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Abstract: Objectives: The objective of this study was to assess the feasibility and accuracy of a fully
automated artificial intelligence (AI) powered coronary artery calcium scoring (CACS) method on
ungated CT in oncologic patients undergoing 18F-FDG PET/CT. Methods: A total of 100 oncologic
patients examined between 2007 and 2015 were retrospectively included. All patients underwent
18F-FDG PET/CT and cardiac SPECT myocardial perfusion imaging (MPI) by 99mTc-tetrofosmin
within 6 months. CACS was manually performed on non-contrast ECG-gated CT scans obtained from
SPECT-MPI (i.e., reference standard). Additionally, CACS was performed using a cloud-based, user-
independent tool (AI-CACS) on ungated CT scans from 18F-FDG-PET/CT examinations. Agatston
scores from the manual CACS and AI-CACS were compared. Results: On a per-patient basis, the AI-
CACS tool achieved a sensitivity and specificity of 85% and 90% for the detection of CAC. Interscore
agreement of CACS between manual CACS and AI-CACS was 0.88 (95% CI: 0.827, 0.918). Interclass
agreement of risk categories was 0.8 in weighted Kappa analysis, with a reclassification rate of 44%
and an underestimation of one risk category by AI-CACS in 39% of cases. On a per-vessel basis,
interscore agreement of CAC scores ranged from 0.716 for the circumflex artery to 0.863 for the left
anterior descending artery. Conclusions: Fully automated AI-CACS as performed on non-contrast
free-breathing, ungated CT scans from 18F-FDG-PET/CT examinations is feasible and provides an
acceptable to good estimation of CAC burden. CAC load on ungated CT is, however, generally
underestimated by AI-CACS, which should be taken into account when interpreting imaging findings.

Keywords: artificial intelligence; coronary artery calcium scoring; coronary artery disease; deep
learning; positron emission tomography

1. Introduction

Hybrid 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET) with
computed tomography (CT) has evolved as an important imaging modality for staging
and restaging of oncological patients [1]. Clinical 18F-FDG PET/CT examinations consist
of a PET scan and a non-contrast, free-breathing, ungated CT. The CT is used for (a) PET
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attenuation correction but (b) also includes relevant morphological information regarding
disease/tumor extent. Even though the appropriate oncological diagnosis and treatment
planning is the primary concern in cancer patients, relevant comorbidities should not
be underestimated and should ideally be described in the imaging report. Indeed, a
recent population-based study including more than 3 million cancer patients indicated that
the highest number of cardiovascular deaths occurred in the first year following initial
cancer [2].

Coronary artery calcium (CAC) is an important biomarker in patients with coronary
heart disease (CHD) [3,4]. Increased CAC scores are strongly associated with cardiovascular
mortality and all-cause mortality [3]. Hybrid 18F-FDG PET/CT examinations are generally
not suited for the comprehensive evaluation of CAC or CHD, as the CT scan is neither
acquired nor reconstructed with the appropriate scan parameters as recommended for
dedicated cardiac CT calcium scans. Therein, the lack of ECG-gating, the use of iterative
reconstruction algorithms, and the specific choice of field of view, slice thickness, kernel,
and tube voltage can be challenging [5–7]. Nonetheless, an opportunistic screening resulting
in the rough estimation of the coronary disease burden by means of CAC would be
highly desirable; indeed, this was recommended in a recent consensus statement of the
British Societies of Cardiovascular Imaging/Cardiac Computed Tomography and Thoracic
Imaging [8]. Optimally, this assessment (i.e., CAC scoring, CACS) should be performed
fully automatically so that the physician can continue to focus on the oncological workup
of the scan. With recent advances in the field of artificial intelligence (AI) for medical
imaging [9–12], deep-learning (DL) powered calcium scoring tools have been developed
that allow for the quantitative assessment of CAC in a fully automated manner [11–14].

Given the considerations outlined above, these tools would be suited for the op-
portunistic assessment of CAC in patients undergoing oncologic 18F-FDG PET/CT ex-
aminations, as quantitative CAC scores are provided without having to perform CAC
scoring manually.

In this study, we sought to test the feasibility of such an approach. Specifically, we
assessed the quantitative accuracy of an AI-powered CACS tool in estimating CAC from
CT scans acquired during oncologic 18F-FDG PET/CT examinations using manual CACS
measurements from a dedicated cardiac imaging workup as the standard of reference.

