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Abstract: Mesenchymal stem cells (MSC) are involved in the regeneration of various missing or
compromised periodontal tissues, including bone. MSC-derived conditioned medium (CM) has
recently been explored as a favorable surrogate for stem cell therapy, as it is capable of producing
comparable therapeutic effects. This study aimed to evaluate the influence of periodontal ligament
stem cells (PDLSC)-CM on osteoblasts (OB) and its potential as a therapeutic tool for periodontal
regeneration. Human PDLSC were isolated and characterized, and CM from these cells was collected.
The presence of exosomes in the culture supernatant was observed by immunofluorescence and by
transmission electron microscopy. CM was added to a cultured osteoblastic cell line (Saos-2 cells)
and viability (MTT assay) and gene expression analysis (real-time PCR) were examined. A cell line
derived from the periodontal ligament and showing all the characteristics of MSC was successfully
isolated and characterized. The addition of PDLSC-CM to Saos-2 cells led to an enhancement of
their proliferation and an increased expression of some osteoblastic differentiation markers, but this
differentiation was not complete. Saos-2 cells were involved in the initial inflammation process by
releasing IL-6 and activating COX2. The effects of PDLSC-CM on Saos-2 appear to arise from a
cumulative effect of different effective components rather than a few factors present at high levels.

Keywords: mesenchymal stem cells; conditioned medium; exosomes; osteoblasts; periodontal
regeneration; bone regeneration

1. Introduction

Periodontitis is a bacterially-induced chronic inflammatory disease of the periodon-
tium [1]. The accumulation of dental plaque microorganisms can result in the progressive
and irreversible destruction of tooth-supporting tissues, including gingiva, periodontal
ligament, cementum, and alveolar bone. This disease causes loss of bone and soft tissue
attachment and can lead to dental mobility. If left untreated, periodontitis can result in pre-
mature tooth loss [2]. Regeneration of periodontal tissues is the ultimate goal of periodontal
treatment [1]. Conventional nonsurgical or surgical treatment can arrest and treat the peri-
odontal disease [3]. However, complete and functional periodontal regeneration cannot be
fully achieved with current therapeutic approaches and is still a clinical challenge [4].

In recent years, extensive research has been carried out on the therapeutic efficacy
of mesenchymal stem cells (MSC). They have been shown to play a major role in bone
repair, thanks to their unique capabilities of self-renewal and differentiation. They therefore
appear to be a promising candidate for bone tissue engineering. MSC can be isolated from
a wide range of tissues. Bone marrow and adipose MSC were first widely explored, but
soon technical limitations led the research teams to seek an alternative source of MSC,
among them dental tissues [5]. Dental MSC have several advantages over other stem
cells: easy isolation by noninvasive routine clinical procedures (e.g., extraction of third

Pharmaceutics 2022, 14, 729. https://doi.org/10.3390/pharmaceutics14040729 https://www.mdpi.com/journal/pharmaceutics

https://doi.org/10.3390/pharmaceutics14040729
https://doi.org/10.3390/pharmaceutics14040729
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/pharmaceutics
https://www.mdpi.com
https://orcid.org/0000-0002-2206-8300
https://doi.org/10.3390/pharmaceutics14040729
https://www.mdpi.com/journal/pharmaceutics
https://www.mdpi.com/article/10.3390/pharmaceutics14040729?type=check_update&version=2


Pharmaceutics 2022, 14, 729 2 of 17

molars) and so a limited morbidity; a higher proliferation rate; an increased survival
in culture with a delayed senescence process compared to bone marrow MSC and the
absence, to date, of major adverse reactions [6,7]. The use of dental MSC has shown
therapeutic benefits in many medical fields: amelioration of ischemic tissue injury and
acceleration of functional recovery after ischemic stroke [8], promotion of angiogenesis
and vasculogenesis [9], prevention of the progression of liver fibrosis and contribution of
the restoration of liver function [10], or even reconstruction of the corneal epithelium [11].
Transplantation of periodontal ligament stem cells (PDLSC) has enhanced periodontal
regeneration in animal models [12,13], and human clinical trials are currently underway.
The first results show that there may be a positive impact of MSC-based therapy on
periodontal regeneration [3].

However, the literature reveals that the effects of MSC in tissue engineering is largely
related to a paracrine action by the secretion of various factors, such as growth factors,
cytokines, chemokines, enzymes, or extracellular vesicles that include exosomes [14–16].
Moreover, transplanted MSC do not survive for a long time, and the engraftment is limited.
Since then, a growing number of studies have focused on the conditioned medium (CM) of
mesenchymal stem cells and its therapeutic potential [17–20]. The therapeutic outcomes
of MSC could be duplicated by MSC-CM that contains the secretome of the cells, while
circumventing the limitations associated with stem cell therapy [5,21,22].

