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Abstract: Insomnia is a common sleep disorder that is closely associated with the occurrence and
deterioration of cardiovascular disease, depression and other diseases. The evaluation of pharma-
cological treatments for insomnia brings significant clinical implications. In this study, a total of
20 patients with mild insomnia and 75 healthy subjects as controls (HC) were included to explore
alterations of electroencephalogram (EEG) complexity associated with insomnia and its pharmaco-
logical treatment by using multi-scale permutation entropy (MPE). All participants were recorded
for two nights of polysomnography (PSG). The patients with mild insomnia received a placebo on
the first night (Placebo) and temazepam on the second night (Temazepam), while the HCs had no
sleep-related medication intake for either night. EEG recordings from each night were extracted and
analyzed using MPE. The results showed that MPE decreased significantly from pre-lights-off to the
period during sleep transition and then to the period after sleep onset, and also during the deepening
of sleep stage in the HC group. Furthermore, results from the insomnia subjects showed that MPE
values were significantly lower for the Temazepam night compared to MPE values for the Placebo
night. Moreover, MPE values for the Temazepam night showed no correlation with age or gender.
Our results indicated that EEG complexity, measured by MPE, may be utilized as an alternative
approach to measure the impact of sleep medication on brain dynamics.

Keywords: permutation entropy; complexity; insomnia; EEG; temazepam

1. Introduction

Insomnia is a common sleep disorder that mainly manifests as difficulty falling asleep,
difficulty maintaining sleep and frequent and early awakenings [1]. Insomnia negatively
affects health and quality of life, and is strongly associated with the incidence and dete-
rioration of diabetes [2–4], cardiovascular disease [5–7], cancer [8–10], cognitive impair-
ment [11–13], brain damage [14,15] and depression [16,17]. In addition, blood circulation,
endocrine dyscrasia, loss of immunological competence and thermoregulation are also
affected by insomnia [18]. Prevalence of insomnia in the general population in China is
about 15% [19] and insomnia has become the most commonly encountered sleep disorder
in the United States, with prevalence rates of 15% to 24% [20].

Major categories of insomnia drugs include benzodiazepine receptor agonists, mela-
tonin receptor agonists, histamine receptor antagonists and orexin/retinol receptor antag-
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onists [21]. Temazepam is a type of benzodiazepine drug, which is the most widely used
therapeutic drug to generate sedative, hypnotic and anti-anxiety effects for insomnia [22,23].

The current evaluation of insomnia drugs mainly relies on self-reported sleep quality
using questionnaires, including the Pittsburgh Sleep Quality Index [24,25] and Insomnia
Severity Index [26]. However, sleep misperceptions and subjective–objective sleep dis-
crepancy have long been observed in patients with insomnia, and even in the general
population [27–29]. Despite issues and debates on the use of polysomnography (PSG)-
based sleep studies in insomnia, it is still the most commonly used objective evaluation
for insomnia. Major sleep outcomes (e.g., number of awakenings, sleep onset latency,
total sleep time, sleep efficiency, wake after sleep onset) are based on manual scoring
on overnight recordings. Although these outcomes can be used to evaluate the effect of
sleep drugs [30,31], negative factors of it being time-consuming, inter-scorer variability, the
high demands of well-trained professionals and multiple channels of signals must also be
considered. Therefore, the demand for alternative approaches for the evaluation of sleep
associated with therapeutic interventions has never stopped.

In recent decades, complexity-based measurements have opened a new path to the
quantification of the dynamic characteristics in physiological signals, and have been applied
to sleep electroencephalogram (EEG) data to understand the complexity of brain activities
during sleep [32]. Permutation Entropy (PE) is a common complexity measure that offers
simple calculation and high robustness against noise [33]. In 2015, Deng et al. analyzed PE
among patients with Alzheimer’s disease and showed that PE was an effective diagnostic
index for patients with Alzheimer’s disease [34]. In 2016, Bian et al. analyzed PE among
patients with type 2 diabetes and showed that PE was a potential indicator for diagnosing
mild cognitive impairment to type 2 diabetes [35]. In 2017, Christoph et al. applied PE
in sleep staging [36]. In 2018, multi-scale PE (MPE) was employed as a feature in the
support of a vector machine model for seizure prediction by Yang et al. among patients
with epilepsy [37]. Similarly, MPE was also adopted in the machine learning model aiming
to provide an early diagnosis of autism by Zhao et al. in 2019 [38]. Recently, MPE was
suggested as a potential indicator of sleep pressure for the general population [39].