2. Material and Methods
2.1. Study Population and Study Design

This study was approved by the local ethics committee (BASEC No. 2017- 01112; Kan-
tonale Ethikkommission, Kanton Zürich, Switzerland; secondary approval on 07.04.2021),
and the need for informed consent was waived due to the retrospective nature of the study.
The study population was partly shared in previous studies [1,15]. Our study popula-
tion was selected from a retrospective cohort study of consecutive patients undergoing
(a) a whole-body 18F-FDG-PET/CT for malignant disorders at the University Hospital of
Zurich between November 2007 and February 2015, and (b) 1-day stress/rest (regadenoson,
adenosine, dobutamine, or exercise) myocardial perfusion imaging by 99mTc-tetrofosmin
single-photon emission computed tomography (SPECT-MPI) including non-contrast, ECG-
gated CT for attenuation correction within 6 months of 18F-FDG-PET/CT imaging to
evaluate known or suspected CAD (Figure 1). CAC scoring was performed manually
on the dedicated non-contrast ECG-gated CT scans (120 kV, reconstructed with weighted
filtered back projection, a slice thickness of 3 mm, and an increment of 1.5 mm) as obtained
during myocardial perfusion imaging by two experienced physicians in consensus (i.e.,
reference standard) using a dedicated software program (Smartscore, GE Healthcare, Mil-
waukee, WI, USA) [16]. Out of 100 selected patients, 20 patients were identified with a CAC
score of 0, 16 patients with a score of 1–100, 23 patients with a score of 101–400, and 41 pa-
tients with a score of >400. An overview of the patient demographics is provided in Table 1.
Next, scores from manual CACS as performed on dedicated non-contrast ECG-gated CT
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scans (i.e., reference standard) were compared to scores from AI-CACS as performed on
CT scans from 18F-FDG-PET/CT imaging (see: Section 2.3).
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Table 1. Demographics of study patients (n = 100).

Female/Male 34/66

Age, years 66 ± 11.4 (32–91)
Weight, kg 74.2 ± 16.5 (46.8–140.0)
Height, cm 169.8 ± 9.6 (135–200)

BMI, kg/m2 25.6 ± 5.2 (17.2–47.3)
Primary Tumor, n (%)

Head and neck cancer 11%
Lung or pleural cancer 12%
Rectal or colon cancer 13%
Esophageal cancer 20%
Liver tumor 5%
Breast cancer 7%
Pancreatic and biliary cancer 8%
Lymphoma 4%
Others 20%

BMI: body mass index, presented as % and mean ± SD (range).

As a preliminary proof-of-concept, we also tested whether manual CACS and AI-
CACS can theoretically be performed on all datasets (i.e., non-contrast ECG-gated CT scans
from SPECT-MPI and CT scans from 18F-FDG-PET/CT imaging) effortlessly. Thus, manual
CACS and AI-CACS was performed on all datasets of 15 patients. These data are provided
solely in the Supplementary Material.
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2.2. Whole Body 18F-FDG PET/CT Including Ungated CT

Patients underwent PET/CT imaging from skull to pelvis one hour after injection of
18F-FDG (including a non-contrast, free-breathing, ungated CT scan). Images were acquired
in 3D mode on a Discovery VCT or Discovery RX scanner (GE-Healthcare, Milwaukee,
WI, USA). PET/CT and CT images were merged and analyzed using Advantage Window
Volume Viewer software (GE-Healthcare, Milwaukee, WI, USA) [1].

2.3. Fully Automated AI-CAC Scoring

AI-CACS was performed with a fully automated deep-learning based CAC scoring
tool (AVIEW CAC, Coreline Soft, access via https://cloud.corelinesoft.eu/login accessed
on 1 May 2022). In brief, the software was developed based on a 3-dimensional U-net
architecture using non-enhanced cardiac CT scans acquired from multiple vendors and
scanners. A more detailed description of the network architecture and the algorithm,
including information on initial training datasets and validation procedures, can be found
elsewhere [17,18]. No training data were included in this current study [14,17]. Thus, this
study represents an external validation and test of the AI-CACS algorithm under clinically
realistic conditions. Initially, the non-contrast, free-breathing, ungated CT scans from
the 18F-FDG PET/CT examination were postprocessed in the hospital’s PACS system by
cropping the image series. Specifically, a second dataset encompassing all images from
the lung apex to the lung base was generated for each patient. This anonymized image
series was then transferred to the AI tool. Fully automated CACS was then performed
without any further user input. The results from CACS were then summarized in a report
generated by the AI tool.