Based on this information, we hypothesized that transplantation of paracrine factors
from PDLSC could induce bone regeneration and play a role in the regeneration of peri-
odontal tissues. This can involve MSC that differentiate into osteoblasts (OB) or primary
OB. We decided to study the effects and interactions of PDLSC-CM on an osteoblastic
cell line: Saos-2 cells. These cells possess a high biomineralization capacity, and their
ability to deposit a mineralization-competent extracellular matrix makes them as a valuable
candidate for studying the stage of differentiation into OB [23]. Markers of osteogenesis,
angiogenesis and inflammation, key events to address during periodontal regeneration,
were investigated, as well as heat shock proteins (HSP), proteins synthesized in response
to a variety of stresses, such as inflammation, microbial infection, diseases, or variations
in temperature or pH [24,25]. It has been shown, for example, that the temperature in
inflamed periodontal pockets is higher than that in healthy sites [26]. It is well known
that pro-inflammatory cytokines, such as IL-1, TNF-α and INF-γ, are produced in peri-
odontitis and these cytokines could cause an elevation of the levels of HSP in the inflamed
periodontium [24,25]. HSP are grouped into families according to their molecular weight:
HSP60 (60-kDa HSP), HSP70, HSP90, etc., and act as molecular chaperones to protect cells
from abnormal conditions [25,26]. They exert potent intercellular signaling activities with
properties similar to those of both pro- and anti-inflammatory cytokines, and they have
recently been proposed as useful biomarkers [27].

This study aimed to evaluate the influence of PDLSC-CM on Saos-2 cells and its
potential as a therapeutic tool for periodontal regeneration.

2. Materials and Methods

Three independent experiments were performed for each condition.

2.1. Human Periodontal Ligament Stem Cells
2.1.1. Isolation and Culture

Human Periodontal Ligament Stem Cells (hPDLSC) were obtained using the ex-
plant outgrowth method. Impacted third molars were collected from a healthy donor
in agreement with French legislation (informed patients and Institutional Review Board
approval/Registration number: DC-2012-1573) and stored at 4 ◦C in Dulbecco’s modi-
fied Eagle’s medium (DMEM, Lonza, Verviers, Belgium) supplemented with antibiotics
(100 U/mL penicillin, 100 µg/mL streptomycin, Lonza, Verviers, Belgium), antifungal
(5 µg/mL amphotericin B, Lonza, Verviers, Belgium), and 20 mmol/L HEPES (Lonza,
Verviers, Belgium). The periodontal ligament was removed from the teeth aseptically,
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rinsed with DMEM, and explanted in a 35-mm Petri dish at 7–8 small pieces/well (≈1 mm3).
Explants were grown in a complete culture medium composed of DMEM supplemented
with 10% fetal bovine serum (FBS, Gibco, Life Technologies, Paisley, UK), 2 mmol/L
glutamine (Lonza, Verviers, Belgium), 20 mmol/L HEPES, and antibiotics (100 U/mL
penicillin, 100 µg/mL streptomycin) until human periodontal ligament cells emerged from
the explant. These cultures were maintained at 37 ◦C in a humidified atmosphere of 5%
CO2. Cells were used from passage 3 to 7.

2.1.2. Characterization
Phenotypic Characterization by Flow Cytometry

Flow cytometric analysis was performed for immunophenotypic characterization.
After washing with phosphate buffer saline (PBS) (Lonza, Verviers, Belgium), the cell
pellet was centrifuged for 5 min at 300 g. The cells were incubated with BV421 mouse
anti-human CD34, FITC mouse anti-human CD45, PE mouse anti-human CD73, PE-Cy7
mouse anti-human CD90, and APC mouse anti-human CD105 for 15 min at room tem-
perature (RT). After incubation, the cells were washed with PBS for further analysis. The
expression profiles were examined using a BD LSRFortessa™ X-20 flow cytometer system
(BD Biosciences, San Jose, CA, USA). Antibodies and buffers were purchased from BD
Biosciences (San Jose, CA, USA).

Functional Characterization

Colony-Forming Assay
Cells were seeded at a density of 500 cells/well in 6-well plates and cultured in

complete medium. After 10 days, they were stained with 0.5% crystal violet in methanol
100% for 5 min and washed with distilled water [28]. The colonies were then observed.