In this paper, EEG MPE of healthy control subjects and patients with mild insomnia were
analyzed to explore the value of MPE in the assessment of insomnia and temazepam treatment.

2. Methods
2.1. Participants

Two sleep datasets, Sleep Cassette Study (SC) and Sleep Telemetry Study (ST), were
included in this study. Both datasets were obtained from an open-access database, namely
the Sleep-EDF Database (Expanded) in PhysioNet [40,41]. The SC dataset included
78 healthy Caucasians and the ST dataset included 22 Caucasians who had mild diffi-
culty falling asleep but were otherwise healthy. In the SC dataset, PSGs were recorded
during two subsequent day–night periods at the participants’ homes, and these partic-
ipants maintained their normal activities except for wearing a modified Walkman-like
cassette-tape recorder, which has been described elsewhere [41]. Due to the failure of cas-
sette or laser disk, 3 participants were excluded from the SC dataset. Therefore, our study
included 75 participants (34 males, 59 ± 22 years old, mean ± standard derivation) from
the SC dataset as healthy controls (HC). In the HC group, participants had no sleep-related
medication intake [41]. In the ST dataset, the PSGs were recorded in the hospital over
two nights, one of which was after temazepam intake (Temazepam night), and the other
night after placebo intake (Placebo night). The PSG recordings from 2 participants were
started later than their lights-off time, thus were excluded from the current study. Finally,
20 participants (7 males, 39 ± 18 years old, mean ± standard derivation) were included as
the patient group from the ST dataset.

For both datasets, there were two EEG channels, i.e., Fpz/Cz and Pz/Oz, with
a sample rate of 100 Hz, and only the Pz/Oz channel was used in the current study.
Sleep stages were manually scored by well-trained technicians according to the Rechtschaf-
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fen and Kales rules [42] based on these EEGs. Sleep stages included wake, rapid eye
movement sleep (REM) and non-rapid eye movement sleep (NREM), which consisted of
sleep stage 1 (S1), stage 2 (S2), stage 3 (S3) and stage 4 (S4). The S3 and S4 stages were
combined as a single stage, which was called the slow wave stage (SWS) in this study.

2.2. Multi-Scale Permutation Entropy Analysis

Permutation Entropy (PE) is an algorithm based on Shannon entropy proposed by
Bandt et al. to measure the complexity of time series [33]. Compared with other algorithms
for the evaluation of complexity, PE has the advantages of simple calculation and high
robustness against noise [33]. Multi-scale Permutation Entropy (MPE), which introduces
coarse-grained processing on the original time series, is generally regarded to be capa-
ble of capturing the characteristics under different time scales and making up for the
shortcomings of the original PE algorithm [33].

The calculation of MPE, including a coarse-grained procedure and a calculation of PE
on each coarse-grained time series, is expressed as follows.

For the time series {X1, X2, . . . , XN} of length N, the coarse-grained time series{
y(s)1 , y(s)2 , . . . , y(s)Ns

}
with a scale parameter s can be constructed by formula (1)

y(s)j =
1
s ∑js

i=(j−1) Xi, 1 ≤ j ≤ Ns (1)

where Ns represents the maximal integer no more than the ratio of N and s. When
s equals 1, the coarse-grained time series is exactly the original time series. Figure 1a,b
illustrate the construction of coarse-grained time series when scale parameter s equals 2
and 3, respectively.
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The phase space of the coarse-grained time series y(s) can then be reconstructed with
an embedding dimension m by Ns − m + 1 vectors. The kth vector in this m-dimensional
space can be described as shown in Equation (2).