2.4. Statistical Analysis

The data were initially presented with descriptive statistics. Diagnostic accuracy
parameters were computed to quantify the AI tool’s ability to correctly identify coronary
calcium relative to the reference standard. Quantitative CAC scores between the AI tool and
the reference standard were compared by means of intraclass correlation coefficient (ICC)
analysis, linear regression modelling, and Bland–Altman analysis. Interclass agreement of
CAC risk category classes was quantified by means of weighted Kappa analysis. For ICC
and weighted Kappa analysis, the following scale was considered for results interpretation:
poor (ICC, k < 0.20), fair (ICC, k = 0.21–0.40), moderate (ICC, k = 0.41–0.60), good (ICC,
k = 0.61–0.80), and excellent (ICC, k = 0.81–1.00) agreement [19]. All statistical analyses
were performed in the R programming language (https://www.r-project.org accessed on
1 May 2022).

3. Results

A total of 100 patients who underwent both whole-body 18F-FDG PET/CT and SPECT-
MPI (including a dedicated ECG-gated CACS) within a 6-month period were enrolled. In
all patients, the AI-CACS tool successfully managed to process the dataset (i.e., ungated
low dose CT).

3.1. Diagnostic Accuracy of AI-CACS for the Detection of Coronary Calcifications

The sensitivity of the AI-CACS tool for the detection of coronary calcifications analyzed
per-patient was 85.0%, and analyzed per-coronary artery analysis 74.5% (left main, LM),
82.0% (left anterior descending, LAD), 64.2% (left circumflexus, LCX), and 61.7% (right
coronary artery, RCA), respectively. Further results of the per-patient and per-coronary
artery diagnostic performance of AI-CACS are presented in Table 2.

https://cloud.corelinesoft.eu/login
https://www.r-project.org
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Table 2. Diagnostic performance of AI-CACS with manual CACS as reference. Data are shown per
patient and per coronary artery.

Per Patient Per Coronary Artery

All Patients LM LAD RCX RCA

Sensitivity 85.0%
(77.2–92.8%)

74.5%
(62.5–86.5%)

82.0%
(73.4–91.0%)

64.2%
(51.2–77.1%)

61.7%
(49.4–74.0%)

Specificity 90.0%
(76.9–100%)

79.6%
(68.3–90.9%)

100%
(100–100%)

95.7%
(90.0–100%)

95.0%
(88.2–100%)

Diagnostic
accuracy

86.0%
(77.6–92.1%)

77.0%
(67.5–84.8%)

87.0%
(78.8–92.9%)

79.0%
(69.7–86.5%)

75.0%
(65.3–83.1%)

PPV 97.1%
(93.2–100%)

79.2%
(67.7–90.7%)

100%
(100–100%)

94.4%
(87.0–100%)

94.9%
(88.0–100%)

NPV 60.0%
(42.5–77.5%)

75.0%
(63.2–86.8%)

67.5%
(53.0–82.0%)

70.3%
(59.1–81.5%)

62.3%
(50.1–74.4%)

Total, n 100 100 100 100 100
True positive, n 68 38 60 34 37

False negative, n 12 13 13 19 23
True negative, n 18 39 27 45 38
False positive, n 2 10 0 2 2

LM left main, LAD left anterior descending, RCX ramus circumflex, RCA right coronary artery, PPV positive
predictive value, NPV negative predictive value. Data are presented as sensitivity, specificity, diagnostic accuracy,
PPV, and NPV % (95% confidence interval).

3.2. Quantitative Agreement of AI-CACS with Manual CACS

Interscore agreement (i.e., ICC) of CAC scores between the AI tool and manual mea-
surements as the reference standard was 0.88 (95% CI: 0.827, 0.918). The linear regression
model between CAC scores of the AI tool and the reference standard (Figure 2) revealed an
R2 of 0.84, an intercept of 180, and a slope of 1.2. Bland–Altman analysis showed a bias
of 274.8 and a lower and upper limit agreement of −714.9 and 1264.5, respectively (see
Figure 2). On a per-vessel basis, interscore agreement was 0.761 (95% CI: 0.664, 0.831) for
LM, 0.863 (95% CI: 0.803, 0.906) for LAD, 0.716 (95% CI: 0.605, 0.799) for CX, and 0.812 (95%
CI: 0.733, 0.869) for RCA.
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Figure 2. Scatter plot depicting a linear regression model between CAC scores from AI-CACS and
manual CACS (A) as well as a Bland–Altman plot showing the relationship between CAC scores
from AI-CACS and manual CACS (B).

