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Abstract: The compatibility and coating ratio between flame retardant materials and expanded
polystyrene (EPS) foam is a major impediment to achieving satisfactory flame retardant performance.
In this study, we prepared a water-based intumescent flame retardant system and methylene diphenyl
diisocyanate (MDI)-coated expandable polystyrene microspheres by a simple coating approach. We
investigated the compatibility, coating ratio, and fire performance of EPS- and MDI-coated EPS foam
using a water-based intumescent flame retardant system. The microscopic study revealed that the
water-based intumescent flame retardant materials were successfully incorporated with and without
MDI-coated EPS microspheres. The cone calorimeter tests (CCTs) of the MDI-coated EPS containing
water-based intumescent flame retardant materials exhibited better flame retardant performance with
a lower total heat release (THR) 7.3 MJ/m2, peak heat release rate (PHRR) 57.6 kW/m2, fire growth
rate (FIGRA) 2027.067 W/m2.s, and total smoke production (TSP) 0.133 m2. Our results demonstrated
that the MDI-coated EPS containing water-based intumescent flame retardant materials achieved
flame retarding properties as per fire safety standards.

Keywords: expanded polystyrene foam; coating; water-based intumescent flame retardant materials;
total heat release

1. Introduction

Rapid urbanization has negatively affected the existing thermal balance, resulting
in the Urban Heat Island (UHI) effect. Additionally, there has been an increase in energy
demands, with the thermal comfort energy consumption for buildings accounting for 30%
of the total global energy [1,2]. Therefore, energy savings and emission reduction strategies
are fundamental in achieving sustainable urban development [3]. Among the foremost
and recently popular strategies for energy saving and thermal balance is enhanced build-
ing thermal insulation; consequently, there is increased attention for building insulation
materials [4].

Currently, commercially available building thermal insulation materials include ex-
panded polystyrene (EPS), rigid polyurethane foam, glass, and rock wool attracted as
promising insulating materials [5]. Among them, EPS has attracted more attention as an
efficient insulating material in the construction industry, owing to its appealing properties;
lightweight, efficient heat insulation, good chemical resistance, and low cost [6]. However,
EPS is highly flammable and difficult to make flame retardant because of its interior bee-
hive network, high surface area, and their chemical compositions. Due to its poor flame
retardancy, fire safety is still a challenge with EPS as building materials.

Therefore, to ensure safety, researchers have been exploring methods of enhancing
the flame retardation of EPS foam [7–9]. Earlier, EPS flame retardation was achieved by
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coating with halogen flame retardant materials. For example, BASF-manufactured EPS
containing halogen flame retardant material foam [10]. However, during the combustion
process, halogen flame retardant materials produce toxic substances that are harmful for
the environment and people’s health [11–13]. This creates an urgent need for halogen-free
flame retardant materials [14,15].

Recently, researchers suggested that designing a multiple flame retardant system is
a promising strategy to achieve adequate fire performance of the EPS foam. Thus far,
intumescent flame retardant (IFR) has emerged as a promising choice as a halogen-free
flame retardant for enhancing the performance of flame-retarded EPS due to its superior
features, including less smoke and toxicity and high flame retardant efficiency [16–18].
The IFRs are categorized into organic IFR (O-IFR) and inorganic IFR (I-IFR). The O-IFR
consists of three main fire retardant additives based on their sources, such as an acid source
(ammonium polyphosphate, APP), a carbon source (such as pentaerythritol, PER), and a
blowing agent (such as melamine, MEL) [19].

When exposed to heat, an O-IFR intumescent coating swells up and forms a char
layer, between the gas and condensed phases. These compact char layers act as a physical
barrier that reduces heat transfer to the substrate layer [20]. As per I-IFRs materials, an
expandable graphite (EG) is commonly employed as a carbon char-forming agent, blowing
agent as well as a smoke suppressor. During the combustion process, it produces a fluffy
intumescent layer that functions as a barrier to heat and gas [21–23].

In order to enhance flame retardancy, researchers designed an organic-inorganic hy-
brid flame retardant system (H-IFR). Although, the H-IFR achieves a good flame retardant
effect, massive loading is still required to achieve satisfactory flame retardant performance,
which hampers its mechanical properties [24–27]. Many studies confirmed that the combi-
nation of an intumescent flame retardant with mineral flame retardants exhibited excellent
synergist flame retardant effect [24,25].

Among the available alternatives, mineral flame retardants, such as aluminum hy-
droxide (Al(OH)3 herein ATH) and magnesium hydroxide (Mg(OH)2 herein MH), are
widely used due to its unique properties, such as low toxicity, minimum corrosion, and low
cost [26–29]. To achieve a satisfactory flame retardant performance, mineral fillers, such as
ATH loadings, are relatively high (often between 40% and 70%). As a result, these high
loadings hamper its physical and mechanical properties [30,31]. Consequently, the primary
objective of flame retardant formulation is to reduce the filler loading while boosting the
fire performance [32,33].

Therefore, to overcome these challenges, it is important to find an effective and
eco-friendly mineral flame retardant materials for EPS. Currently gypsum has attracted
attention as an effective and eco-friendly material; it is also cost effective and has high
thermal stability. Gypsum is a hydrated mineral, which has fire retardant filler functions
similar to ATH and MH. They serve as a heat sink and dilute the combustion gases with the
help of releasing water molecules [34–36]. However, a single addition of hydrated mineral
as a flame retardant is not sufficient to satisfy the flame retardant requirement [37].

