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Abstract: Periodontal disease (PD) is one of the most common diseases in dogs. Although previous
studies have shown the potential of the antimicrobial peptide nisin for PD control, there is no
information regarding its influence in the development of antimicrobial resistance or horizontal gene
transfer (HGT). Nisin’s mutant prevention concentration (MPC) and selection window (MSW) were
determined for a collection of canine oral enterococci. Isolates recovered after the determination of the
MPC values were characterized for their antimicrobial profile and its nisin minimum inhibitory and
bactericidal concentrations. The potential of vanA HGT between Enterococcus faecium CCGU36804 and
nine clinical canine staphylococci and enterococci was evaluated. Nisin MPC values ranged from 400
to more than 600 µg/mL. In comparison with the original enterococci collection, the isolates recovered
after the determination of the nisin MPC showed increased resistance towards amoxicillin/clavulanate
(5%), vancomycin (5%), enrofloxacin (10%), gentamicin (10%) and imipenem (15%). The HGT of
vanA gene was not observed. This work showed that nisin selective pressure may induce changes
in the bacteria’s antimicrobial resistance profile but does not influence horizontal transfer of vanA
gene. To our knowledge, this is the first report of nisin’s MPC and MSW determination regarding
canine enterococci.

Keywords: nisin; mutant prevention concentration; mutant selection window; antimicrobial
susceptibility testing; horizontal gene transfer

1. Introduction

Periodontal disease is one of the most widespread inflammatory diseases in dogs [1,2], that results
from the establishment of a polymicrobial biofilm (dental plaque) on the teeth surface and a subsequent
local inflammatory response [3]. Recently, we proposed the use of a new nisin biogel as a promising
strategy to control this disease [4]. Nisin is an antimicrobial peptide, active mainly against Gram-positive
bacteria, including multi-drug-resistant bacteria [4–7], with demonstrated potential for medical
application [8]. However, considering that antimicrobial resistance is a major public health problem,
any antimicrobial compound under investigation for clinical purposes should be characterized for
the mechanisms responsible for resistance development and its environmental persistence [9,10].
Bacteria can become resistant to antimicrobial compounds by acquisition of resistance genes through
horizontal gene transfer (HGT), but resistance can also result from the accumulation of mutations
that decrease susceptibility [11,12]. Therapeutic protocols that favor mutant subpopulations may

Antibiotics 2020, 9, 890; doi:10.3390/antibiotics9120890 www.mdpi.com/journal/antibiotics

http://www.mdpi.com/journal/antibiotics
http://www.mdpi.com
https://orcid.org/0000-0002-5641-4400
https://orcid.org/0000-0002-3910-1525
http://dx.doi.org/10.3390/antibiotics9120890
http://www.mdpi.com/journal/antibiotics
https://www.mdpi.com/2079-6382/9/12/890?type=check_update&version=3


Antibiotics 2020, 9, 890 2 of 14

facilitate resistance development when compared with regimens that suppress mutant formation [11].
Thus, it is important to optimize the antimicrobial concentrations needed to prevent the selection
and amplification of resistant mutants [13]. In this context, the mutant selection window (MSW)
hypothesis, described by Zhao and Drlica, postulates that single-step resistant mutant subpopulations,
although naturally present, are selectively enriched and amplified when drug concentrations fall within
a specific range [14–16]. The MSW comprises a range of concentrations between the minimal inhibitory
concentration (MIC) and the mutant prevention concentration (MPC) [11]. The MIC is the lowest drug
concentration that inhibits the multiplication of the majority of susceptible cells, while MPC is the drug
concentration that blocks the growth of the least susceptible, first step mutant, when a high inoculum
is applied [11,14–19].

As described, resistance dissemination can also occur by HGT, which plays an important role in
the emergence of new pathogens [12,20]. The dental plaque biofilm is a perfect environment for the
transfer of resistance and virulence genes between bacteria [21]. Present in the oral cavity of dogs with
PD, commensal enterococci have a high genome plasticity, being capable of acquiring, conserving, and
disseminating genetic determinants, such as resistance genes, easily becoming opportunistic pathogens
and being associated with PD-systemic consequences [22,23]. In fact, vancomycin resistance associated
with the vanA gene is one of the most important antimicrobial resistance determinants associated with
vancomycin-resistant Enterococcus faecium, considered by WHO as a high priority pathogen [23,24].
This gene is usually present in the Tn1546 transposon, harbored in a plasmid, being transferred by
HGT [23,25,26]. Several studies demonstrated that vancomycin resistant enterococci (VRE) can transfer
vanA to other bacteria, such as staphylococci, which are commensals of the skin and mucosa of animals
and humans [23,26]. This transfer ability was associated by some authors to the presence of a pSK41-like
plasmids in the recipients [27,28]. Furthermore, a continuous antimicrobial pressure due to the presence
of sub inhibitory concentrations of antibiotics in the environment may contribute to the mobilization of
acquired resistance genes, being essential to understand how the application of new antimicrobial
compounds, such as antimicrobial peptides, can interfere with this phenomenon [26,29,30].