In terms of risk category classes (Table 3), a weighted Kappa score of 0.800 was found
for the interclass agreement between the AI tool and the reference standard. Reclassification
of risk category occurred in 44 cases (44%), of which there was shifting by one category
in 39 cases (89%) and by two categories in 5 cases (11%). In 42 cases (42%), the AI tool
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underestimated the risk category, whereas in 2 cases (2%), the AI tool overestimated the
CAC burden (risk class 1 instead of risk class 0).

Table 3. Confusion matrices of risk categories between AI-CACS and manual CACS. Weighted Kappa
values were 0.8.

Manual CACS
AI-CACS

Total Underestimation a Overestimation a Concordance a
0 1–100 101–400 >400

0 18 2 0 0 20 - 2 (10.0%) 18 (90.0%)
1–100 11 5 0 0 16 11 (68.8%) 0 5 (31.2%)

101–400 1 17 5 0 23 18 (78.3%) 0 5 (21.7%)
>400 0 4 9 28 41 13 (31.7%) - 28 (68.3%)

CACS coronary artery calcium scoring; a i.e., manual coronary artery calcium scoring as reference.

Representative cases of the AI-CACS tool correctly identifying the coronary cal-
cium burden in a patient are presented in Figure 3. Further examples presenting false
negative findings as well as the two patients of the study cohort that were falsely
classified to have an Agatston Score > 0 (i.e., false positive findings) are presented in
Figures 4 and 5, respectively.
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Figure 3. Representative CT images of a 69-year-old man with a body mass index of 26.3 kg/m2

with severe coronary artery calcifications. Images from ungated CT from a PET/CT performed for
restaging of a rectal adenocarcinoma are presented in the upper row, and dedicated gated CAC CT
from myocardial perfusion single photon emission computed tomography performed 99 days later
are presented in the lower row. Coronary calcifications in the left main (LM), left anterior descending
(LAD), ramus circumflexus (RCX), and right coronary artery (RCA) including the distal segment
(asterisk), were correctly marked by the AI-CACS tool resulting in a score of 865. The score from the
dedicated CAC scan was 942.
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Figure 4. Representative false negative markings from the AI-CACS tool on ungated CT from PET/CT
in a 73-year-old man undergoing PET/CT. Dedicated gated coronary calcium scan showed small
coronary calcifications in the right coronary artery (A) and left anterior descending as well as left
circumflex artery (B). However, the calcifications are not depicted on ungated low dose PET/CT
(C,D) performed for staging of lung cancer.
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Figure 5. Two representative false-positive ratings from the AI-CACS tool on ungated CT from
PET/CT. No coronary calcifications are present in a 66-year-old woman undergoing PET/CT for
staging of gastric cancer (A), however, small calcifications of mitral valve were falsely marked as
ramus circumflexus CAC. In another 66-year-old male patient (B), no CAC was found in dedicated
gated CAC scan, however, small areas of increased density due to image noise adjacent to a pacemaker
electrode were marked as calcification. Note: Pink areas are highlighing dense areas in the CT image
(i.e., bone or calcification), with the circles indicating coronary artery calcification.
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4. Discussion

In this retrospective study, we aimed to assess the value of a fully automated AI tool
to accurately quantify CAC in patients undergoing non-contrast free-breathing ungated CT
as part of an oncologic 18F-FDG PET/CT examination.

Our data indicate that the AI tool manages to detect and quantify CAC with acceptable
to good accuracy without requiring any user input. However, AI-CACS from ungated
CT generally underestimates CAC burden, which should be kept in mind. Nonetheless,
this study further provides evidence that CAC scores can be extracted effortlessly from
various types of CT scans, thus potentially expanding the diagnostic value and impact of a
given examination.

Following a recent consensus statement from the British Societies of Cardiovascular
Imaging/Cardiac Computed Tomography and Thoracic Imaging, physicians are urged
to report incidental coronary calcifications on all CT scans covering the chest, as CAC
is an important marker of CAD in both symptomatic and asymptomatic patients [8].
Specifically, CAC is associated with a poorer prognosis in various patient groups, including
cancer patients. Notably, a sub-analysis of the National Lung Screening Trial showed that
CAC scores of >100 were associated with a four to sevenfold increase in mortality risk
as compared to patients without CAC [20]. For CAC grading, the authors recommend
using a semi-quantitative ordinal scoring system instead of the conventional quantitative
Agatston scoring system. While the authors acknowledge that the Agatston scoring system
represents the gold standard assessment for CAC, they point out that the additional time
effort and use of dedicated software may prevent physicians from implementing and
performing CACS on non-dedicated CT scans, as in the case of PET/CT imaging [8].