Yk =
[
y(s)k , y(s)k+1, y(s)k+2, · · · , y(s)k+(m−1)

]
, k = 1, 2, · · · , Ns− (m− 1) (2)

Thereupon, the elements of each vector Yk are sorted in an ascending order to map Yk
into an ordinal pattern, namely, a permutation πk based on the rankings of its elements. For
example, a 3-dimension vector {5, 9, 2} can be mapped into {2, 3, 1}. If some elements are of
equal size, they are sorted in the order as they appear. For example, a 3-dimension vector
{8, 13, 8} will be mapped as {1, 3, 2}. Figure 2 illustrates how the mapping is developed
with m = 3 on a time series with length 20.
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For m-dimensional vector, it contains m elements and the number of its possible
permutations equals to the factorial of m (denoted as m!). For each permutation πk, then
it is reconstructed with an embedding dimension m according to the Equation (2), the
probability of its occurrence is calculated and shown as p(πk). Taking the time series
shown in Figure 2 as an example, as the occurrence times of {1,3,2} in all the 18 vectors are
3, its probability can be regarded as 3/18. According to Shannon’s information entropy, PE
can be calculated as

PE =
−∑m!

k=1 p(πk) log(p(πk))

log(m!)
(3)

In short, PE represents the complexity of time series by considering the ordinal order
of time series. Similar fluctuations are identified as the same ordinal patterns. Therefore,
the stability of the whole time series can be derived by evaluating the probability of the
occurrence of an ordinal pattern in a time series. The smaller the entropy value is, the more
regular the time series is and the lower the complexity is. In contrast, the larger the entropy
value is, the more random the time series is and the higher the complexity is.

In this paper, MPE algorithm was applied on every 30 s EEG time series for each
participant. We considered the scale parameter s from 1 to 10 in steps of 1. For the
reliable computation of Shannon’s information entropy, we only considered the embedding
dimension m 3, 4 and 5 as, in the case of m more than 6, there are 720 or more possible
permutations but only 2995 or fewer vectors for the computation of PE. The averaged
MPE value of these 10 scales was taken as a single complexity measurement of each 30 s
EEG series.

2.3. Research Framework

As shown in Figure 3a, for both nights of the HC group, we analyzed and compared
the EEG complexity of the participants based on MPE algorithm before (2 h before lights
off), during (5 min after lights off) and after sleep onset (the first sleep cycle); at the same
time, we analyzed the MPE values of different sleep stages after sleep onset. For each
period, the MPE values of all 30 s epochs were averaged as its complexity measurement.
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Figure 3. Schematic diagram of the timeline in the analyses. (a) The timeline for the analysis on the HC group. MPE was
evaluated in three different periods, that is, 2 h pre-lights-off, 5 min after lights off, and the first sleep cycle for both nights.
(b) The timeline for the analysis on patients with insomnia. MPE was computed over each 30 s epoch within the 5 min after
lights off and the first sleep cycle for both Placebo and Temazepam night, respectively.

As shown in Figure 3b, for patients with mild insomnia, we compared and analyzed
the MPE during (5 min after lights off) and after sleep onset (the first sleep cycle) between
first (Placebo) night and second (Temazepam) night.

There is currently no standard definition of the sleep cycles, but Feinberg I [42] sleep
cycle standard is most used. Under this standard, this paper refined it as follows:

(1) Except for the first sleep cycle, each sleep cycle includes a continuous NREM and
a continuous REM cycle. The first cycle does not have any requirement for REM
sleep stage;

(2) For each NREM cycle in the sleep cycle, it must start from Stage 2 and last no less
than 15 min. If NREM sleep is interrupted during awake stage, this will not last for
over 5 min and ensure the cycle is not interrupted;

(3) The REM cycle shall be kept for more than 5 min and extended for as long as possible.
The awake interruption shall not exceed 1 min.

