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Background: It is difficult to accurately assess the risk of Thyroid Imaging Reporting and Data System 
(TI-RADS) 4 thyroid nodules due to the overlap of benign and malignant conventional ultrasound (US) 
features of nodules. To reduce unnecessary needle biopsies and assist clinical decision-making, this study 
established a dynamic nomogram incorporating superb microvascular imaging (SMI) and shear wave 
elastography (SWE) for the risk evaluation of TI-RADS 4 thyroid nodules. 
Methods: A total of 248 patients who underwent US, SMI, and SWE with cytological or histopathological 
results were included in this retrospective study, and were randomly divided into training (174 patients) 
and verification (74 patients) cohorts. The clinical characteristics and US, SMI, and SWE features of 
patients were analyzed in the training cohort. The least absolute shrinkage and selection operator (LASSO) 
regression and multivariate logistic regression were used to screen parameters and construct dynamic 
nomogram. The receiver operating characteristic (ROC) curves, calibration curve, and decision curve were 
used to evaluate the performance of the nomogram.
Results: A dynamic nomogram was constructed based on age [odds ratio (OR) =0.954; P=0.005] , shape 
(OR =0.345; P=0.041), SMI (OR =9.511; P<0.001), and SWE (OR =3.670; P=0.001). The nomogram showed 
excellent discrimination both in the training [area under the curve (AUC): 0.848; 95% confidence interval 
(CI): 0.784–0.911] and validation (AUC: 0.862; 95% CI: 0.780–0.944) cohorts, and better than US, SMI, and 
SWE alone in all cohorts (P<0.05). The Nomo-score of each patient was calculated and the cut-off value was 
0.607 which can be used to distinguish high-risk and low-risk patients.
Conclusions: The SMI and SWE show added predictive value on risk stratification in patients with TI-
RADS 4 thyroid nodules and a dynamic nomogram was constructed to screen high-risk individuals and assist 
the clinical decision-making.
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Introduction

In recent years, the incidence rate of thyroid nodules 
has increased significantly due to the improvement of 
detection technology (1,2). Conventional ultrasound (US) 
remains the mainstay in detection and diagnosis of thyroid 
nodules, and the Thyroid Imaging Reporting and Data 
System (TI-RADS), proposed by the American College of 
Radiology (ACR) in 2017, has been established based on the 
ultrasonographic features and has proposed five categories to 
stratify risk of malignancy of thyroid nodules (3). TI-RADS 
4 and TI-RADS 5 represent moderately suspicious nodules 
and highly suspicious ones, respectively. It is difficult to 
accurately assess the risk of TI-RADS 4 thyroid nodules, 
due to the fact that the probability of TI-RADS 4 nodules 
being malignant is 5–20%, which leads to overlapping of 
benign and malignant US features of nodules (4-6). At 
present, fine-needle aspiration (FNA) is still one of the 
commonly used methods for the diagnosis of suspected 

thyroid nodules, but it is invasive for patients and sometimes 
the results are inaccurate (7,8). Therefore, it is essential to 
assess the risk of TI-RADS 4 nodules to reduce unnecessary 
FNA.

Angiogenesis has been underlined in tumor growth, 
invasion, and distant metastasis (9). Assessment of lesion 
blood flow characteristics is widely utilized in the diagnosis 
of various tumors (10,11). Color doppler flow imaging 
(CDFI) is widely used for detecting blood flow in lesions, 
but it lacks sensitivity in identifying small blood vessels 
and slow blood flow, thus limiting its ability to recognize 
malignant thyroid nodules (2,12). Superb microvascular 
imaging (SMI) as an innovative technique could visualize 
the tumor microvascular blood flow without clutter using 
an advanced algorithm, and utilizing new algorithms and 
enhanced wall filters to effectively preserve tiny blood flow 
signals (10,13). Prior research has shown that SMI provides 
a significantly better depiction of blood flow characteristics 
within lesions than CDFI (14,15). In addition to the 
characteristic of blood flow, the progression of tumors 
is often accompanied by changes in tissue pathological 
structure, with malignant lesions typically exhibiting greater 
stiffness than benign lesions (16). Shear wave elastography 
(SWE) has emerged as a non-invasive tool in evaluating 
lesion stiffness to provide additional information in 
differentiating benign and malignant thyroid nodules (17). 
Previous research has shown that combining SMI and SWE 
can enhance the diagnostic performance for distinguishing 
between benign and malignant breast lesions, indicating 
their potential complementarity in aiding physicians to 
evaluate lesions more comprehensively (18). However, to 
our knowledge, there is currently very limited research in 
the field of thyroid nodules on this matter.