In the current study, we present a viable approach that enables physicians to extract
quantitative Agatston scores from ungated CT scans as acquired for attenuation correction
of oncologic PET scans. This AI tool runs fully automatically without any further user
input and generates a detailed CACS report that can directly be sent to the user or to
the institutions’ PACS. Notably, the tool has previously been validated by Vonder et al.,
who tested the tool’s performance relative to manual CACS measurements in a cohort of
997 patients who had undergone a dedicated cardiac CT protocol, including calcium scans,
as part of a cardiovascular screening program. The authors found an interscore agreement
of 0.958 and an interclass agreement of 0.96 for risk categories, thus confirming the AI tool’s
ability to perform CACS accurately on dedicated cardiac calcium CT scans [14].

In contrast, we found an interscore agreement of 0.88 and an interclass agreement
of 0.800 for risk categories. In this regard, it should be noted that dedicated calcium
scans are performed in breath-hold and with ECG-gating. This is not the case for the
CT acquired during PET/CT examinations and may therefore significantly impact CAC
quantification accuracy. Specifically, it has been shown that the calcium load can be
underestimated on ungated CT scans [21–24]. Furthermore, it should be noted that the
acquisition and reconstruction parameters of the CT scan from PET/CT imaging may differ
from those recommended for a dedicated cardiac calcium scan. For example, the latter
should be performed at 120 kV and should be reconstructed with weighted filtered back
projection [5,7].

Despite these differences and challenges, our AI tool achieved an acceptable to good
performance in detecting and quantifying CAC. Specifically, although reclassification of
risk categories frequently occurred (44% of cases), risk categories nearly always (i.e., 89%)
shifted by only one category. Furthermore, in nearly all cases, the risk category was
underestimated by the AI tool, which may partially be due to the inherent limitations of
an ungated CT scan for CAC detection. When interpreting CAC scores as obtained from
AI-CACS on CT scans from PET/CT, this should be kept in mind nonetheless.

Finally, we would like to emphasize that we did not further optimize the AI tool prior
to study onset by performing any specific or further training on our dataset. Thus, the
data used in the current study represent a true validation set. In this regard, it should
be noted that the performance of the AI tool may be further improved in the future by
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training the algorithm with further study/institution specific data. Importantly, we suspect
that additional training with ungated CT scans may prove valuable in improving the
tools accuracy.

Our study has the following limitations: First, this was a retrospective single-center
study with a limited number of subjects. Nonetheless, despite the specific and selective
inclusion criteria, we achieved a sample size comparable to that of similar studies [18,25].

In terms of study subject selection, it should be acknowledged that the results inher-
ently depend on the examined patient cohort. Here, we used a unique and heterogeneous
patient cohort of oncologic patients with scans ranging back to 2007. Incidentally, the
AI tool may provide even better results when using more recent scans and scans from a
more homogenous patient cohort (performed on more modern scanners). Second, we did
not perform manual CACS or semi-quantitative visual grading of CAC on the CT scans
from PET/CT imaging. This would have allowed us to better quantify the measurement
inaccuracy of the AI tool itself. This should be investigated in future studies. Third, as a
reference standard, we used manual CACS scores from a dedicated cardiac SPECT-MPI
examination performed within 6 months of the oncologic PET/CT. CAC scores are not
expected to change within this time frame; nevertheless, it should be acknowledged that
minor changes may have occurred, thus potentially introducing a bias.

In conclusion, our study indicates that an AI tool enables fully automatic and effortless
calcium scoring on non-contrast free-breathing, ungated CT scans from 18F-FDG-PET/CT
examinations, thereby providing an acceptable to good estimation of the CAC burden. CAC
load on ungated CT is, however, generally underestimated by AI-CACS, which should be
taken into account when interpreting imaging findings. Nonetheless, our findings provide
evidence that physicians can effortlessly achieve an acceptable to good estimation of the
CAC burden from oncologic 18F-FDG PET/CT examinations, thus potentially enabling an
opportunistic screening of CAD and allowing for the further expansion of the diagnostic
spectrum and value of the imaging modality.
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Abbreviations

AI Artificial intelligence
CAC Coronary artery calcium
CACS Coronary artery calcium scoring
CHD Coronary heart disease
CT Computed tomography
DL Deep-learning
F18-FDG F18-Fluorodeoxyglucose
MPI Myocardial perfusion imaging
PET Positron emission tomography
SPECT Single-photon emission computed tomography
SUVmax Maximum standardized uptake value
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