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This review addresses the develop-
mental roles of two GTPases of

the Rho family, RhoV/Chp and RhoU/
Wrch. These two GTPases form a
distinct subfamily related to Rac and
Cdc42 proteins and were detected in a
screen for Rho members that are particu-
larly expressed in the neural crest, an
embryonic tissue peculiar to vertebrates.
The neural crest represents a physio-
logical model of normal epithelial to
mesenchymal transition (EMT), in which
epithelial cells at the border of neural
and non-neural ectoderm differentiate,
lose their intercellular connections and
migrate throughout the embryo. We
showed that RhoV, transiently induced
by the canonical Wnt pathway, is
required for the full differentiation of
neural crest cells, while RhoU, induced
later by the non-canonical Wnt pathway,
is necessary for the migration process.
These two GTPases, which are highly
conserved across vertebrates, are thus
tightly functionally linked to Wnt signal-
ing, whose implication in embryonic
development and cancer progression is
well established. In the light of the recent
literature, we discuss how RhoV and
RhoU may achieve their physiological
functions.

Introduction

Development of the Neural Crest (NC) is
probably the most dramatic morphoge-
netic event of vertebrate embryogenesis.
Originating at the boundary between
neural and non-neural ectoderm, NC cells

differentiate in response to complex induc-
tive cues emanating from the surrounding
tissues.1 At this early stage, NC cells
express a set of transcription factors, such
as Snai1/Snail, Snai2/Slug or Twist, which
are known for their pro-invasive activi-
ties in stem cells and cancer cells.2 After
commitment (specification stage), NC
cells migrate throughout the embryo and
differentiate to form a broad range of
terminal derivatives, including pigment
cells, craniofacial skeleton, cartilage, neu-
rons or glia of the peripheral nervous
system.3 Among the morphogens required
for proper NC development, BMP, FGF,
Notch and canonical Wnt pathways have
prominent roles in NC induction, while
non-canonical Wnt is required for NC
migration.4,5 Prior to migration, NC cells
undergo a delamination phase, character-
ized by the loss of epithelial adherens
junctions and the acquisition of invasive
properties. This developmental process,
known as epithelial to mesenchymal trans-
ition (EMT), has been proposed to mimic
very early events of malignant progression,
in which adherent adenoma cells switch to
an invasive carcinoma phenotype.6

Because of their impact on adhesion
and migration dynamics of many cell
types,7 GTPases of the Rho family were
suspected to be involved in NC cell
dynamics, and several studies pointed to
a role of the major Rho family members
Rho and Rac1 in NC formation in the
Xenopus embryo.8-10 Xenopus represents
a model of choice for experimental
embryology, mostly because of its rapid
embryonic development and the large size
of its eggs, which makes them amenable
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to microinjection and microdissection.
Another major advantage of this model is
the possibility of manipulating just one
side of the embryo, while the other side
serves as an internal control of devel-
opment. Xenopus is also ideal because it
contains orthologs for 18 of the 20 Rho
family members found in placentals.11 We
performed a comprehensive in situ hybrid-
ization screen to identify Rho members
that are preferentially expressed in NC.
Apart from RhoB and Rnd1, we identified
RhoV/Chp and RhoU/Wrch, as being
expressed sequentially at distinct NC
developmental stages.12,13

RhoV and RhoU form an ancient Rho
subfamily related to Rac1 and Cdc42
GTPases.11 RhoV and RhoU are atypical
in this family as they display a high
intrinsic guanine nucleotide exchange
activity and are thus thought to be
constitutively active whenever they are
expressed.14,15 In keeping with their spon-
taneous activation, they are expressed at
very low levels (in particular RhoV) in
various tissues and organs.11 Furthermore,
they are palmitoylated and not prenylated
like most Rho members, suggesting that
they act at distinct subcellular locations,16

and they contain additional N-terminal
and C-terminal extensions, critical for
their activities.15,16 Despite the knowledge
of their biochemical properties, little was
known about the physiological function
of these two GTPases, and the work we
performed on Xenopus embryos unveiled
their roles in NC development.