In this work, we determined the MSW of nisin from a previously characterized collection of
enterococci obtained from the oral cavity of dogs with PD [31]. The isolates recovered after the
determination of the MPC were collected and used to re-evaluate nisin’s inhibitory (MIC) and
bactericidal (MBC) concentrations, as well as their antimicrobial susceptibility profile against 11
antimicrobials relevant for veterinary medicine and public health. The influence of subinhibitory
concentrations of nisin in the horizontal transfer of vanA gene from Enterococcus faecium to canine
staphylococci and enterococci was also evaluated.

2. Results

2.1. Determination of the Nisin Mutant Prevention Concentration (MPC)

Nisin MPC values were determined regarding a previously characterized canine enterococci
collection, obtained from the oral cavity of dogs with PD [31]. These values, in combination with the
previously determined MIC values [1], allowed us to define the MSW of nisin towards the isolates
under study. In addition, the relationship between these values, expressed as the ratio MPC/MIC, was
determined, which can be used to compare antimicrobial agents for their ability to select resistant
mutants [14].

It was possible to determine the MPC values for 85% (n = 17) of the strains used, with the exception
of strains B28d, B29c and B32a, which presented an MPC higher than 600 µg/mL. The nisin MPC
values for the 17 strains ranged from 400 to 600 µg/mL, with an average MPC of 447.06 ± 84.84 µg/mL
(Table 1). Considering the nisin MPC/MIC, the resulting MPC values were 15 to 39 times higher than
the previously determined MIC values [4].
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Table 1. Minimum inhibitory concentration (MIC), mutant prevention concentration (MPC),
and MIC/MPC ratio of nisin against the enterococci collection obtained from the oral cavity of
dogs with periodontal disease (PD).

Isolates ID MIC (µg/mL) [1] MPC (µg/mL) MPC/MIC Ratio

M2b 12.75 400 31

M2c 15.75 400 25

M3b 14.75 400 27

M3d 15.75 400 25

M4a 21.50 600 28

M4c 26.75 400 15

M15b 19.25 600 31

M15d 15.25 600 39

M21a 12.50 400 32

M21c 16.00 400 25

M23a 12.50 400 32

M23c 12.50 400 32

M25a 12.50 400 32

M25c 12.50 400 32

M28a 10.50 400 38

M28d 8.50 >600 -

M29b 12.50 400 32

M29c 12.50 >600 -

M32a 17.50 >600 -

M32b 16.25 600 37

Average 14.90 447.06 32

SD 4.10 84.84 -

ID—identification, MIC—minimum inhibitory concentration, MPC—mutant prevention concentration,
SD—standard deviation.

2.2. Antimicrobial Susceptibility Testing

The antimicrobial susceptibility profiles of the original enterococci collection were compared
with the ones obtained with the bacterial isolates recovered from the MPC protocol plates with the
highest nisin concentrations. It was possible to observe that none of the isolates were susceptible to all
the antibiotics tested, being in fact resistant to more than one compound. In the original enterococci
collection, resistance levels ranged from 0% (imipenem and amoxicillin/clavulanate) to 100% (cefotaxime
and gentamicin-10 µg), while for the isolates recovered from the MPC protocol, the resistance
levels varied between 5% (amoxicillin/clavulanate) and 100% (cefotaxime and gentamicin−10 µg).
When compared with the original isolates, the MPC recovered isolates presented an increased resistance
towards amoxicillin/clavulanate (5%), vancomycin (5%), imipenem (15%), enrofloxacin (10%) and
gentamicin-120 µg (10%) (Table 2).

According to the definitions proposed by Magiorakos and collaborators (2012) [32], which indicate
that a multidrug-resistant Enterococcus spp. is non-susceptible to at least one agent in three or more
antimicrobial categories, in our study, 15 isolates (75%) in the original collection and 18 isolates (90%)
in the MPC recovered collection exhibited a multidrug-resistance profile.
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Table 2. Representation of the resistance levels of the enterococci from the original collection, obtained
from the oral cavity of dogs with PD, and the isolates recovered in the MPC protocol, determined by
disc diffusion method according to Clinical and Laboratory Standards Institute (CLSI) guidelines.

