animals in the wider food web may
initially increase organic inputs due to increased mortality, but
may ultimately reduce inputs by decreasing their abundance, e.g.,
viral infections of green plants can reduce rates of photosynthesis
by up to 50% (54). Gene transfer can alter the availability
of different organic substrates by mediating carbon source
diversification processes (53, 55) which play an important role
in maintaining species richness and the amount of available
genomic information (52) (Figure 2C).

VIRUS DISTRIBUTIONS IN ECOSYSTEMS

Viruses are extremely abundant infectious agents that are
distributed throughout the biosphere (56), primarily in marine
(55%) and freshwater (40%) ecosystems and to a much lesser
extent in terrestrial ecosystems (<1%) (57).

In terrestrial systems, virions are easily adsorbed onto soil
particles, and the degree of adsorption is commonly > 90%
and reliant on soil properties including clay mineralogy,
cation exchange capacity, soil organic matter and pH,
as well as the type of virus (58). Thus, the migration
rate of viruses in soil is very slow, which may explain
why viruses have a weaker controlling effect on hosts in
terrestrial ecosystems compared to freshwater and marine
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FIGURE 2 | Three major mechanisms by which viruses affect microbial community structures and regulate carbon cycling. (A) Viruses infect microbial hosts and

invade and destroy microbial cells (lysis) leading to the direct release of carbon in dissolved organic matter (DOM). (B) After virus infection, gene transfer from the virus

(and/or previous host) previous host reprograms carbon metabolism. (C) Virus infection changes the magnitude of carbon inputs and changes microbial community

structure, e.g., “Killing the Winner” mechanism.

FIGURE 3 | Virus abundance within different ecosystems. Grayed and transparent areas represent virus abundance values in solid and liquid matrices, respectively. All

data in this figure were obtained through logarithms. CR, cropland; DE, Desert; FO, Forest; PA, Pasture; TU, Tundra; WE, Wetland; RI-S, River-Sediment; LA-S,

Lake-Sediment; MA-S, Marine-Sediment; CR-S, Cryoconite holes-Sediment; RI, River; LA, Lake; CO, Coastal; OF, Offshore; DE, Deep sea; IC, Ice; CR-W, Cryoconite

holes-Water. See Supplementary Table S3 for data sources.

ecosystems (59, 60). Water availability and temperature
control virus abundance in soils (40); desert soils have
the poorest virus abundance (4.7 × 104 gdw−1), while
forests and wetlands have the largest (4.9 × 108 gdw−1)
(Figure 3).

The abundance of phytoplankton hosts of viruses in rivers
and lakes is ∼4.8 × 107 L−1 and 3.5 × 107 L−1 (Figure 3),
respectively, which is frequently many times the magnitude of
resident bacterial abundance (42). Virus abundance in river
sediments is approximately 2.1 × 108 gdw−1, which is less than
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FIGURE 4 | Viruses are a “regulator” of the global ecosystem C cycle network. The gray arrows in the upper right corner of the diagram represent influence and the

red arrow represents regulation. The arrows show the roles that viruses play in the traditional food web, the “microbial loop” and the C cycle network of ecosystems.

Light green arrows represent the traditional food web, white arrows represent the microbial loop, white dotted arrows represent the contribution rate of C produced by

viral lysing of bacteria to the ecosystem DOC pool, and gray arrows represent the intersystem migration C process. Additionally, C reserves and the C exchange

volume are indicated in orange or yellow font. The schematic diagram of the freshwater ecosystem was similar to that of the marine ecosystem and is not shown

separately. The “microbial loop” is an important supplement to the classic food chain, wherein dissolved organic matter (DOM) is ingested by heterotrophic

“planktonic” bacteria during secondary production. These bacteria are then consumed by protozoa, copepods and other organisms, and eventually returned to the

classical food chain. DOM includes three categories according to biological availability: labile DOM (LDOM; ∼26 Gt C), semi-labile DOM (SLDOM; ∼50 Gt C) and

recalcitrant DOM (RDOM; ∼624 Gt C). All percentage values represent the flux of C fixed by primary producers (100%). See the Methods Section and

Supplementary Table S4 for data sources.

in lake sediments (4.2× 109 gdw−1) (Figure 3). Virus abundance
in rivers and lakes exhibit certain seasonal and spatial differences,
wherein the peak of abundance generally occurs in summer and
autumn (61). In wetland ecosystems, the average planktonic virus
abundance is 2.7× 1010 L−1, wherein corresponding abundances
during the rainy and dry seasons are 4.4× 1010 L−1 and 9.7× 109