Osteogenic Induction
To assess OB differentiation potential, cells were seeded at a concentration of

0.5 × 105 cells/mL in 6-well plates in complete medium. After 24 h, the medium was
switched to an osteoinductive medium consisting of complete medium supplemented
with 50 µg/mL of ascorbic acid (Sigma-Aldrich A4403, Saint-Louis, MO, USA), 10 mM of
β-glycerophosphate (Sigma-Aldrich G9422, Saint-Louis, MO, USA), and 100 nM of dexam-
ethasone (Sigma-Aldrich D4902, Saint-Louis, MO, USA). The medium was changed every
2 or 3 days. After 21 days, cells were stained with 40 mM Alizarin Red solution (Sigma-
Aldrich A5533, Saint-Louis, MO, USA) for 20 min at RT and washed with distilled water.

Adipogenic Induction
For adipogenesis experiments, cells were seeded at a concentration of

0.5 × 105 cells/mL in 6-well plates in complete medium. After 24 h, the medium was
switched to an adipocyte differentiation medium consisting of complete medium supple-
mented with 100 µM indomethacin (Sigma-Aldrich I7378, Saint-Louis, MO, USA), 0.5 mM
3-isobutyl-1-methylxanthine (Sigma-Aldrich I5879, Saint-Louis, MO, USA), 1µM dexam-
ethasone (Sigma-Aldrich D4902, Saint-Louis, MO, USA), and 1 µM insulin (Sigma-Aldrich
I1882, Saint-Louis, MO, USA). Medium was changed every 2 or 3 days. After 21 days,
cells were stained with Oil Red O solution diluted at 60% in distilled water (Sigma-Aldrich
O1391, Saint-Louis, MO, USA) for 30 min at RT and washed with distilled water.

2.1.3. Exosomes
Isolation

hPDLSC were cultured in 75 cm2 flasks in complete DMEM. When reaching 70% con-
fluency, the culture medium was switched to serum-free DMEM. Cell culture supernatants
were collected at day 3. The exosome isolation kit ExoQuick-TC was used according to
the manufacturer’s instructions (System Biosciences, Palo Alto, CA, USA). In brief, an
initial spin was performed at 3000× g (RT) for 15 min for each sample to remove cells
and debris, then the corresponding amounts of reagents were added proportional to the
starting sample volume. Mixtures were agitated and incubated at 4 ◦C overnight. They
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were then centrifuged at 1500× g (RT) for 30 min to precipitate exosome pellets, followed
by pellet resuspension in PBS. The resuspension volume for exosome pellets was 150 µL
for 10 mL starting volume. All exosomes were stored at −80 ◦C immediately after isolation
until further analysis. For TEM, samples were freshly isolated for better image quality.

Fluorescence Immunodetection

Cells were plated in a Labtek Chamber slide at a density of 2 × 104 cells/mL After
three days, when the cells had reached near confluency, medium was removed from
the cells and they were washed with PBS. After fixation with methanol 100% for 5 min,
hPDLSC were incubated over night at 4 ◦C with primary antibodies. The antibodies
used in this study include the following: anti-CD9 (monoclonal mouse, IgG1k, 1:1000,
BioLegend, San Diego, CA, USA), anti-CD63 (monoclonal mouse, IgG1k, 1:500, Santa Cruz
Biotechnology, Inc., Dallas, TX, USA), and anti-ALIX (monoclonal mouse, IgG1k,1:500,
Santa Cruz Biotechnology, Inc., Dallas, TX, USA). For negative controls, the primary
antibody was replaced by non-immune serum (mouse IgG, 1:500, Sigma-Aldrich, Saint-
Louis, MO, USA). Then a secondary goat anti mouse AlexaFluor488 antibody (LSBio, Seattle,
WA, USA) was applied for 1 h at RT. Counterstaining was performed using Hoechst-dye
(1:2000, Sigma-Aldrich, Saint-Louis, MO, USA). Observations were performed using an
Upright Widefield Microscope Leica DMRXA2 (Leica Microsystemes, Wetzlar, Germany).

Transmission Electron Microscopy

For transmission electron microscopy, freshly isolated exosome suspensions were
fixed in 4% paraformaldehyde. An amount of 10 µL of exosome suspensions were applied
onto a carbon-Formvar coated grid for 20 min at RT, then rinsed in Tris-HCl buffer (TBS,
Sigma-Aldrich T5912, Saint-Louis, MO, USA). To observe exosome morphology, as a final
step, the samples were negatively stained with 4% uranyl acetate for 10 min, and grids were
wicked dry and then allowed to air dry. For immunoelectron microscopy, samples were
incubated with blocking buffer (5% TBS in BSA) for 10 min. Grids were then incubated with
either blocking buffer only (negative control) or primary antibody (anti-CD9, anti-CD63, or
anti-ALIX) diluted with blocking buffer for 45 min. After rinsing in TBS/BSA, the samples
were incubated with secondary antibody conjugated with 10-nm Protein A gold (1/20) for
45 min. After rinsing in TBS, the samples were negatively stained, as already described.
Sample TEM examination was performed using a JEOL 1400 TEM (JEOL, Tokyo, Japan).