Antibiotic

Resistant Intermediate Susceptible

Number of
Original
Isolates

Number of
MPC

Recovered
Isolates

Number of
Original
Isolates

Number of
MPC

Recovered
Isolates

Number of
Original
Isolates

Number of
MPC

Recovered
Isolates

Ampicillin 3 3 0 0 17 17

Amoxicillin/clavulanate 0 1 3 2 17 17

Vancomycin 2 3 9 8 9 9

Imipenem 0 3 6 5 14 12

Cefotaxime 20 20 0 0 0 0

Enrofloxacin 16 18 4 2 0 0

Ciprofloxacin 11 11 9 9 0 0

Tetracycline 19 19 0 1 1 0

Doxycycline 17 17 2 2 1 1

Gentamicin 10 µg 20 20 0 0 0 0

Gentamicin 120 µg 4 6 0 0 16 14

Streptomycin 15 14 0 0 5 6

2.3. Determination of Nisin’s Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal
Concentration (MBC)

The isolates recovered after determination of the nisin MPC values were used to evaluate the
effect of nisin selective pressure on the nisin ’s MIC and MBC values, by comparison with the values
from the original collection [1].

MIC values of nisin regarding the isolates of the original collection and the isolates recovered in
the MPC protocol are presented in Table 3.

Concerning the isolates recovered after the determination of the MPC, nisin MIC values ranged
from 18.75 to 81.25 µg/mL, with an average value of 48.41 ± 21.62 µg/mL. MIC values were higher than
100 µg/mL for three isolates. MBC values ranged from 37.50 to 92.19 µg/mL, with an average value of
60.46 ± 19.40 µg/mL. An MBC value higher than 100 µg/mL was observed for eight isolates.

Nisin MIC results obtained against the MPC recovered isolates were higher and statistically
different (p-value < 0.05) when compared with the nisin MIC values of the original collection.
Concerning the MBC values, no statistical difference was observed between the results regarding the
isolates from the two collections; however, most isolates recovered in the MPC protocol showed higher
MBC values when compared with the original ones (65%, n = 13/20).

Table 3. MIC, MBC, and MBC/MIC ratio of nisin regarding the enterococci collection recovered after
MPC protocol and the original enterococci collection obtained from the oral cavity of dogs with PD.

Isolates ID

MIC (µg/mL) MBC (µg/mL) MBC/MIC Ratio

MPC Recovered
Isolates

Original
Isolates [1]

MPC Recovered
Isolates

Original
Isolates [1]

MPC Recovered
Isolates

Original
Isolates

M2b 29.17 12.75 45.83 73.00 1.57 5.73

M2c 29.17 15.75 41.67 85.50 1.43 5.43

M3b 39.58 14.75 43.75 60.25 1.11 4.08

M3d 60.42 15.75 >100 82.25 - 5.22
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Table 3. Cont.

Isolates ID

MIC (µg/mL) MBC (µg/mL) MBC/MIC Ratio

MPC Recovered
Isolates

Original
Isolates [1]

MPC Recovered
Isolates

Original
Isolates [1]

MPC Recovered
Isolates

Original
Isolates

M4a >100 21.50 >100 98.50 - 4.58

M4c >100 26.75 >100 >100 - -

M15b 79.69 19.25 >100 77.00 - 4.00

M15d >100 15.25 >100 86.50 - 5.67

M21a 76.56 12.50 >100 59.75 - 4.48

M21c 64.06 16.00 90.63 46.25 1.41 2.89

M23a 56.25 12.50 92.19 64.50 1.64 5.16

M23c 70.31 12.50 76.56 54.25 1.09 4.34

M25a 43.75 12.50 75.00 91.25 1.71 7.30

M25c 62.50 12.50 >100 72.25 - 5.78

M28a 81.25 10.50 >100 48.50 - 4.62

M28d 34.38 8.50 51.56 37.50 1.50 4.41

M29b 27.08 12.50 43.75 41.00 1.62 3.28

M29c 18.75 12.50 64.58 39.25 3.44 3.14

M32a 20.83 17.50 37.50 79.25 1.80 4.53

M32b 29.17 16.25 62.50 69.25 2.14 4.26

Average 48.41 14.90 60.46 66.63 1.71 4.70

SD 21.62 4.10 19.40 18.57 0.62 1.05

ID—identification, MIC—minimum inhibitory concentration, MBC—minimum bactericidal concentration,
MPC—mutant prevention concentration, SD—standard deviation.