RhoV

RhoV is induced in the prospective NC
territory as a canonical Wnt response
gene, expressed as early as Snai1.13 RhoV
induction in response to Wnt is inde-
pendent of Snai1, since expression of a
dominant negative Snai1 mutant in Wnt1-
treated embryos did not impair RhoV
expression, whereas it blocked the sub-
sequent induction of the Snai2 or Sox9
genes (unpublished data). RhoV expres-
sion is transient and is no longer detected
at the migration stage. RhoV knockdown
by antisense morpholino injection per-
turbs NC differentiation: while having
no effect on the early Snai1 expression, it
impaired induction of the Snai2, Twist

or Sox9 genes. Consequently, NC-derived
cranial structures are strongly inhibited
in morphant embryos. Conversely, RhoV
overexpression expands the NC territory
and increases the expression of Snai1,
Snai2 and Twist, indicating that RhoV
feeds positively the canonical Wnt path-
way. RhoV was shown to activate PAK1,17

a member of a family of versatile kinases
involved in cell migration and invasion.18

PAK1 itself can phosphorylate and activate
Snai1.19 Since Snai1 activity is critical for
NC induction,20 RhoV might thus par-
ticipate in the propagation and amplifica-
tion of the canonical Wnt pathway. This
probably relies on its activity on cell
adhesion, as recently shown in the zebra-
fish embryo, wherein RhoV is required for
proper localization of E-cadherin and
β-catenin at adherens junctions.21 Along
the same line, we observed that the neural
plate was expanded upon RhoV inhibition
and restricted upon moderate RhoV over-
expression. This supports a role of RhoV
in cell motility since folding of the neural
plate is sensitive to the medial migration of
NC cells.22

RhoU

As a non-canonical Wnt response
gene,23,24 RhoU was expected to be
involved in NC cell migration5 and its
expression was indeed detected only from
the migration stage in NC cells. RhoU
depletion impaired NC migration and the
subsequent formation of craniofacial carti-
lages.12 NC cells from RhoU-depleted
explants adopted a rounded phenotype
and showed reduced adhesion to the sub-
strate. Intriguingly, these effects are in
contradiction with the increased density
of integrin-dependent adhesive structures
observed in RhoU-silenced mammalian
cells.25,26 Moderate RhoU overexpression
also inhibited NC cell migration but with
a distinct mechanism; RhoU-expressing
explants readily adhered to the substrate
and migratory NC cells scattered at an
even higher rate than control cells.
However, instead of being polarized, the
scattering was isotropic and the persist-
ence of NC cells migration was reduced,
indicative of a defect in sensing polarity
cues. Overall, these experiments suggest
that RhoU controls NC migration

through the regulation of polarized cell
adhesion.

RhoV and RhoU Signaling
in NC Development

Although the signaling pathways used by
the two GTPases in NC cells remain to
be fully determined, several candidates
have emerged from the recent literature
(Fig. 1). RhoU was shown to associate
with EGFR in a Grb2-dependent manner
and mediate changes in cell adhesion and
migration.27 Grb228 and EGFR29,30 were
themselves described as critical for NC
adhesion, migration and late differenti-
ation. Another potent RhoU regulator is
Src, which can phosphorylate RhoU at its
C-terminus thereby modifying its subcel-
lular location.31 Src and its substrate Tks5
are also required for NC migration in
zebrafish development.32 Several effectors
have been identified for RhoV and
RhoU,33 in particular PAKs. PAK1 and
PAK2 are expressed in migrating NC
cells and indeed their activation or inhibi-
tion mimicked the phenotypes observed
upon RhoU expression and depletion,
respectively.12 The proline-rich tyrosine
kinase Pyk2 may also mediate RhoU
activity in NC cell migration; indeed
Pyk2 interacts with RhoU and the two
partners cooperate with Src in cytoskeletal
dynamics.34 Furthermore, Pyk2 activation
triggers EGFR signaling and epithelial cell
motility during wound healing.35 Last,
RhoU might control polarized migration
through interaction with Par6,33,36 a RhoU
and Cdc42 partner required for Cdc42-
dependent cell polarity.37