L−1, respectively (62).
Virus abundance in marine ecosystems is > 1030 viruses,

accounting for 89.7% of all viruses (63) and is ∼108∼1011

L−1 in seawater. Compared to the seawater column, there are
less viruses in marine sediments (1.1 × 109 gdw−1) which
is similar to the amount in lake sediments, and both hold
more viruses than river sediments (Figure 3). There are more
than 5,000 virus species in every 100 L of seawater and up
to 1 million virus species per kilogram of marine sediment
(45); consequently, viruses contribute ∼94% of nucleic acid-
containing particles in ocean water (10). Viruses exist in all
marine environments, from shallow seas to deep oceans (64) and
from low-latitudinal eutrophic regions to polar sea ice (48, 65)

and their abundance is largest in the surface waters of tropical
and subtropical oceans and smallest in polar regions. Virus
abundance is least in the deep sea (5.2 × 108 L−1) and mid-
offshore surface waters (4.3 × 109 L−1) and greatest in coastal
waters (1.9× 1010 L−1) (Figure 3).

VIRAL IMPACTS ON ECOSYSTEM
CARBON CYCLES

By infecting and lysing microorganisms, viruses remove biomass
from the main food chain and convert particulate organic carbon
(POC) to dissolved organic carbon (DOC), forming a “viral
shunt” pathway (Figure 4) which accelerates the flow of energy
and carbon in the microbial loops of ecosystems (66–68). Most
DOC circulates several times within the bacteria-virus-DOC
cycle before being mineralized by the bacterial community,
reducing the potential for transfer to higher trophic levels (69).
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On land, DOC produced by viral lysis of bacteria contributes
∼2.6–12.6‰ to the soil DOC pool (excluding forest and desert;
to date, no studies have been published on bacterial mortality
caused by viral lysis in forest and desert soils) (Figure 4,
Supplementary Table S2). The scale at which viruses contribute
a regulatory carbon cycle function differs between terrestrial
ecosystems but is always important. Even in glacial ecosystems
where temperature maxima are < 0.1◦C, but that cover 15% of
the landmass of the planet, viral activity persists and is relatively
large in conditions that otherwise suppress most biological
activity (70). In the four terrestrial ecosystems of Wetland,
Cropland, Pasture and Tundra, viral lysis in tundra ecosystems
contributed the most to soil DOC, producing carbon emissions
of 927.1–4202.3mg C·kg−1 and accounting for 2.9–22.2‰ of
the total DOC pool, and least in wetland ecosystems, causing
carbon emissions of 273.5–968.4mg C·kg−1 and contributing
0.8–4.4‰ to the DOC pool (Supplementary Table S2). The
reasons for the difference between terrestrial ecosystems are
related to the potential for survival of viruses, and depends on
the availability of appropriate hosts and, therefore, the factors
controlling their community dynamics, e.g., water, temperature,
carbon and nutrient availability (71), and management.

Viruses play an important role in the ecological regulation
of lake carbon cycling processes, particularly in the flow and
re-assimilation of organic carbon produced by bacterial lysis.
In lake ecosystems, the mortality rate of bacteria caused by
viral lysis ranges from 2.5 to 74.0%, which is larger than
that caused by grazing by flagellates in certain lakes (72). The
carbon emissions caused by this process range from 6.7 to 196.8
µg C·L−1, which account for 0.7–61.5‰ of the total DOC
pool (Supplementary Table S2). In eutrophic lakes,∼29–79% of
organic carbon may be reused and recycled within the bacterial-
bacteriophage-DOC cycle (73). However, host mortality caused
by viral lysis is larger in oligotrophic freshwater ecosystems and
carbon release and recycling plays a critical role in microbial
survival (74). Thus, in regions where the proportion of bacteria
infected by virus is significantly larger, virusesmay be the primary
ecosystem regulators. In low-productivity freshwater ecosystems
dominated by microorganisms (such as lakes in polar and high
latitudinal regions), the microbial loop is the main flow pathway
of energy and carbon (75, 76). For example, the carbon released
by viral lysis is themainDOC source (60%) for lakes in Antarctica
(77). Furthermore, the relative contribution of viral lysis to the
DOC pool varies seasonally in polar and alpine regions where the
rates in winter may be far greater (60%) compared to summer
rates (<20%) (67). By comparison, in fluvial systems around one-
third (33.6%, corresponding to 0.6 Pg C yr−1) of globally-respired
carbon may pass through a viral loop (78). The proportion of
bacterial mortality caused by viral lysis in rivers is 0.8–17.9%,
emitting 2.1–47.6 µg C·L−1 and accounting for 0.4–8.4‰ of the
total DOC pool.