In this study, we aimed to explore the potential value of 
SMI and SWE on the risk prediction of TI-RADS 4 thyroid 
nodule, thereby establishing a dynamic nomogram to present 
a precise and useful tool. We present this article in accordance 
with the TRIPOD reporting checklist (available at https://
gs.amegroups.com/article/view/10.21037/gs-24-87/rc). 

Methods

Patients

The study was conducted in accordance with the Declaration 
of Helsinki (as revised in 2013). This retrospective study 
was approved by the ethics committee of Beijing Tongren 
Hospital (No. TREC2022-KY138). This study only analyzes 
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retrospective images, so no additional clinical risks are 
imposed on the patients during this process, and patient data 
is kept strictly confidential. Therefore, individual consent for 
this study was waived. 

Patients who underwent FNA of thyroid nodules in 
our hospital from January 2020 to September 2022 were 
retrospectively evaluated from the institutional database. 
Patients were enrolled according to the following inclusion 
criteria: (I) all thyroid nodules had histopathological results; (II) 
US, SMI, and SWE images were complete. Exclusion criteria: 
(I) poor image quality; (II) presence of following-up lose. A 
total of 248 patients (mean age 44.19±12.35 years; range, 
24–73 years) with solitary TI-RADS 4 thyroid nodules, 
determined by pathological diagnosis, underwent US, 
SMI, and SWE were included in this study retrospectively.  
Figure 1 shows the patient screening process. All patients 
were randomly divided into the training (174 patients; mean 
age 43.9±13.9 years; range, 24–73 years) and validation (74 
patients; mean age 44.8±13.3 years; range, 25–72 years) 
cohorts in a 7:3 ratio. 

Image acquisition and analysis

All images were acquired with an Aplio i900 ultrasound 
system (Canon Medical Systems, Tokyo, Japan) equipped 
with the i18LX5 linear probe (5–18 MHz).

First, the US features of the thyroid nodules including 
size (defined as the maximum diameter of the thyroid 
nodule), location, shape, echogenicity, aspect ratio (defined 
as anteroposterior diameter divided by transverse diameter, 
>1 or ≤1), and calcification were evaluated. And then blood 
flow distribution of the thyroid nodules was also evaluated 
by SMI when the patients were asked to hold their breath 
and not to swallow. The SMI of thyroid nodules was 
evaluated in the longitudinal section of the thyroid nodules 
and the setting of velocity scale of 1.0–2.5 cm/s, mechanical 
index 1.2, and a frame frequency of 26–60 frames/s. 
Analysis of blood flow distribution by SMI as suggested by 
Shin et al. (17): type I, blood flow rarefaction or absence of 
blood flow; type II, predominantly peri-nodular vascularity; 
type III, predominantly intra-nodular vascularity; type IV, 

Patients who underwent fine needle aspiration in our 

hospital from January 2020 to September 2022

(n=1,770)

SMI or SWE images incomplete 

(n=1,465)

Poor image quality

(n=57)

Enrolled thyroid nodules

(n=248)

Training cohort

(n=174)

Validation cohort

(n=74)

Benign nodules

(n=66)

Malignant nodules

(n=108)

Benign nodules

(n=27)

Malignant nodules

(n=47)

Figure 1 Flow chart of the patients enrolled in our study. SMI, superb microvascular imaging; SWE, shear wave elastography.
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penetrating vascularity (Figure 2). Penetrating vascularity 
was defined as blood vessels extending from the edge of the 
nodule to the inside.

Finally, the longitudinal plane with the clear lesion was 
selected for SWE. During elastography, the probe was 
placed perpendicular to the skin and waited for the sampling 
box to be filled with color, parallel propagation lines were 
observed at the same time. The region of interest (ROI) was 
outlined along the nodule’s outer margin, and the stiffness 
values (kpa) were obtained. The average value of three 
measurements was taken as the individual result. The image 
analysis by two experienced radiologists (with more than  
5 years of experience) was blinded to pathological outcomes. 
If the radiologists disagreed, a consensus was obtained by 
discussion. Representative cases in this study are illustrated 
in Figure 3.