2.2. Conditioned Medium
2.2.1. Preparation

Monolayers hPDLSC were seeded at a density of 1.25 × 104 cells/mL into 6-well
plates. They were cultured in 10 mL of complete DMEM without FBS. Culture supernatants
were collected after 48 h of incubation and centrifuged at 2000× rpm for 5 min. After being
collected and filtered in 0.22 µm filters, CM was concentrated 100-fold using ultrafiltration
with a 3 kDa cut-off value (AMICON Ultra-15 3K, Merck Millipore, Darmstadt, Germany),
at 4000× g during 60 min at RT; hPDLSC-CM was then divided in aliquots that were stored
at −80 ◦C until use [29–31]. As a control, cell-free medium was prepared in the same way
(control-CM).

2.2.2. Protein Concentration

The protein concentration in hPDLSC-CM was measured using a Micro BCA Pro-
tein Assay Kit (Thermo Scientific Pierce, Thermo Fisher Scientific, Rockford, IL, USA),
according to the manufacturer’s instructions. The absorbance at 570 nm was read with a
spectrophotometer (Sunrise, Tecan, Männedorf, Switzerland).

2.2.3. Enzyme-Linked Immunosorbent Assay

Concentrations of IL-6 and IL-8 in the CM collected from hPDLSC were investigated
using enzyme-linked immunosorbent assay (DuoSet ELISA Development System Human
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IL-6 and IL-8, R&D Systems, Minneapolis, MN, USA) according to the manufacturer’s
instructions. The absorbance at 450 nm was read with a spectrophotometer. Concentrations
were calculated from the standard curves. Assay range was 9.4 to 600 pg/mL for IL-6
and 31.2 to 2000 pg/mL for IL-8. As a control, the levels of IL-6 and IL-8 in medium with
10% FBS or without FBS, in control-CM and in culture supernatants before concentration,
were measured.

2.3. Culture of Saos-2 Cells

Saos-2 cells, a human osteoblastic cell line, were obtained from ATCC (Manassas, VA,
USA). They were amplified in complete DMEM. The cells were cultured in a humidified
atmosphere containing 5% CO2 at a temperature of 37 ◦C.

2.3.1. MTT Assay

The relative growth of Saos-2 cells was evaluated using the MTT assay, as previously
described [32]. Briefly, Saos-2 cells were seeded in 96-well tissue culture plates in 200 µL
medium/well, at a concentration of 3.5 × 104 cells/mL. After 24 h, the cells were incubated
for 48 or 72 h with different concentrations of hPDLSC-CM diluted in complete medium
without FBS: 62.5 µg/mL, 125 µg/mL, 250 µg/mL, or 500 µg/mL. Saos-2 cells were then ex-
posed to MTT (1 mg/mL) for 3 h at 37 ◦C. After complete solubilization of formazan crystals
in Dimethyl sulfoxide, optical density was measured on an enzyme-linked immunosorbent
assay plate reader at 570 nm. Control cells were cultured in medium containing 10% or
0% FBS.

2.3.2. RNA Extraction and Real-Time Polymerase Chain Reaction (RT-qPCR)

Saos-2 cells were seeded at a density of 5 × 104 cells/mL into 6-well plates. After
24 h, the medium was changed and cells were incubated in complete DMEM without FBS;
hPDLSC-CM (250 µg/mL) was added to the medium and the cells were cultured for 72 h.

Total RNA was extracted from Saos-2 cells by the Ribozol™ RNA extraction reagent
(AMRESCO, Solon, OH, USA). The RNA concentration was quantified by absorbance at
260 nm and checked by optical density ratio at 260/280 nm (1.8 < ratio < 2) and 260/230 nm
(2 < ratio < 2.2). Total RNA was reverse transcribed into complementary deoxyribonucleic
acid (cDNA) using the cDNA synthesis kit Protoscript First Strand cDNA Synthesis Kit®

(Biolabs E6560, New England Biolabs, Ipswich, MA, USA). Quantitative RT-PCR was
carried out with a SYBR® Green PCR kit (Applied Biosystems, Foster City, CA, USA) in an
a QuantStudioTM 7 Pro system (Applied Biosystems, Life Technologies LTD, Singapore)
under the following cycling conditions: 2 min at 50 ◦C; 10 min at 95 ◦C; 40 cycles of 15 s
at 95 ◦C and 1 min at 60 ◦C; and a final dissociation step. The primer sequences used in
this experiment are listed in Table 1. The transcripts of the 18S and HPRT housekeeping
gene were used to normalize the mRNA levels [33,34]. The results were normalized using
the geometric mean Ct of HPRT and 18S. Quantitative results were analyzed with Design
and Analysis software v2.6.0 (Applied Biosystems, Life Technologies LTD, Singapore). The
assay for each gene was carried out in triplicate. The validation of the primers, the purity
and integrity of the RNA, and the amplification efficiency have been verified according to
the recommendations of Taylor and Mrkusich [35].