In marine ecosystems, ∼25% of ocean surface primary
productivity passes through the “viral shunt” pathway (Figure 4),
which results in the rapid circulation of DOC via an increase in
community respiration and a 33% decrease in carbon transfer
into higher trophic levels (79, 80). This mechanism promotes
carbon use efficiency and maintains sufficient carbon in surface

seawater and thus allows for greater oxidation (Figure 4), thereby
regulating marine carbon cycles (81) within the largest C
pool (82, 83). Here, phytoplankton, bacteria and other ocean
microorganisms are the main contributors to DOC (84, 85) and
between 6 and 26% of primary production enters the DOC pool
via viral-induced lysis (Figure 4).

Viral lysis of bacteria has obvious spatial characteristics
within different ocean environments. In offshore waters, viral
lysis causes the release of 0.2–3.2 µg C·L−1, which accounts
for 0.3–4.0‰ of the total organic carbon pool, while the
release of carbon in coastal waters is 0.5–3.4 µg C·L−1

(Supplementary Table S2). Most DOC produced by viral-
induced marine lysis is reincorporated by heterotrophic bacteria
as POC via the microbial loop, with the remainder as DOC (8–
42% in coastal waters and 6.8–25.0% in offshore waters). In deep
sea sediments, both viral infections and lysis can lead to the death
of> 80% of prokaryotes (or even 100%whenwater depth exceeds
1,000m) (84), releasing a large amount of DOC into the deep sea,
which significantly narrows the food chain and hastens organic
carbon recycling. Overall, viruses boost primary production and
sequestration in the deep ocean by helping to maintain nutrients
in surface waters that are accessible to sunlight.

INTERACTIONS BETWEEN VIRUSES,
ANTHROPOGENIC ACTIVITY AND
CLIMATE CHANGE

The changing relationships between humans and their
environment due to population increase and consumption
of natural resources tend to closer proximity between humans,
between humans and other species, and between humans and
environmental virus pools, intensifying the potential for the
spread of viral infection (Figure 5). From 2000 to 2016, the
average human death rate caused by viruses was ∼2.6 × 108

people per year, accounting for 12.9% of the total global annual
death rate (Supplementary Table S5).

Human activity, including urban expansion, biological
resource utilization and viral disease control measures, changes
the distribution and activity of viruses (14). Fluctuations or
changes in the regulatory state of viruses may subsequently
impact human welfare. For example, human viral disease,
including HIV/AIDS, measles, encephalitis, hepatitis and lower
and upper respiratory infections (37), are more frequent during
periods of social unrest and armed conflict (Figure 1). Indirect
effects of human activity on viruses include environmental
pollutants, such as chemical fertilizers (86), pesticides (87) and
heavy metals (88), that have diverse effects on virus dynamics
(89). The expansion of crop irrigation and the international trade
in plant products promote favorable conditions for widespread
outbreaks and destructive viral epidemics (6).

Shifting global weather patterns caused by climate change
affect the spread of viruses among people and vary between
ecosystems and geographical regions (6), altering the frequency
of severe epidemics (90). Increasing temperature, extreme
precipitation events and droughts caused by climate change may
facilitate the spread of viruses (91–94), including the release
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FIGURE 5 | The outbreak time, location and death toll of all viral epidemics on record. See Supplementary Table S1 for detailed information.

of viruses that have been stored for many millennia into the
meltwaters of retreating glaciers (95). However, climate change
may also reduce the incidence of viral disease; for example,
an increase in temperature can enhance enzyme activities,
promoting the degradation of viral capsid proteins (96).

The direct effects of the increasing incidence of human
viral disease on the carbon cycle is becoming clear through
our collective experience during the current global COVID-
19 pandemic. Alteration of human behavior enforced by
policy to reduce the risk of viral infection, such as self-
isolation, reduced travel and employment deferment, have
caused decreased global C emissions by −17 (ranging from
−11 to −25) Mt CO2 d−1, a reduction of 27 to 14%
compared to the 2019 mean emission level (20, 97–99).
This immediate pandemic-driven response has unintentionally
proven the potential of national policy to make a significant
impact on the global carbon cycle. A managed reduction of
greenhouse gas emissions to avoid global warming of 0.3◦C
by reducing 30–40 Gt fossil fuel CO2 emissions (22) appears
to be achievable if long-term national socioeconomic polices
are implemented.

Human well-being is threatened by insidious changes
in viral epidemiology and climate change caused by
anthropogenic activity. The global relationships between
virus pandemics, global warming and human behavior
is complex, but the overriding trend is toward the
acceleration of the spread and reproduction of viruses,
which may in turn accelerate the global carbon cycle.
Overall, the prediction of virus regulation feedbacks in the
Anthropocene must improve to provide theoretical and
practical support that promotes the harmonious coexistence
of humans and viruses as well as the stability and health of
ecosystems globally.