Nomogram construction

First, we used multivariate logistic analyses to identify 
the risk factors of malignant thyroid nodules. Second, the 
least absolute shrinkage and selection operator (LASSO) 

logistic regression algorithm with penalty parameter tuning 
conducted by 10-fold cross-validation was performed to 
select the most useful predictive features. Finally, to weigh 
the odds ratio (OR) by combing multivariate logistics with 
LASSO regression and the nomogram was obtained. The 
predicted probability (defined as Nomo-score) of each 
patient was calculated and the cut-off value of the Nomo-
score was obtained to divide high-risk and low-risk groups.

Statistical analysis

Statistical analysis were conducted with SPSS Statistics 
version 26.0 (IBM Corp.), R software version 4.1.0 (The 
R Foundation for Statistical Computing), and GraphPad 
Prism 9.0. Quantitative data were compared by means of the 
Student’s t-test or Mann-Whitney U test, and categorical 
data were compared using the χ2 test or Fisher’s exact test. 
The receiver operating characteristic (ROC) curves were 
plotted to evaluate the performance of the nomogram and 
TI-RADS, and the De-Long test was used to compare 
the area under the curve (AUC). The cut-off values were 
computed with the maximal Youden index. All statistical 

Figure 2 Blood flow distribution pattern of thyroid nodules based on SMI. Type I: blood flow rarefaction or absence of blood flow. Type 
II: predominantly peri-nodular vascularity. Type III: predominantly intra-nodular vascularity. Type IV: penetrating vascularity. SMI, superb 
microvascular imaging.

Type I

Type III Type IV

Type II
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tests were 2-sided. P<0.05 was considered significant. 
Calibration of the nomogram was evaluated using the 
calibration curve and Hosmer-Lemeshow test. The decision 
curve analysis (DCA) was performed to determine the 
clinical significance of the nomogram. 

Results

Patient characteristics

The clinical characteristics and US, SMI, and SWE features 
of all patients are summarized in Table 1. There was no 
significant statistical difference between the training and 
validation cohorts in the presence of malignant thyroid 
nodules (P>0.05). In addition, there were no significant 
differences between the two cohorts in other characteristics 
(Table 1). It was suggested that the patients in the training 
and validation cohorts were comparable (P>0.05).

Nomogram construction

Table 2 shows the clinical characteristics, US, SMI, and 
SWE features of patients in the training and validation 
cohorts. Univariate analysis indicates that there were 
significant differences in age, size, shape, SMI, and SWE 
measurement between patients with or without malignant 
lesions in the training cohort (P<0.05). The optimal cut-

off value of SWE for differentiating benign and malignant 
thyroid nodules was 26.91 kpa, with an AUC being 
0.678 [95% confidence interval (CI): 0.594–0.762], and 
the sensitivity and specificity being 76.9% and 56.1% 
respectively. 

Then, the LASSO regression result suggested that age, 
shape, aspect ratio, SMI, and SWE measurement were 
the significant predictive features for malignant thyroid 
nodules in the training cohort (Figure 4). The nomogram 
was obtained by combing multivariate logistic with LASSO 
regression results and the dynamic nomogram was further 
constructed (https://dynnomogram11.shinyapps.io/
Riskstratification/) (Figure 5) (Table 3). The Nomo-score 
of each patient was calculated and the cut-off value of 
the Nomo-score was 0.607, the sensitivity and specificity 
were 85.2% and 78.8% in the training cohort, 78.7% and 
81.5% in the validation cohort. According to the cut-off 
value of the Nomo-score, we divided patients into low-
risk (100 patients) and high-risk groups (116 patients). The 
proportion of patients with malignant thyroid nodules in 
the high-risk group was higher than that in the low-risk 
group in both the training and validation cohorts (P<0.05) 
(Figure 6). 

Evaluation and validation of the nomogram

The ROC curves were used to evaluate the performance 

Figure 3 US, SMI, and SWE images of thyroid nodules in the right lobe. (A) The US feature of the thyroid nodule. (B) Penetrating 
vascularity can be seen in SMI, and the blood flow distribution is type IV. (C) The SWE value of the thyroid nodule is 29.8 kpa. SD, 
standard deviation; US, conventional ultrasound; SMI, superb microvascular imaging; SWE, shear wave elastography.