2.4. Nisin’s Influence on vanA Horizontal Gene Transfer (HGT)

Bacterial acquired resistance by HGT is an important form of resistance dissemination [12].
The vanA gene is responsible for vancomycin resistance and its transfer between enterococci and
staphylococci is well documented [25]. To evaluate nisin’s influence in vanA transfer between
enterococci and staphylococci, first we assessed the presence or absence of vanA in the isolates under
study. In the case of staphylococci, we also evaluated the presence of mecA gene, associated with
methicillin resistance, and of the pSK41-like plasmid, that may prompt vanA transfer [23,28].

In the initial PCR screening, none of the isolates from the oral enterococci collection (n = 20)
presented the vanA gene. In addition, none of the six staphylococci obtained from canine skin lesions
presented the vanA and mecA genes or the pSK41-like plasmid. Then, three isolates from the enterococci
collection, M3b, M23a and M29b, were selected to participate in the HGT protocol, based on their
strong capacity of biofilm production [31].

Afterwards, two mating rounds aiming to promote HGT of the vanA gene from E. faecium
CCUG 36804 to nine clinical enterococci and staphylococci were performed. One round was
performed in the absence of antimicrobial environmental pressure, and another in the presence
of subinhibitory concentrations of nisin. None of the two mating experiments allowed the development
of transconjugants in the MSA plates supplemented with rifampicin and vancomycin. All isolates
recovered from the SBA and the MSA plates supplemented with rifampicin were submitted to PCR
analysis, the results of which confirmed the absence of the vanA gene.

3. Discussion

Antimicrobial resistance is considered one of the major health treats of our time [10,24]. Misuse,
overuse, and improper antimicrobial dosage promote a selective environmental pressure to bacteria,
favoring resistance development [9,10]. Nisin, commonly used as a preservative in the food industry,
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is showing relevance in the biomedical field, being a promising antimicrobial agent to be used for the
control of canine PD [4,33]. Despite the low resistance rate associated with this antimicrobial peptide,
a few cases of nisin resistance have been reported, reinforcing the need to unveil related mechanisms,
to evaluate its influence on dental plaque bacterial interaction, and to adopt correct doses to prevent
the emergence and amplification of nisin resistant strains [8,34,35].

The MSW hypothesis allows us to define a range of concentrations that can promote mutant’s
development, which is useful to evaluate dose regimens [14]. In the present work, the MPC values
of nisin against a collection of enterococci from the oral cavity of dogs with PD were determined.
The values obtained were up to 39 times higher than the previously determined MIC values for the
same isolates [4]. Similar results were also obtained for daptomycin against Enterococcus faecalis,
with MPC values being 2 to 32 times the MIC values [19]. In fact, several authors have used this
methodology to evaluate multiple antimicrobials and bacteria [36–43]. All these studies revealed high
MPC values in comparison with the MIC values for the same microorganism; however, a high variation
was observed between bacteria and drugs. For example, a MPC/MIC ratio of 48 to 72 was obtained for
fosfomycin against Escherichia coli, while for Pseudomonas aeruginosa the ratio was 28 to 57; likewise,
orbifloxacin presented a MPC/MIC ratio against E. coli of 4 to 32, while for P. aeruginosa the ratio was 16
to 64 [41,43]. In fact, Gianvecchio and collaborators (2019) suggested that MPC values present high
variability for a given bacterial strain–antimicrobial combination, and should be understood as a range
with confidence intervals, contrasting with MIC values [43,44].

To better understand the effect of nisin selective pressure over 72 h, as promoted in the
determination of the MPC, antimicrobial susceptibility profiling along with nisin’s MIC and MBC
determination were performed on the isolates obtained in the MPC protocol and results were compared
with the original collection.

Considering isolates’ antimicrobial susceptibility profile, differences in the resistance profile of
the isolates recovered after MPC protocol were observed when compared with those of the original
isolates, specifically concerning amoxicillin/clavulanate, vancomycin, imipenem, enrofloxacin and
gentamycin (120 µg). These results suggest a possible influence of nisin in increasing antimicrobial
resistance. Cross resistance between nisin and antimicrobials is rare; however, there are some reports
describing its occurrence [34,35,45]. Cross resistance may occur regarding antimicrobials that present
a similar mode of action, or when the resistance mechanisms are related [35]. Nisin acts by binding
to the lipid II, present in the bacterial membrane, which leads to pore formation and inhibition of
peptidoglycan synthesis [8]. Considering that, parallel mechanisms may be observed in resistance to
vancomycin, an antimicrobial that also acts on lipid II but in a different location, or in resistance to
antimicrobials that act on the bacterial wall, such carbapenems or aminopenicillins [5,46]. Resistance
to nisin is usually related to proteolytic degradation (by nisinase and nisin resistant protein); however,
there are descriptions suggesting that resistance can also arise from mutations that induce changes
in the membrane and cell wall composition, such as cell wall thickening, increased positive charges,
the presence of penicilin binding proteins and modifications of membrane phospholipid and fatty
acid composition [8,34,35,47]. Other nisin resistance mechanisms described so far are related to ABC
transporters and multiple regulatory networks [34].