UNSEEN IMPACTS OF COVID-19 ON
GLOBAL CO2 EMISSIONS

Historically, climate change and large-scale and sudden
disasters have affected the survival and development of human
societies, even triggering the rapid demise of great dynasties
(100). Progressive growth of the global population enabled
by technological progress has deepened the penetration of
human activities into “ecosystem Earth” (101). Emerging
interrelationships between climate change, anthropogenic
activity and material cycles have been established. The
intensification of globalization and global climate change since
the beginning of the 20th century have co-occurred with the
increased frequency of ecological catastrophes including human-
and animal-borne diseases, biosecurity threats and super pests,
and “natural disasters” such as extreme temperatures, large-
scale forest fires, floods and droughts (Figure 6). Pressure on
natural systems to meet increasing human demand for food and
other animal products is driving increased emissions of CO2

[currently 26% (102)]. Observed changes in the relationship
between people and the wider food web during the COVID-19
pandemic presents opportunities to alter future trajectories of
CO2 emission from this source.

During 2020, restrictive policies on human activity imposed
in response to the spread of COVID-19 in many countries and
states across the world have seriously impacted the performance
of global markets, leading to building pressure within national
governments to release restrictions on human activity to support
economic recovery. However, a beneficial by-product of the
restrictive policies is a significant reduction in short-term carbon
emissions caused by the change in human behavior (20, 22, 98),
leading to calls for governments to use this opportunity to
formulate and implement Green Economic Recovery policies
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FIGURE 6 | Global reported natural disasters by type for 1970–2019 (https://ourworldindata.org/natural-disasters) (A) and the impact of the COVID-19 pandemic on

carbon emissions (B). Proposed omissions in carbon emissions related to the food web are described within the area of gray shading. The red roman numerals I-IV

correspond to estimation omissions described in the text. The red arrows outside the gray shaded area represent feedbacks and interactions within the virus-climate

change-anthropogenic activity-carbon cycle continuum. “+” indicates that the component is promoted and “-” indicates that the component is weakened. The values

in brackets are range in daily fossil CO2 emission on 7 April 2020 compared to mean daily 2019 levels 5, unit: MtCO2 day−1.

with the potential to reduce global warming to rates within
planetary boundaries (22). Climate-related disasters this year

(such as storms in Fiji, flooding in the middle and lower reaches
of the Yangtze River in China, droughts in southern African, and
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bushfires in Australia and California in the United States) and
the epidemic are intertwined (99). Poor human health, caused
by exposure to the consequences of climate-driven disasters
and other human-driven stressors of ecosystems, promotes
susceptibility to COVID-19 infection; for example, lung disease
due to increases in PM2.5 caused by industrial air pollution
(103) and wildfires. Balancing appropriate responses to these
interdependent phenomena poses a tremendous policy challenge
because of the growing recognition of feedbacks and interactions
between the spread and severity of the virus, anthropogenic
activity, the carbon cycle and climate change.

Global “black swan” events such as infectious disease
outbreaks can alter carbon emissions over the short-term
and may potentially affect the carbon balance of the Earth’s
ecosystems over the long-term. Viruses play key roles in
regulating ecosystem carbon cycling processes by impacting
material cycles and energy flows in the food web and the
microbial loop that regulates CO2 emissions from organic matter
decomposition, under the influence of anthropogenic activity
and climate change. Thus, sudden and large-scale viral outbreaks
function as “regulators” of the global carbon cycle with the
potential to rapidly sever the world’s ecosystem carbon balance
over a short timeframe (104). We are actively witnessing the
importance of the COVID-19 pandemic as a factor in the
reduction of anthropogenic-driven short-term carbon emissions,
but are unable to yet comprehend the potentially far-reaching and
longer-term impacts on carbon emissions from the entire food
web, a factor which has not been taken into account in recent
carbon emission estimation studies. Therefore, we propose that
major estimation omissions have been made to actual carbon
emission changes and the climate effects that these changes
engender, that are created by human responses to the COVID-
19 pandemic.

We propose that the reduction in emissions could be
moderated via direct and indirect impacts on the economic
activities of human society, particularly the consumption of
animals as food or for leisure activity (Figure 1B). Potential
unaccounted estimation omissions during the COVID-19
pandemic include:

(I) A halt in tourism and the withdrawal of labor from nature
reserves have led to an increase in wildlife poaching [for example,
recent rhino horn poaching incidents in India (105) and raptors
and fish in Europe (106)] and financial crises in zoos and wildlife
rehabilitation centers threaten the survival of species important
for ecotourism, including orangutans in Borneo (107).