A

B

C

https://dynnomogram11.shinyapps.io/Riskstratification/
https://dynnomogram11.shinyapps.io/Riskstratification/
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Table 1 Characteristics of patients in the training and validation cohorts

Characteristics Training cohort (n=174) Validation cohort (n=74) P value

Pathology 0.83

Benign 66 (37.9) 27 (36.5)

Malignant 108 (62.1) 47 (63.5)

Sex 0.20

Male 47 (27.0) 26 (35.1)

Female 127 (73.0) 48 (64.9)

Age (years) 43.9±13.9 44.8±13.3 0.60

Size (cm) 1.0±0.6 1.1±0.6 0.85

Location 0.58

Left lobe 80 (46.0) 29 (39.2)

Right lobe 91 (52.3) 44 (59.5)

Isthmic 3 (1.7) 1 (1.4)

Shape 0.63

Regular 33 (19.0) 16 (21.6)

Irregular 141 (81.0) 58 (78.4)

A/T 0.10

>1 76 (43.7) 24 (32.4)

≤1 98 (56.3) 50 (67.6)

Calcification 0.09

Yes 131 (75.3) 48 (64.9)

No 43 (24.7) 26 (35.1)

Echogenicity 0.79

Hypoechogenicity 156 (89.7) 67 (90.5)

Isoechogenicity 15 (8.6) 5 (6.8)

Hyperechogenicity 3 (1.7) 2 (2.7)

SMI 0.057

I 5 (2.9) 7 (9.5)

II 77 (44.3) 25 (33.8)

III 47 (27.0) 17 (23.0)

IV 45 (25.9) 25 (33.8)

SWE (kpa) 34.9±17.1 36.5±21.3 0.99

≥26.91 kpa 92 (52.9) 44 (59.5) 0.34

<26.91 kpa 82 (47.1) 30 (40.5)

Continuous data are expressed as means ± standard deviations and for categorical data as n (%). A/T, aspect ratio; SMI, superb 
microvascular imaging; SWE, shear wave elastography.
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Table 2 Clinical characteristics, US, SMI, and SWE features of patients in the training and validation cohorts

Characteristics
Training cohort (n=174) Validation cohort (n=74)

Benign (n=66) Malignant (n=108) P value Benign (n=27) Malignant (n=47) P value

Sex 0.95 0.80

Male 18 (27.3) 29 (26.9) 10 (37.0) 16 (34.0)

Female 48 (72.7) 79 (73.1) 17 (63.0) 31 (66.0)

Age (years) 48.0±12.4 41.4±11.1 0.001 49.8±12.9 42.0±12.8 0.02

Size (cm) 0.9±0.3 1.1±0.7 0.044 1.2±0.7 1.1±0.6 0.92

Location 0.64 0.52

Left lobe 29 (43.9) 55 (50.9) 9 (33.3) 20 (42.6)

Right lobe 36 (54.5) 51 (47.2) 18 (66.7) 26 (55.3)

Isthmic 1 (1.5) 2 (1.9) 0 1 (2.1)

Shape 0.003 0.21

Regular 20 (30.3) 13 (12.0) 8 (29.6) 8 (17.0)

Irregular 46 (69.7) 95 (88.0) 19 (70.4) 39 (83.0)

A/T 0.07 0.52

>1 23 (34.8) 53 (49.1) 10 (37.0) 14 (29.8)

≤1 43 (65.2) 55 (50.9) 17 (63.0) 33 (70.2)

Calcification 0.91 0.44

Yes 50 (75.8) 81 (75.0) 16 (59.3) 32 (68.1)

No 16 (24.2) 27 (25.0) 11 (40.7) 15 (31.9)

Echogenicity 0.056 0.10

Hypoechogenicity 55 (83.3) 101 (93.5) 22 (81.5) 45 (95.7)

Isoechogenicity 10 (15.2) 5 (4.6) 4 (14.8) 1 (2.1)

Hyperechogenicity 1 (1.5) 2 (1.9) 1 (3.7) 1 (2.1)