In addition, Drlica (2003) showed that the mutants derived from the MPC protocol are expected
to develop mechanisms that inactivate the antimicrobial agent, including efflux or degradation
systems [11]. These mechanisms may explain the increased resistance towards enrofloxacin and
gentamicin, that act by inhibition of nucleic acid and protein synthesis, respectively [12].

Considering the MIC and MBC determinations, MIC values were higher and statistically different
(p-value ≤ 0.05) towards all the recovered isolates in comparison with those of the original collection,
while MBC values were higher regarding 65% of the recovered isolates in comparison with the originals.
These results suggest that incubation in the presence of nisin leads to a reduction in the inhibitory
activity, in spite of its bactericidal activity being maintained towards most isolates (60%, Table 3).
According to Levinson and collaborators (2009), an MBC/MIC ratio lower than four indicates that the
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antimicrobial agent is bactericidal [48]. As such, nisin presented a bactericidal activity towards 42% of
the isolates from the original collection [4]. On the other hand, nisin presented a bactericidal activity
against all isolates recovered from the MPC protocol, except for isolates with nisin MBC values higher
than 100 µg/mL.

Animals’ oral cavities present a high bacterial concentration and diversity [21]. Located at the
teeth surface, dental plaque is a highly complex polymicrobial biofilm where bacteria easily interact
and act as reservoirs of transferable resistance genes [21]. Enterococcus spp. are known to be a central
hub for resistance gene acquisition, conservation, and dissemination [23]. Classified by the WHO as
a high priority pathogen, vancomycin-resistant Enterococcus faecium, along with other enterococcal
species, are opportunistic pathogens frequently associated with nosocomial infections, and capable of
transferring relevant genes to other bacterial species such as Staphylococcus aureus, E. coli and Listeria
spp. [23,24,26]. In this work, a protocol aiming to promote the horizontal transfer of vanA from
E. faecium to Staphylococcus spp. and Enterococcus faecalis clinical isolates was established. This gene is
linked to vancomycin and teicoplanin resistance in enterococci, being harbored in a mobile genetic
element, allowing its transfer to other bacteria [26]. Mating experiments performed in the absence of
nisin selective pressure did not allow the transfer of vanA gene. Several studies demonstrated that vanA
transfer may be facilitated by some molecules, such as pheromone-inducible surface proteins, or be
related to the presence of specific plasmids, such as S. aureus pSK41 [28,49–51]. Although two of our
enterococci recipients (M3b and M23a) were able to express an aggregation substance—more specifically,
a pheromone-inducible surface protein that facilitates conjugative exchange [4,31,49,52]—no transfer
occurred. None of the staphylococcal recipients presented the pSK41 plasmid, which may have
influenced the results. Nevertheless, vanA gene horizontal transfer is a complex process which is not
yet fully understood.

It is known that the use of antimicrobials can enhance gene transfer between bacteria [26]. In order
to evaluate the influence of nisin in HGT, mating experiments were performed in the presence of this
antimicrobial peptide at subinhibitory concentration [4]. None of the recipients presented the vanA
gene after the mating experiments, reinforcing the potential of nisin to be used in the clinical setting,
more precisely in veterinary medicine for canine PD control.

To our knowledge, this is the first report of nisin’s MPC and MSW determination regarding canine
enterococci and of its influence on gene transfer between enterococci and staphylococci. This approach
is an important step in the development of new antimicrobial compounds, allowing to understand
their potential influence in resistance evolution.

4. Materials and Methods

4.1. Bacterial Collection

A collection of 20 oral enterococci obtained from the oral cavity of dogs diagnosed with PD,
previously characterized regarding clonality, antimicrobial resistance and virulence profiles, were used
as bacterial models [31]. From these 20 isolates, 17 correspond to strains belonging to the species
Enterococcus faecalis, and the remaining 3 to Enterococcus faecium [4].

For the HGT protocol, one Staphylococcus aureus and five Staphylococcus pseudintermedius obtained
from canine skin lesions and an Enterococcus faecium reference strain (CCUG 36804, vanA positive)
were used.