(II) Shrinking fresh food markets selling farmed and wild
animal products in some regions including China and Africa
(108), have led to a decrease in the legal capture of wild
aquatic and terrestrial animals, with the fishing industry most
affected (109); whilst direct sales of fresh produce from farms
has increased as western consumers seek local and traceable
food options (110). Globally, the pandemic has disrupted the
food supply chain system. Disruptions in food markets and
workforces are causing a doubling of people facing severe hunger
and huge amounts of land, fertilizer, energy and water being
wasted. Among them, food waste has increased from about 8%
of global anthropogenic greenhouse gas emissions to a larger

proportion. In India, migrant workers are confined to their home
villages, leaving fresh fruit unpicked and rotting in the fields. In
the United States, the embodied carbon footprint of livestock
and dairy losses have reached at least 7.1 MtCO2e. In the EU,
the carbon footprint of potato waste (one of the lowest carbon
footprint foods) comes to 0.5 MtCO2e (111).

(III) The global economic slowdown has decreased demand
for industrially-produced commodities, thereby reducing direct
environmental pressure (112); however, the decline in centralized
management of protected areas may lead to higher rates of
unlawful resource exploitation, such as illegal logging that causes
the emission of previously sequestered carbon from standing
biomass and degraded soils (113).

(IV) In economically deprived regions, spikes in
unemployment and the loss of family income have increased the
dependency on local natural resources for wild sources of food
and fuel, and the increased exploitation of marginal lands for
agriculture, increasing risks to ecosystem integrity associated
with habitat and biodiversity loss (112, 114).

The prolonged economic downturn caused by the COVID-
19 pandemic and resulting series of policy decisions during
recovery may have a more profound and lasting impact on
carbon emissions (21). We identified two dominant factors
linked to changes in global carbon emissions caused by the
COVID-19 pandemic, (1) the widely acknowledged reduction
in carbon emissions through the sudden decline in fossil
fuel use caused by a decrease in anthropogenic activity,
and (2) the less well-documented change in carbon emission
rates caused by the cumulative impact of altered human
behavior propagating through the food web. We hypothesize
that the net effect of these two factors on the environment
is comparable to the effect of human population decrease
because the degree of human intervention in the ecological
environment during the viral outbreak is reduced, which is
similar to the impact of population decline. In other words, a
proportion of the reduction in overall carbon emissions is due
to Earth ecosystem compensation and feedback mechanisms,
resulting in a longer-term slowdown in carbon emissions than
estimated through traditional methods. However, as we have
described, the balance between promoting or reducing CO2

emissions for the long term depends on the policy-driven
encouragement of altered patterns of human consumption
that reduce pressure on the natural environment via the
food web.

CONCLUSION

Human well-being is threatened by insidious changes in viral
epidemiology and climate change caused by anthropogenic
activity. The global relationships between virus pandemics, global
warming and human behavior is complex, but the overriding
trend is toward the acceleration of the spread and reproduction
of viruses, which may in turn accelerate the global carbon
cycle. Overall, the prediction of virus regulation feedbacks in
the Anthropocene must improve to provide theoretical and
practical support that promotes the harmonious coexistence
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of humans and viruses as well as the stability and health of
ecosystems globally.

The maintenance of Earth ecosystem integrity is crucial
for the future sustainability of human society. COVID-19
has provided us with insight into the capability of people
to effect change collaboratively in the face of a common
threat. Post-pandemic, due to lags in feedback systems, the
indirect effects of a short-term reduction in anthropogenic
activities will gradually and distinctly manifest after lockdown
restrictions are lifted, potentially altering the status of the
carbon cycle balance of Earth’s ecosystems for the long-
term. Therefore, it is essential to secure a full comprehension
of the role that virus plays in global carbon cycling to
aid efforts to obtain more accurate measurements of actual
carbon emissions.

During the formulation of COVID-19 economic recovery
policies, policymakers must look beyond direct changes to
carbon emissions to the role and contribution of indirect
changes in carbon emissions. Critically, there is an urgent
need for research to establish how changes in anthropogenic
activities resonate through the food web and their consequent
expression as indirect contributions to carbon emissions. This
will allow for a more comprehensive and accurate platform
from which to judge overall ecosystem carbon emissions.
Globalization, urbanization and climate change are driving
increases in human connectivity making future global viral
epidemics inevitable. In response, we must attend to issues
related to maintaining ecosystem integrity to inform appropriate
policy responses through a detailed understanding of impacts
and feedbacks within the climate change-anthropogenic activity-
carbon cycle continuum.
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