SMI <0.001 <0.001

I 1 (1.5) 4 (3.7) 5 (18.5) 2 (4.3)

II 5 (7.6) 27 (25.0) 16 (59.3) 9 (19.1)

III 10 (15.2) 37 (34.3) 2 (7.4) 15 (31.9)

IV 50 (75.8) 40 (37.0) 4 (14.8) 21 (44.7)

SWE (kpa) 29.0±14.4 38.5±17.7 <0.001 30.0±15.1 40.3±23.5 0.04

≥26.91 kpa 29 (43.9) 83 (76.9) <0.001 12 (44.4) 32 (68.1) 0.046

<26.91 kpa 37 (56.1) 25 (23.1) 15 (55.6) 15 (31.9)

Continuous data are expressed as means ± standard deviations and for categorical data as n (%). US, conventional ultrasound; SMI, 
superb microvascular imaging; SWE, shear wave elastography; A/T: aspect ratio. 
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Figure 4 Risk factors of selection using the LASSO logistic regression in the training cohort. (A) The area under the receiver operating 
characteristic curve was plotted versus log (λ). (B) The parameters were profiled by the LASSO coefficient. LASSO, least absolute shrinkage 
and selection operator.

Table 3 Risk factors of malignant thyroid nodules in nomogram

Intercept and variables β OR (95% CI) P value

Age −0.047 0.954 (0.922−0.986) 0.005

Shape −1.064 0.345 (0.124−0.959) 0.041

SMI 2.252 9.511 (4.235−21.357) <0.001

SWE 1.300 3.670 (1.652−8.150) 0.001

Intercept 1.964 7.125 (–) 0.08

OR, odds ratio; CI, confidence interval; SMI, superb microvascular imaging; SWE, shear wave elastography.

Figure 5 Nomogram to predict the risk of thyroid malignant nodules. SMI, superb microvascular imaging; SWE, shear wave elastography.
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of the nomogram in the training and validation cohorts 
(Figure 7). The nomogram shows excellent discrimination 
both in the training (AUC: 0.848; 95% CI: 0.784–0.911) 
and validation (AUC: 0.862; 95% CI: 0.780–0.944) cohorts. 
Our results show that the sensitivity and specificity of the 
nomogram were 85.2%, and 78.8% in the training cohort 
and 78.7%, and 81.5% in the validation cohort, respectively 
(Table 4). The performance of the nomogram was better 
than US, SMI, and SWE in the training and validation 
cohorts (P<0.05) (Table 4). The calibration curve and 
Hosmer-Lemeshow test showed that the nomogram had 
a good agreement in the training (P=0.15) and validation 
(P=0.82) cohorts (Figure 8).

Clinical use

The DCA curves showed that the nomogram presented a 
greater net benefit than US in a wide range of threshold 
probability in discriminating between benign and malignant 
thyroid nodules (Figure 9).

Discussion

In this study, we used multimodal ultrasound imaging, 
including the US, SMI, and SWE to establish a dynamic 
nomogram for the risk assessment of TI-RADS 4 thyroid 
nodules. The nomogram has shown good performance 
in both training and validation cohorts and could provide 

Figure 6 The cut-off value of the Nomo-score for predicting thyroid malignant nodules in the training and validation cohorts. 

Figure 7 ROC curve of the US, SMI, SWE and nomogram for predicting thyroid malignant nodules in the training and validation cohorts. 
US, conventional ultrasound; SMI, superb microvascular imaging; SWE, shear wave elastography; ROC, receiver operating characteristic.
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Table 4 Performance of US, SMI, SWE, and nomogram in the training and validation cohorts

Methods
Training cohort Validation cohort

AUC (95% CI) Sensitivity (%) Specificity (%) AUC (95% CI) Sensitivity (%) Specificity (%)

US 0.638 (0.550−0.726) 55.6 69.7 0.689 (0.568−0.810) 38.3 92.6

SMI 0.743 (0.666−0.820) 71.3 77.3 0.772 (0.657−0.887) 76.6 77.8

SWE 0.665 (0.579−0.750) 76.9 56.1 0.618 (0.483−0.753) 68.1 55.6

Nomogram 0.848 (0.784−0.911) 85.2 78.8 0.862 (0.780−0.944) 78.7 81.5

US, conventional ultrasound; SMI, superb microvascular imaging; SWE, shear wave elastography; AUC, area under the curve; CI, 
confidence interval.