2.4. Statistical Analysis

Data analysis was performed with GraphPad Prism v9.3.1 (GraphPad Software, San
Diego, CA, USA). One-way or two-way analysis of variance and Tukey’s post hoc tests
were used to determine significant differences between groups. Data are expressed as the
means ± standard deviation, and differences were considered significant when p < 0.05.
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Table 1. Description and characteristics of primers used for RT-qPCR. Abbreviations: ALP, alkaline phosphatase; COL1, collagen 1; OCN, osteocalcin; OP, osteopontin;
RunX2, Runt-related transcription factor 2; COX2, cyclooxygenase-2; VEGF, vascular endothelial growth factor; HSP, heat shock protein; IL, interleukin, BSP,
bone sialoprotein.

Amorce
(Primer) Sequence 5′-3′ Exon

Position Product Size (bp)
Primer

Efficiency,
Ep (%)

Coefficient of
Determination, R2

18S F: ATTAAGGGTGTGGGCCGAAG
R: GGTGATCACACGTTCCACCT

F: E1/2
R: E2/3 111 96.1 1

HPRT F: AGCTTGCTGGTGAAAAGG
R: TCATTATAGTCAAGGGCATATC

F: E6/7
R: E8 107 97.6 0.99

ALP F: AGAACCCCAAAGGCTTCTTC
R: CTTGGCTTTTCCTTCATGGT

F: E7
R: E8 74 99.2 1

COL1 F: CGAAGACATCCCACCAATCAC
R: TGTCGCAGACGCAGAT

F: E1/2
R: E2 98 99.7 0.999

OCN F: GCAGCGAGGTAGTGAAGAGA
R: GATGTGGTCAGCCAACTCGT

F: E3
R: E4 137 93.9 0.99

OP F: TCACCTGTGCCATACCAGTTAAA
R: GCCACAGCATCTGGGTATTTG

F: E2/3
R: E4 85 101.8 0.99

RunX2 F: ACCCAGAAGGCACAGACAGAAG
R: AGGAATGCGCCCTAAATCACT

F: E5/6
R: E6 82 99.7 1

COX2 F: TGCGCCTTTTCAAGGATGGA
R: CCCCACAGCAAACCGTAGAT

F: E6
R: E7 134 91.7 0.98

VEGF F: TTGCCTTGCTGCTCTACCTCCA
R: GATGGCAGTAGCTGCGCTGATA

F: E1
R: E3 126 96.9 1

HSP27 F: TGGATGTCAACCACTTCGCC
R: ATGTAGCCATGCTCGTCCTG

F: E1
R: E2 106 106.6 0.93

HSP60 F: GACGACCTGTCTCGCCG
R: ATCTGGCGAAAGACTGTGGG

F: E1
R: E2 78 106.5 1

HSP70 F: TTGTGCAGTTGCCTACAGGA
R: GCAGTCACTTGCTCAGTGGT

F: E3
R: E4 85 103.6 1
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Table 1. Cont.

Amorce
(Primer) Sequence 5′-3′ Exon

Position Product Size (bp)
Primer

Efficiency,
Ep (%)

Coefficient of
Determination, R2

HSP90 F: GATCACTTGGCAGTGAAGCATT
R: GAGCACGTCGTGGGACAAAT

F: E6/7
R: E7 79 90.8 1

IL-6 F: CCAGAGCTGTGCAGATGAGTA
R: TGGGTCAGGGGTGGTTATTG

F: E4
R: 35 89 95.2 1

IL-8 F: ACCACCGGAAGGAACCATCT
R: AGCACTCCTTGGCAAAACTG

F: E1
R: E2 121 93.5 0.99

BSP F: AACGAAGAAAGCGAAGCAGAA
R: TCTGCCTCTGTGCTGTTGGT

F: E7
R: E7 77 96.2 0.99
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3. Results
3.1. Isolation and Characterization of hPDLSC

Prior to the experiments, it had been confirmed that hPDLSC, isolated with the explant
outgrowth method, showed MSC-like characteristics. They exhibited a spindle appearance,
similar to those of MSC.

Cytometric flow analysis revealed positive expression of CD73, CD90 and CD105, and
negative expression of CD34 and CD45 (Table 2).