2.4. Statistical Analysis

The statistical analysis in this study was performed by using MATLAB (MathWorks
Inc., Natick, MA, USA) and RStudio 1.4.1717 (RStudio Inc., Boston, MA, USA). For the HC
group, for each night, analysis of variance (ANOVA) with Tukey Kramer test for post-hoc
was used to compare MPE values before, during and after sleep onset and to compare these
values in different sleep stages. Differences of MPE between the two nights were tested
by paired t-test for each sleep state. For patients with insomnia, paired t-test was used
to evaluate whether the MPE significantly altered after sleep onset, compared with that
during sleep transition for both Placebo night and Temazepam night, separately. Moreover,
paired t-test was employed to compare the MPE values of Placebo night and Temazepam
night during sleep transition or after sleep onset. Finally, linear regression of multiple
variables was used to investigate the correlation between MPE and age as well as gender
for the second night of HC group and the Temazepam night of patient group, respectively.
In those models, MPE value of the 1st sleep cycle was treated as the dependent variable
while age and gender were independent variables. All statistical tests were performed by
two-sided test, and a p-value less than 0.05 was regarded as significantly different.

3. Results

As the test results of the embedding dimension m 3, 4 and 5 were similar, we only
reported the results with m = 3 in this paper.

We analyzed and compared the averaged MPE of the HC group before, during and
after sleep onset for two consecutive nights. As shown in Figure 4, for both nights, the
period was the main factor that affected the MPE values (ANOVA, p < 0.05). Post-hoc
analysis further revealed significant differences (Tukey Kramer test, p < 0.05) of MPE
between each two states among the period of wakefulness 2 h before lights off, the sleep
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transition 5 min after lights off and the sleep state in the first sleep cycle. The results
suggested that the MPE values decreased from the awake period to falling asleep. Moreover,
comparisons between the MPE values of the HC group in the first night and the second
night showed no significant differences during any periods, which suggests that no first-
night effects were found in the HC group.
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Figure 4. MPE Values (mean ± standard error) of HC Group before, during and after sleep onset.
The symbol * represents significant differences of MPE (Tukey Kramer test, p < 0.05) between each
two periods among 2 h pre-lights-off, 5 min after lights off and the first sleep cycle for both nights.

Additionally, we investigated PE differences from the awake period to the first sleep
cycle at different scales for the HC group on the second night. The results are illustrated
in Figure 5. A significant effect of period on PE (ANOVA, p < 0.05) can be observed at all
ten scales. The results at most scales yielded a great similarity with that obtained using
the averaged MPE, although post-hoc analysis suggests that the significant differences of
PE (Tukey Kramer test, p < 0.05) between wakefulness and sleep transition disappeared at
scales 5–7.
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before, during and after sleep onset. The symbol * represents a main factor of period on the value of
PE (ANOVA, p < 0.05) at the corresponding scale.

For the second night, we also compared MPE values of the HC group from different
sleep stages after sleep onset (as shown in Figure 6). MPE exhibited a decreasing trend
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from S1 to S2 and then to SWS (χ2 = 252.35, p < 0.001). The results suggest that the MPE
values decreased with the deepening of sleep.
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Figure 6. MPE values for the HC group (the second night) at different sleep stages. Each dot
represents the median value of MPE for a participant during the corresponding stage. The box-plots
illustrate the distribution of these median values for all participants in HC group.

Furthermore, we compared MPE values during and after sleep onset among patients
with mild insomnia. As shown in Figure 7, for both the Placebo night and the Temazepam
night, the MPE after sleep onset was significantly lower than that during sleep transition
(paired t-test, p < 0.05). During sleep transition, no significant differences were found in
MPE between the Temazepam night and the Placebo night. However, the MPE from the
Temazepam night was significantly lower than that of the Placebo night (paired t-test,
p < 0.05) in the first sleep cycle.
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Figure 7. MPE values (mean± standard error) of patients with insomnia during the 5 min after lights
off and during the first sleep cycle in Placebo night and Temazepam night. The symbol * represents
a significant difference of MPE between the corresponding periods in a same night (5 min after lights
off or the first sleep cycle) or between both nights during a same period.