Enterococcus faecalis ATCC® 29212, Staphylococcus aureus ATCC® 25293, a Staphylococcus aureus
mecA positive strain kindly provided by Dr. Birgit Strommenger, Robert Koch Institute, Germany, and
a Staphylococcus aureus RN4220 pGO1 positive strain kindly provided by Dr. Alex O’Neill, University
of Leeds, were included as controls.
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4.2. Nisin Preparation

A nisin stock solution (1000 µg/mL) was obtained by dissolving 1 g of nisin powder (2.5% purity,
1000 IU/mg, Sigma-Aldrich, St. Louis, MO, USA) in 25 mL of HCl (0.02 M) (Merck, Darmstadt,
Germany) [4]. Then, the stock solution was filtered using a 0.22 µm Millipore filter, and serial dilutions
were prepared in distilled sterile water. Solutions were kept at 4 ◦C during the study.

4.3. Determination of the Nisin Mutant Prevention Concentration (MPC)

To determine the MPC of nisin against the canine oral enterococci collection [31], a modified
version of the protocol described by Sinel and collaborators (2016) was performed [19]. Briefly,
each isolate was spread onto three brain heart infusion (BHI) agar plates (VWR, Leuven, Belgium) and
incubated for 24 h at 37 ◦C. Afterwards, all the bacterial lawn developed in the three BHI plates was
resuspended in 450 µL of BHI broth and further incubated at 37 ◦C for 20 min, to achieve a bacterial
suspension of 1010 CFU/mL, which was confirmed by viable cell count. Then, an aliquot of 50 µL of
this bacterial suspension was inoculated onto Mueller–Hinton (MH) agar plates (Oxoid, Hampshire,
UK), supplemented with two-fold concentration increments of nisin ranging from 6.25 to 40× the
MIC value of 14.9 µg/mL [4]. Thus, the MH agar plates series contained 6.25, 15, 25, 50, 100, 200, 400,
600 µg/mL of nisin, previously determined. Plates were incubated at 37 ◦C for 72 h and observed daily
for detection of colony growth.

MPC was defined as the lowest concentration of nisin that prevented the growth of any resistant
mutant subpopulations after a 72 h incubation period [19]. It was also possible to establish the
mutant selection window (MSW) of nisin for the collection of oral enterococci isolates from dogs,
a value defined as the antimicrobial concentration ranging between the MIC and MPC values [11,15].
In addition, colonies grown in MH plates with the higher nisin concentration were isolated and kept
at −80 ◦C in a solution of buffered peptone water with 20% glycerol. These isolates were classified
as MPC recovered isolates and further used for antimicrobial profiling and for the determination of
nisin’s MIC and MBC.

4.4. Antimicrobial Susceptibility Testing

Antimicrobial susceptibility profiling was performed regarding the original clinical isolates
and those recovered after the MPC protocol to determine if incubation in the presence of nisin
interferes with the susceptibility profiles. Using the disk diffusion method, the susceptibility profile
regarding a total of 11 different antibiotics, (MASTDISCS® AST, Mast Group, Liverpool, UK), presented
in Table 4, was determined in accordance with the Clinical and Laboratory Standards Institute
(CLSI) guidelines [53,54]. For that, a 0.5 MacFarland bacterial suspension was prepared for each
isolate. Afterwards, the inoculum was evenly spread over the surface of a MH agar plate and the
disks impregnated with the antimicrobial agents were placed over the surface of the agar plate.
Plates were then incubated at 37 ◦C under aerobic conditions for 18 h or, in the case of vancomycin,
24 h. After incubation, the inhibition zone diameters were measured and compared with the CLSI
standard breakpoints established in VETS01-S2 and M100S, allowing to define the antimicrobial profile
(resistant, intermediate or susceptible) of each isolate regarding the antimicrobial agents tested [53,54].
Quality control was performed using the reference strain Staphylococcus aureus ATCC® 25293.

Antibiotics were selected based on their relevance to veterinary medicine, as well as to public
health. Specifically, CN-120 µg and S-300 µg were included to detect high-level aminoglycoside
resistance in Enterococcus spp., whereas IMI and VA were chosen due to their importance to public
health [53–55].
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Table 4. Antimicrobial agents used in the antimicrobial susceptibility test, grouped by mechanism of
action, class and concentration [46].