Table 2. hPDLSC surface antigen expression (%) analyzed by flow cytometry.

CD34 CD45 CD73 CD90 CD105

hPDLSC 0.36 0.34 99.97 99.97 96.77

Control 0.17 0.05 0.26 0.08 0.45

The hPDLSC were able to form colonies ten days after seeding (Figure 1A). Addi-
tionally, the osteoblastic differentiation potential was confirmed. These colony-forming
cells produce nodules of mineralization revealed by Alizarin Red staining after 21 days
(Figure 1B). Similarly, in the presence of adipocyte differentiation medium, we could
observe the formation of lipid droplets, revealed by Oil Red O staining (Figure 1C).
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Figure 1. Characterization of hPDLSC. (A) Colony-forming assay. (B) Alizarin red staining
(Scale bar = 100 µm). (C) Oil Red O staining (Scale bar = 50 µm).

3.2. Isolation and Characterization of hPDLSC-Derived Exosomes

In order to confirm the presence of exosomes in the culture supernatant, we looked
for the expression of appropriate markers in hPDLSC by immunocytochemical analysis.
Expression of all three markers were observed showing a spot-like pattern in the cytoplasm
(Figure 2).
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control with non-immune serum (D). Objective 40×/1.0 PL Fluotar. Scale bars = 25 µm.

Ultrastructural investigation of isolated exosomes revealed the expected size distri-
bution and membrane integrity. Some exosomes are spherical; others are heterogeneous
in shape (Figure 3A). The appearance of relevant exosomal markers were visualized by
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immunogold labeling. Black punctate regions indicate a positive staining of CD9, CD63
and ALIX (Figure 3B).
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3.3. Conditioned Medium

To evaluate the effectiveness of our concentration technique, levels of IL-6 and IL-8
in hPDLSC-CM were measured and compared with levels in culture supernatants. The
concentration of IL-6 was 52,980.5 ± 2279 pg/mL and IL-8 was 13,923.2 ± 1403.7 pg/mL
(mean ± sd) (Figure 4). Quantities were not detectable in control medium, control-CM,
or supernatant because they were lower than the minimal amount detectable with the kit
used (<9.4 pg/mL for IL-6 and <31.2 pg/mL for IL-8).
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Figure 4. Expression of IL-6 and IL-8 in hPDLSC-CM, compared with supernatant and cell-
free medium.

The average protein concentration in hPDLSC-CM was 3762 ± 111.7 µg/mL
(mean ± sd).

3.4. Influence of hPDLSC-CM on SaOS-2 Cells
3.4.1. Optimal Time and Concentration of CM

The addition of hPDLSC-CM increased Saos-2 cell proliferation. At 48 h, we noticed a
significant difference with control cells cultured in medium without FBS from a concentra-
tion of 125 µg/mL, but no difference with higher concentrations. At 72 h, cell proliferation
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was increased from a concentration of 62.5 µg/mL and rose with higher concentrations,
exhibiting a dose-response effect. The optimal growth was observed at 72 h, with a concen-
tration of 250 µg/mL or 500 µg/mL. Because no difference was found between the two, the
parameters chosen for the rest of the experiments were 72 h and 250 µg/mL (Figure 5).
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3.4.2. Saos-2 Gene Expression

Markers of osteogenesis, cell stress, and inflammation were explored by quantitative
RT-qPCR (Figure 6). The markers investigated can be classified into three categories:

• Those for which the expression did not vary according to the conditions: ALP, OCN,
HSP27 and HSP90;

• Those for which FBS deprivation had an impact: COL1, HSP60, HSP70 (decrease of
the expression), IL-6 and IL-8 (increase of the expression);

• Those for which the addition of CM increased expression compared to the control
medium (FBS 0%): COL1, OP, RunX2, BSP, VEGF, COX2 and IL-6.

Compared to the serum-free medium, the addition of CM gave either no effect or an
increase in expression. No gene expression variation was detected between cells cultured
with serum-free DMEM and serum-free DMEM supplemented with control-CM (data
not shown).
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4. Discussion

In this study, a cell line with all the characteristics of MSC was isolated and character-
ized. Phenotypic (flow cytometry) and functional (CFU assay and differentiation potential)
characterization has allowed objectifying the presence of MSC in periodontal ligament [36].