Specific Roles of RhoV and RhoU
in NC Development

The specific roles of RhoV and RhoU in
NC development remain to be deter-
mined. RhoU can rescue RhoV deple-
tion,13 while the reverse is not true.12

Thus RhoU in NC might exert the
same functions as RhoV does, plus other
functions probably linked to its specific
domain; RhoU contains an SH3-binding
proline-rich region in its NH2 terminus,
that is responsible for its binding to
Grb2.15 Another difference between the
two proteins is the tyrosine that is
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position 254 in RhoU31 but absent in
RhoV. Given the functional differences
between the two GTPases, one can thus
propose that RhoV, induced early by the
canonical Wnt pathway, initiates the cel-
lular effects necessary for NC formation.
These effects are then prolonged by RhoU
which is induced later by the non-
canonical Wnt pathway and which in
addition triggers migration by interacting
with partners through its SH3-binding
domain. Two clues nevertheless suggest
that RhoV may also have specific prop-
erties not held by RhoU: (1) in the
Xenopus embryo, RhoV mRNA is no
longer detected in migrating cells,13 indic-
ating the presence of an active shutdown
mechanism; (2) the RhoV protein displays
an extremely high turnover in mammalian
cells (unpublished data), suggesting that its
activity is tightly controlled. This strongly
suggests that RhoV must not be expressed
during migration, which therefore suggests
that RhoU cannot substitute for all
activities of RhoV.

The sequential expression of the two
GTPases may therefore be envisioned as
follows (Fig. 1): as a canonical Wnt res-
ponse gene, RhoV cooperates with Snai1
in the induction of NC-specific markers
and is probably responsible for disrupting
epithelial junctions and modifying cell
polarity, potentially through its binding
to Par6, as proposed for RhoU in MDCK
cells.36 Disruption of cell-cell contacts
might then activate the non-canonical
Wnt pathway37 and therefore RhoU
expression, which in turn could promote
polarized cell migration through its SH3-
binding domain.

Concluding Remarks

In conclusion, functional analysis of RhoV
and RhoU in the Xenopus embryo has
revealed their specific roles during deve-
lopment of the neural crest. Although the
‘big three’ GTPases (RhoA, Rac1 and
Cdc42) have already been implicated in
Wnt signaling, mostly in non-canonical
pathways,38,39 recent literature showed

that the conditional invalidation of Rac1
or Cdc42 in mouse NC only induced
mitotic and survival defects in post-
migratory NC cells. This excludes a role
for Rac1 and Cdc42 at early stages of
NC development, i.e., in the specifica-
tion, EMT and migration stages.40,41 This
further emphasizes the unique roles of
RhoV and RhoU in the high dynamics
of this embryonic tissue. Moreover, due
to their sensitivity to canonical and non-
canonical Wnt pathways, these two
GTPases might well take a significant
contribution in Wnt-related pathologies,
in particular tumorigenesis.42
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Figure 1. Demonstrated and putative roles of RhoV and RhoU in the developing neural crest. At specification stage, RhoV is induced early by the Wnt
canonical pathway (via GSK3β/β−catenin). RhoV exhibits N-terminal and C-terminal extensions (dark gray boxes) required for its activity and are located
through palmitoylation at the plasma membrane (PM) and vesicles. RhoV and Snai1 cooperate for the induction of snai2, sox9 and twist, required for EMT.
This may be mediated through enhanced PAK activity, shown to phosphorylate and enhance Snai1 transcriptional activity. RhoV might also disrupt NC
cell adhesion through Par6 activation. During EMT, RhoV expression is shutdown while the non-canonical Wnt pathway induces RhoU. RhoU also exhibits
N-terminal and C-terminal extensions, which contain an SH3-binding domain (white box) and a tyrosine phosphorylated by Src (Y254). RhoU is located at
PM, vesicles and focal adhesions (FA). RhoU is involved in NC cell adhesion and migration in a PAK-dependent pathway. RhoU is also required for NC
polarity—potentially through its interaction with Par6—and may participate in directional migration by regulating focal adhesion turnover through
interaction with Grb2 or Pyk2 and through phosphorylation by Src. Question marks indicate pathways or interactions not yet validated in NC.
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