Mechanism of Action Antimicrobial Class Antimicrobial Drug Concentration
(µg Per Disk)

Inhibition of
cell-wall synthesis

Aminopenicillins
Ampicillin (AMP) 10

Amoxicillin/Clavulanate *
(AMX) 30

Glycopeptides Vancomycin (VA) 30

Carbapenems Imipenem (IMI) 10

Cephalosporins Cefotaxime (CTX) 30

Inhibition of
nucleic acid synthesis Fluoroquinolones

Enrofloxacin (ENR) 5

Ciprofloxacin (CIP) 5

Inhibition of
protein synthesis

Tetracyclines Tetracycline (T) 30

Doxycycline (DTX) 30

Aminoglycosides Gentamicin (CN) 10/120

Streptomycin (S) 300

* Beta lactamase inhibitor.

4.5. Determination of Nisin’s Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal
Concentration (MBC)

Nisin MIC determination was performed regarding the isolates recovered after the MPC protocol
using the broth microdilution method, to assess their current susceptibility to nisin, as previously
described by Cunha and collaborators (2018) [4]. Briefly, a 96-well microplate was filled with 20 µL of
nisin solution at different concentrations (final nisin concentrations ranged from 1.25 to 100 µg/mL)
and 180 µL of 106 CFU/mL bacterial suspensions of each isolate. A negative control with only tryptic
soy broth (TSB) medium (VWR, Leuven, Belgium) and positive controls with bacterial suspensions
were also included.

The 96-well microplates were incubated at 37 ◦C for 24 h, after which bacterial growth was visually
assessed in order to determine MIC value. This parameter is defined as the lowest nisin concentration
capable of preventing bacterial multiplication in vitro, with no visible growth on the well [4].

Subsequently, after MIC assessment, the MBC was determined. Five microliters of the bacterial
suspension from each well with no visible growth were plated onto tryptic soy agar (TSA) plates
(VWR, Leuven, Belgium), followed by incubation at 37 ◦C for 24 h. MBC was defined as the lowest
antimicrobial concentration that inhibits bacterial growth after sub-culture of the suspensions on solid
unselective media without any antimicrobial agent [6].

These assays were performed in triplicate, on independent days, and 10% of replicates were tested
to assure results representability.

4.6. Nisin’s Influence on vanA Horizontal Gene Transfer (HGT)

4.6.1. DNA Extraction and Isolates PCR Screening

DNA extraction was performed based on the protocol described by Semedo-Lemsaddek et al.
(2016) and Mottola et al. (2016) [22,56]. Then, all canine staphylococci and enterococci were evaluated by
multiplex PCR, in order to identify the presence of the gene vanA and mecA [57]. Two pairs of primers
synthesized by STABVIDA® (Lisbon, Portugal), targeting vanA (5′ GGGAAAACGACAATTGC
3′ and 3′ GTACAATGCGGCCGTTA 5′) and mecA (5′ TCCAGATTACAACTTCACCAGG 3′ and
3′CCACTTCATATCTTGTAACG 5′) were used [56,57]. The PCR mixture had a final volume of 28.5 µL,
with 10 µL of Supreme NZYTaq 2× Green Master Mix (NZYtech®, Lisbon, Portugal), 0.5 uM of the
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vanA primer, 0.4 uM of the mecA primer, 16.88 µL of PCR-grade water and 5 µL of DNA template.
PCR amplification was completed using the conditions: initial denaturation at 94 ◦C for 4 min; 10 cycles
involving denaturation at 94 ◦C for 30 s, annealing at 64 ◦C for 30 s and elongation at 72 ◦C for 45 s;
25 cycles involving denaturation at 94 ◦C for 30 s, annealing at 50 ◦C for 45 s and elongation at 72 ◦C for
2 min, and a final extension step at 72 ◦C for 10 min. Electrophoresis (90 V for 45 min) was performed
to evaluate the amplified products, using a 1.5% agarose gel (NZYtech®, Lisbon, Portugal) stained
with GreenSafe (NZYtech®, Lisbon, Portugal). A molecular weight marker, NZYDNA ladder VI
(NZYtech®, Lisbon, Portugal) was also included. Results were visualized by transillumination.

Two positive control strains, Staphylococcus aureus 01-00694 (mecA positive) and Enterococcus
faecium CCUG 36,804 (vanA positive), were included [56].

In addition, the presence of the pSK41-like plasmid in the 6 canine staphylococci under
study was evaluated by PCR, using a primer targeting the traE gene (5′ ACAAATGCGTA
CTACAGACCCTAAACGA 3′ and 3′GCCCTGCTGTTGCTGTATCCATATT 5′), synthesized by
STABVIDA® [28,58].