The use of MCS secretome appears to be an alternative to cell-based therapy for bone
and periodontal tissue regeneration [37]. In order to evaluate the influence of paracrine
factors from hPDLSC on bone regeneration, we decided to use human osteoblastic Saos-2
cells. Despite their ineligibility for clinical use owing to their tumor derivation, Saos-2 cells
were chosen for this study as they are easy to obtain and handle and are a widely diffused
and accepted in vitro model in the field of bone biology [38,39]. They allow studying
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the OB differentiation process because they have a high biomineralization capacity and
they produce an extracellular matrix compatible with mineralization [23]. They show
responses resembling those of primary human OB and immortalized osteoblastic cell lines
(such as hFob 1.19 transfected with a temperature-sensitive SV40 T-antigen) with respect
to osteoblastic marker expression, while avoiding a possible temperature effect on the
differentiation [38,40]. This line has a cell cycle and a regular proliferation, allowing it
to have a reproducible effect, which is not the case with primary OB that present inter-
individual variations depending mainly on the age of the patient.

We opted for the use of CM instead of purified exosomes, containing the secretome
of the cells: extracellular vesicles, but also growth factors, cytokines, and other active sub-
stances. hPDLSC were cultured in serum-free medium, FBS containing a large number of
exosomes [41]. The presence of exosomes in the culture supernatant was objectified by im-
munofluorescence observed with confocal microscopy and by TEM structural observation
and immunodetection of relevant exosomal markers [42–44]. Our method to obtain CM has
been validated by comparing the concentration of two markers, IL-6 and IL-8, by ELISA. A
growing number of research teams are working on the therapeutic potential of CM, in many
medical fields [5,45,46]. MSC-CM transplantation, as a cell-free technique, is ready-to-use
and more convenient than using exosomes [30]. Currently, there is no optimal purification
technique for the isolation of exosomes with high purity. Most isolation methods yield
only a small amount, making it more complicated for clinical translation [37]. Moreover,
the purification kit we used in this study (ExoQuick-TC) is not recommended for in vivo
use [47].

The control used for gene expression analysis (CM without cells) confirmed that the
observed effect was due to the cellular secretion of different elements in the supernatant
and that the concentration method does not have a biological effect. We performed some
tests with control-CM, showing no difference with cells grown in serum-free medium.

According to the literature, we chose a contact time of 72 h maximum [1,48]. De-
pending on the studies, RNA extractions are most often carried out after 48 or 72 h of CM
contact [49–51].

Our results showed a positive effect of CM on the proliferation of Saos-2, with an
increase of more than 70%. This agrees with Park et al., who showed a dose-dependent
effect of CM [52]. However, the results of Aghamohamadi et al., who investigated the effect
of different concentration of PDLSC-CM on the proliferation of PDLSC, showed that high
concentrations may cause a significant decrease in cell proliferation [48]. This is consistent
with the study of Paschalidis et al., who evaluated two different dilutions (50% and 100%)
of MSC-CM on dental pulp stem cells proliferation and reported a greater result for the 50%
dilution [53]. In our study, we observed a plateau effect above 250 µg/mL. By increasing
the concentrations, we might have observed a decrease. It is therefore essential to define
the optimal concentration of CM to obtain a balance between the positive effect of paracrine
factors and the possible metabolic inhibitory effect of by-products [48].

Both MSC and OB are essential for the promotion of osteogenesis. Through the
secretion of numerous mediators, MSC interact with OB and can interfere with their differ-
entiation. Depending on the study, the observed effects seem contradictory. Some observed
that MSC repress OB differentiation [54–56]. The results of Santos et al. showed that
bone marrow MSC-CM (BMMSC-CM) reduce OB proliferation, downregulate bone marker
genes, and inhibit mineralized matrix formation [54]. Sun et al. demonstrated that BMMSC
may suppress OB proliferation and transiently retard OB differentiation [55]. Conversely,
other studies have shown that MSC secretome promote bone regeneration [49,51,57–59].
The effects, though, are more obvious when CM or extracellular vesicles come from MSC
cultured in osteogenic medium [60,61]. Yahao et al. compared the effect of exosomes
derived from standardized MSC culture and from osteogenic induction medium on OB and
observed that the second ones had more obvious effect. They showed that exosomes are
influenced by the differentiation stage of the cell of origin and carry related substances to
promote osteoblast differentiation [61]. However, these latest studies evaluate the influence
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of MSC on the osteogenic differentiation of undifferentiated MSC and not on OB, which
may explain the differences observed in results. In our study, the expression of osteogenesis
markers is increased under the influence of CM, except for ALP and OCN, where no effect
is observed. For RunX2 and COL1, this increase is not significant. It is, however, for OP
and BSP. These results indicate that osteogenesis is not complete at 72 h. Lan et al. demon-
strated that the increase in ALP and OCN expression occurred only after 6 days of contact
with a medium containing exosomes [62]. In their study, Jin et al. observed an increase in
ALP expression after 10 days of coculture with MSC-CM [60].