As shown in Figure 8, for the patients with insomnia, a significant difference (paired
t-test, p < 0.05) of PE between the Placebo Night and Temazepam night was only observed
at larger scales (5–10) in the first sleep cycle. As larger scales corresponding to the lower
frequency component in the signal, the results suggest that the improvement role in sleep
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quality of Temazepam might associate with its assistance in reducing the complexity of the
slow wave of the EEG.
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Figure 8. PE Values (mean ± standard error) at different scales of patient group for the Placebo night
and the Temazepam night during the first sleep cycle. The symbol * represents a significant difference
of PE between both nights (paired t-test, p < 0.05) at the corresponding scale.

Moreover, we created a linear regression model to understand MPE in the HC group
(the second night) and the insomnia group (the Temazepam night) by including age and
gender. As shown in Table 1, for both groups, there was no significant correlation between
MPE and gender. However, a significant correlation between age and MPE was found
in the HC group but not in the insomnia patients. Our results suggest that MPE may be
served as a biomarker of sedative and hypnotic effects on patients with insomnia and it
may be less affected by age and gender.

Table 1. MPE with Age, Gender and Groups.

Group Dependent Variable Factors p Standardized Coefficient

HC (the second night) MPE
age 0.010 0.298

gender 0.964 0.005

Insomnia patients
(the Temazepam night) MPE

age 0.875 0.040
gender 0.919 0.026

4. Conclusions and Discussion

In this study, we investigated the role of MPE in the assessment of insomnia and
temazepam treatment. Our results showed that MPE is associated with sleep depth, where
the lower MPE will indicate deeper sleep stages. Among patients with insomnia, the MPE
of the first sleep cycle during the Temazepam night is significantly lower than that for the
Placebo night; the MPE of Temazepam night is not affected by age and gender.

Our results from healthy controls were in line with published studies. Zhang et al.
analyzed the relationship between MPE and sleep stress of healthy people and suggested
that lower MPE before sleep corresponded to greater sleep stress [39]. Similarly, the present
results showed that the MPE of healthy people decreases from the awake period to falling
asleep, which further indicates that MPE can reflect the complexity of changes in the EEG
signal from the awake period to falling asleep. Our results showed that the MPE decreased
from wake to stage 3 sleep, which further indicates that the decreased MPE also reflected
the deeper sleep state.

In recent years, entropy analysis of EEG signals has been widely applied in the
study of many diseases, which shows that the reduced entropy can be used to diagnose
early cognitive impairment, Alzheimer’s disease and high-risk infants with autism, etc.
Li et al. analyzed the sample entropy of healthy subjects and patients with early cog-
nitive impairment and found that the sample entropy of the rostral part of the anterior
cingulate cortex in patients with early cognitive impairment decreased significantly [43].



Entropy 2021, 23, 1101 9 of 11

Albert et al. analyzed the multi-scale entropy of EEG in patients with Alzheimer’s dis-
ease and found that the multi-scale entropy of patients with Alzheimer’s disease de-
creased [44,45]. Bosl et al. proved that a modified multi-scale entropy may be a biomarker
of brain development. The modified multi-scale entropy of typical developing infants was
higher than that of high-risk infants with autism [46]. In this paper, we found that the MPE
values of patients with mild insomnia decreased significantly in the first sleep cycle during
the Temazepam night compared to the Placebo night.

Studies have proven that PSG indicators are greatly affected by age and gender, and
the accuracy of evaluating the therapeutic effect of insomnia drugs was low [47,48]. This
paper also analyzed PSG monitoring indicators of patients with mild insomnia, which
included sleep latency, times of awakening, total sleep time, the proportion of rapid eye
movement time and the proportion of slow wave sleep time. The results show that sleep
latency, the number of awakenings and the proportion of light sleep in PSG monitoring
indicators were related to age and gender, which was consistent with the previous research
results. This paper also analyzed the correlation between MPE and age and the gender of
patients with insomnia. The results showed that MPE was not associated with age and
gender, which indicates that MPE was not affected by age and gender during the evaluation
of drug efficacy.

In conclusion, MPE analysis of sleep EEG was found to be a potential way to measure
the effect of drug efficacy in patients with insomnia. However, it should be noted that the
sample size of insomnia patients in this analysis was small; further validation is encouraged
on a larger sample size.
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