A PCR mixture composed by 10 µL of Supreme NZYTaq 2×Green Master Mix (NZYtech®, Lisbon,
Portugal), 0.4 uM of traE primer; 39.2 µL of PCR-grade water and 5 µL of DNA template was used.
The PCR amplification was completed using the following conditions: initial denaturation at 94 ◦C for
2 min; 30 cycles involving denaturation at 95 ◦C for 15 s, annealing at 55 ◦C for 90 s and elongation at
72 ◦C for 90 s, and a final extension step at 72 ◦C for 7 min [28].

An electrophoresis (90 V for 45 min) was performed to evaluate the amplified products, using a
1.5% agarose gel (NZYtech®, Lisbon, Portugal) stained with GreenSafe (NZYtech®, Lisbon, Portugal).
A molecular weight marker, NZYDNA ladder VII (NZYtech®, Lisbon, Portugal), was also included.
Results were visualized by transillumination.

A positive control strain, Staphylococcus aureus RN4220 (pGO1 positive), was included in the PCR
amplification protocol [59].

4.6.2. HGT Protocol

To test if selective pressure due to the presence of subinhibitory concentrations of nisin induces
HGT, a protocol adapted from Niederhäusern and collaborators (2011) was developed [25]. Mating
experiments were performed in two rounds, using the VRE rifampicin susceptible (Vanr Rifs)
Enterococcus faecium CCUG 36804 strain, as donor of the vanA gene, and as recipients the 6 canine
staphylococci from canine skin lesions, and 3 canine Enterococcus faecalis isolates from our collection of
enterococci from the oral cavity of dogs with PD, selected according to their strong biofilm forming
ability. All recipients were susceptible to vancomycin, and rifampicin resistance was induced (Vans

Rifr) [25], as it is associated with a point mutation rather than to an acquired gene [60]. After performing
a 0.5 MacFarland suspension in 0.9% NaCl for each isolate, 500 µL of the donor suspension and 500 µL
of the suspension of one of the recipients were inoculated into 5 mL of TSB and incubated at 37 ◦C for
18 h. After incubation, 1 mL of the dual bacterial suspension was added to 5 mL of TSB and further
incubated for 6 h at 37 ◦C. Afterwards, 2 mL of each dual suspension were inoculated in TSA plates
and incubated for 5 h at 37 ◦C in a slight movement on a shaker, to promote mating. Then, plates were
incubated at 37 ◦C for 24 h, after which the bacterial suspension that remained at the surface of the agar
plates was removed and inoculated in 5 mL of TSB. After an incubation period of 12 h at 37 ◦C, 100 µL
of the suspension was inoculated in Mannitol Salt agar (MSA, PanReac AppliChem, Barcelona, Spain)
supplemented with rifampicin (64 µg/mL, PanReac AppliChem, Barcelona, Spain) and vancomycin
(8 µg/mL, PanReac AppliChem, Barcelona, Spain), to select for transconjugants. If mating occurred,
recombinant isolates developed should be resistant to rifampicin and vancomycin. In addition,
the suspension was also inoculated in Manitol Salt Agar (MSA, PanReac AppliChem, Barcelona, Spain)
and Slanetz and Bartley agar (SBA, PanReac AppliChem, Barcelona, Spain) supplemented only with
rifampicin (64 µg/mL).
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The second mating round was performed in the presence of nisin, with all the media used being
supplemented with nisin at sub-MIC concentration, 7.45 µg/mL for enterococci [4] and 5.63 µg/mL for
staphylococci [6]. All recovered isolates and transconjugants recovered from the supplemented media
were submitted to a PCR analysis to detect the presence of the vanA gene.

4.7. Statistical Analysis

Data statistical analysis was carried out using Microsoft Excel 2016®. All quantitative data are
expressed as means ± standard deviation. Student’s t-test was used for statistical analysis of the nisin
MIC and MBC values regarding the original collection and the collection recovered after MPC protocol.
A confidence interval of 95% was considered, with a p-value ≤ 0.05 indicating statistical significance.

5. Conclusions

Periodontal disease is a highly prevalent inflammatory disease in dogs, and nisin might be a
promising molecule for its control. The study of nisin influence on mutant’s development, antimicrobial
signatures and transfer of resistance determinants revealed that this compound can influence isolates
antimicrobial profiles. MPC and MSW determinations can be an interesting measure to establish
more accurate treatment protocols based on appropriate antimicrobial doses. However, the utility of
the MSW in the definition of dose regimens must be demonstrated not only in vitro but also in vivo.
In addition, this study showed that nisin did not promote horizontal transfer of the vanA gene between
the isolates tested, which emphasizes its potential to be used in PD control. To our knowledge, this is
the first report of nisin’s MPC and MSW determination regarding canine enterococci, being a relevant
step towards its application in both human and veterinary medicine.
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