Angiogenesis contributes to the progression of osteogenesis, where blood supply
induces OB migration and mineralization of bone tissue. Our results showed that the
addition of CM increased, though not significantly, the expression of VEGF, which is a
specific growth factor that promotes proliferation and migration of vascular endothelial
cells, revascularization and capillary production, and improves the cellular activity of
osteoblasts, thereby promoting bone regeneration [49].

The first objective of the periodontal treatment is to control the inflammation in order
to promote high-quality healing. It is suggested that exosomes or CM from MSC exerts
anti-inflammatory effects during periodontal wound healing [29,30,63].

The initial increase in COX2 and IL-6 expression shows the need for an inflammatory
response in the initial stages of osteogenesis and tissue repair. This phenomenon allows, in
particular, attraction by chemotaxis of the debridement cells (professional phagocytes) and
the cells of repair (bone progenitor cells or stem cells). In their study, Yoon et al., showed
that COX2 inhibitors suppress bone repair and bone formation [64].

A study by Al-Sharabi et al. showed that MSC-CM promote the secretion of inflam-
matory molecules in vitro and, conversely, attenuates the initial inflammatory response
in vivo [65]. These authors demonstrated an important increase of IL-6 and IL-8 in the
supernatant from CM-treated dental pulp cells, as in our study, thanks to a Multiplex assay
in vitro. Al-Sharabi et al. explain that this paradox between cell cultures and in vivo exper-
iments can be attributed to the dominant inflammation-regulating effect of IL-10 in vivo,
which increases over time. IL-10 is a key inflammatory cytokine, having an immunoregula-
tory effect. It regulates the secretion of pro-inflammatory cytokines and plays an important
role in suppressing inflammatory and immune responses. This is confirmed in the study of
Qiu et al., who highlight the impact of MSC-CM on the inflammatory/resolution process
through the IL-6 and IL-10 network [30].

The study of HSP expression by Saos-2 cells did not reveal any effects related to the
presence of CM. It was interesting to study the expression of these proteins because a link
seems to exist with periodontitis. Indeed, the expression of some HSP varies with the onset
and evolution of periodontitis. We therefore examined the possible role of Saos-2 in this
expression. HSP60, 70, and 90 can induce tissue pathology and play important role in many
aspects of inflammation. They have been implicated in macrophage activation, which in
turn results in TNF gene induction [66]. On the contrary, HSP27 has been seen to exert
anti-inflammatory activities [27].

HSP70 is the main HSP expressed in the inflamed tissues [25]. They play a role in the
induction of pro-inflammatory cytokines and may therefore contribute to the pathogenesis
of chronic inflammatory diseases [67]. Their levels seem to vary according to the stages of
evolution of the periodontitis, showing their implication in its onset and its progression.
HSP70 can be considered as a potential marker for the severity of periodontal disease [25].
However, the mechanisms involved remain to be elucidated [25,26]. At the same time,
this protein also seems to have a cell protective effect and might play a crucial role in
the maintenance of periodontal tissue homeostasis and control of periodontal ligament
physiology [68].

HSP60 has been proposed as a danger signal of stressed or damaged cells. Even if its
role in the pathogenesis of periodontal disease is not fully elucidated, a pathological role
should be expected, as its expression is abundant in the periodontal lesion and it stimulates
the innate immune system [24,26,66].
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HSP27 is a major intracellular molecular chaperone and controller of intracellular
responses to inflammatory signals, preventing the release of inflammatory cytokines [27].
It seems to have a supportive role in the regeneration process related to cell migration [69].
Systemic concentrations may differ between different types of periodontal disease. Kaiser
et al. showed that patients diagnosed with aggressive periodontitis had significantly lower
levels of HSP27 in their circulation than patients with chronic periodontitis, suggesting that
this protein may be regulated differently in the various forms of periodontitis [27].

To our knowledge, no study has established an association between HSP90 and
periodontal disease. However, it is one of the most abundant HSP, expressed ubiquitously
in a variety of cell types, including osteoblasts [70]. Its expression varies during osteoblastic
differentiation [71].

5. Conclusions

The results of this study showed an enhancement of Saos-2 proliferation under the
influence of hPDLSC-CM and an increase in some markers of osteoblastic differentiation,
but this differentiation was not complete. However, Saos-2 cells were involved in the initial
inflammation process by releasing IL-6 and activating COX2 in order to attract the debride-
ment cells and the cells of repair. Regarding the variations in HSP expression observed in
periodontitis, Saos-2 cells were not involved. The regenerative effect of MSC-CM seems to
come from a cumulative effect of effective components, cytokines, and growth factors rather
than a few factors present at high levels. Further in vitro, preclinical, and clinical studies
are needed to improve the clinical efficacy of MSC-CM-based periodontal regeneration.
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