Figure 8 Calibration curves of the nomogram in the training (A) and validation (B) cohorts.

significant risk stratification in TI-RADS 4 thyroid nodules, 
which can assist clinical decision-making and reduce 
unnecessary needle biopsies.

Thyroid cancer is a kind of tumor with rich blood supply, 
angiogenesis plays an important role in the development 
of thyroid cancer (19). As a new ultrasound technology, 
SMI can clearly display the distribution of blood vessels 
in the lesions without motion artifacts (20). In this study, 
SMI was performed to observe the vascularity distribution 
of thyroid nodules. In line with previous studies (14,15), 
SMI performed better in displaying details of blood flow 
distribution. Our results showed that malignant lesions are 
presented more frequently as intra-nodular and penetrating 
vascularity, which is consistent with a previous study (10). 
It is noteworthy that SMI plays the most important role 

Figure 9 Decision curves of the nomogram and the single US 
in predicting thyroid malignant nodules. US, conventional 
ultrasound. 
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in the risk assessment of TI-RADS 4 thyroid nodules in 
the dynamic nomogram, and the diagnostic sensitivity 
and specificity were 71.3% and 77.3% respectively. We 
believe that this once again illustrates the significant role of 
angiogenesis in tumor genesis and development.

As it is generally agreed that the stiffness is related to 
the malignant risk of the lesion (21), this enables SWE 
to provide valuable information for evaluating the risk of 
thyroid nodules. SWE is a non-invasive and promising 
technique to significantly improve the diagnostic accuracy 
of US (22,23). Gao et al. (21) combined SWE with US 
features to diagnose thyroid nodules, and the results showed 
that SWE significantly improved the diagnostic value of US 
alone. The SWE cut-off value obtained in this study was 
26.91 kpa, which is close to 27.49 kpa in Chao et al. (24) 
study, but it is significantly lower than the 51 kpa obtained 
by Gao et al. (21). As far as we know, there is no agreement 
on the cut-off value for the diagnosis of malignant thyroid 
nodules (21,25). This may be due to differences of the 
patients’ characteristics and the pathological types of 
thyroid cancer selected in different studies. The diagnostic 
sensitivity and specificity of the SWE cut-off value were 
76.9% and 56.1% respectively. In this study, the specificity 
of SMI is significantly better than that of SWE, likely 
because the SWE value is affected by the calcifications in 
the lesion to some degree (6,26). 

Thi s  s tudy  e s t ab l i shed  a  dynamic  nomogram 
incorporating SWE and SMI for the risk evaluation of TI-
RADS 4 thyroid nodules. Our results showed that the AUC, 
sensitivity, and specificity of the nomogram were 0.848, 
85.2%, and 78.8% in the training cohort and 0.862, 78.7%, 
and 81.5% in the validation cohort, respectively. Both in 
training and validation cohorts, this dynamic nomogram 
was significantly superior to US, SMI, or SWE alone in 
predicting the risk of TI-RADS 4 nodules (P<0.05), possibly 
suggesting that SMI and SWE could complement each 
other. It was speculated that SMI could partially compensate 
for the effect of calcification on SWE, and furthermore, 
SWE could also provide elasticity information at the lesion. 
The advantage of dynamic nomogram is that clinicians can 
easily obtain the Nomo-score of each patient. We conclude 
that the optimal cut-off value of risk probability is 0.607, 
patients with Nomo-score more than 0.607 are classified as 
high-risk group, and patients with Nomo-score lower than 
0.607 are classified as low-risk groups. The proportion of 
patients with malignant thyroid nodules in the high-risk 
group was higher than that in the low-risk group in the 
training and validation cohorts, which indicates that the cut-

off value can be more effectively used on risk stratification.
There are several limitations in our study. First, it was 

a retrospective study, which may lead to some degree of 
selection bias. Second, the sample size of our study is 
relatively small and it needs to be further expanded. Finally, 
this study did not collect quantitative data on SMI which 
seems to provide more information.

Conclusions

The dynamic nomogram has been established by including 
additional US-derived modalities SMI and SWE, and it 
can accurately stratify the malignancy risk of TI-RADS 4 
thyroid nodules in order to assist clinical decision-making. 
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