It is well known that the combination of different additional minerals can enhance
flame retardant performance. Currently, calcium carbonate (CaCO3) and talc have been
extensively been used as flame retarding materials due to their thermal stability, low cost,
and availability. However, in a recent study, it was observed that the influence of talc
and CaCO3 on the fire retardant properties of intumescent composition had a positive
effect. During the combustion process, talc and CaCO3 can react with phosphate species,
which leads to the formation of thermally stable char resulting in increased flame retardant
performance [38–40].

Generally, these intumescent coating materials are bonded together with the help
of polymer binders [41,42]. However, due to environmental concerns, the industrial
process is mostly focused on the development of waterborne formulations [43]. Currently,
an ethylene vinyl acetate (EVA) binder is commonly used for the preparation of water-
based formulation. Despite that, the compatibility between EPS foam and water-based
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intumescent formulation are key issues due to the viscosity and hydrophobic surface of
EPS beads. To overcome these issues, EPS surface modification is a promising solution
to enhance its compatibility with water-based intumescent formulation. Currently, 4,
4–methylene diphenyl diisocyanate (MDI) is often used as a binder due to its suitable
flashing point (200 ◦C). MDI can withstand high temperatures and is considered to have a
minimal flammability risk [44–47].

In this work, the MDI was used as binder for EPS bead coating, and EVA as a poly-
meric binder was used to develop a waterborne intumescent flame retardant formulation.
Further, its compatibility and flame resistance performance on EPS and MDI-coated EPS
was investigated. The adopted process containing MDI-coated EPS and a waterborne
intumescent flame retardant formulation lead to a synergistic effect on the intumescent
flame retardant performance.

The thermal behavior and flame retardancy of the EPS samples were investigated by
thermogravimetric analysis (TGA) and cone calorimeter tests (CCT) measurements. In
addition, to understand the combustion behavior and flame retardant mechanism of the
residues, the char was analyzed by scanning electron microscopy (SEM), Raman, X-ray
diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) techniques. To the best of
our knowledge, this is the first study to report MDI-coated EPS containing waterborne
intumescent flame retardant foam with enhanced flame retardant performance.

2. Materials and Method
2.1. Materials

The expanded polystyrene (EPS) beads, ammonium polyphosphate (APP, purity > 98%),
pentaerythritol (PER, purity 98%), calcium carbonate (CaCO3, purity > 98.5%), melamine
cyanurate (MC, purity 99%), talc (Whiteness: 94.0 ± 1%, particle size: 11.0 ± 2 µm), and EVA
emulsion (G3, solid content 56.5%) were received from HDC HYUNDAI EP Co., Seoul, Korea.
Methylene diphenyl diisocyanate (MDI, purity 98%) was purchased from Sigma Aldrich,
expandable graphite (EG, purity: 99%, size 270 µm) was purchased from Yuil Chemi Tech Co.
Ltd., gypsum (purity >96%) was provided by Namhae chemical corporation, South Korea.

2.2. Preparation of the Water-Based Intumescent Flame Retardant Formulation

Table 1 shows the appropriate amount of flame retardant material that was added in
distilled water. Then, the solution was homogeneously stirred with a magnetic needle at room
temperature for 48 h. The prepared solutions were designated as IFR1, IFR2, and IFR3.

Table 1. The preparative parameters of water-based intumescent flame retarding formulations. Note:
In this composition, we fixed 55 g EVA, 9 g Gypsum, 35 g EG, 1g Talc, and 15 g APP in 100 mL
of water.

Sample Code PER
(g)

CaCO3
(g)

MC
(g)

IFR1 7.5 7.5 0
IFR2 0 7.5 7.5
IFR3 5 5 5

2.3. Preparation of MDI-Coated EPS Beads

The MDI-coated EPS beads were prepared by adding and proper mixing with 20 wt.%
MDI solution. Then, MDI-coated EPS beads were dried in an oven at 60 ◦C for 12 h to
obtain MDI-coated EPS beads.

2.4. Preparation of Flame Retardant MDI-Coated EPS Foam

In a typical experiment, 13 g of EPS were mixed with 39 g of IFR, while, for MDI-
coated EPS, 14.5 g of MDI/EPS were used. Note: In this experiment, we found 13 g EPS
+ 2.6 g MDI resulted in 14.5 g MDI/EPS after complete drying. The mixing ratio of the
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flame-retardant solution to the EPS beads was optimized from 1:1.5 and 1:3 with the help
of char formation, Figure S1. Then, uniformly coated EPS spheres were transferred into a
cubic mold and heated at 90 ◦C in a hot press for 6 h. Cubic shaped EPS foam was carefully
removed from the mold and dried in an oven at 60 ◦C for the next 24 h.

2.5. Characterizations

The X-ray diffraction (XRD) measurements were carried out using a D/MAX Uitima
IIIXRD spectrometer (PAN analysis, Japan) with Cu Kα line of 1.5410 Å. Scanning electron
microscopy: The surface morphological images were recorded by a scanning electron
microscope (SEM; S-4700, Hitachi). The elemental information was analyzed using an
X-ray photoelectron spectrometer (XPS) (VG Multilab 2000-Thermo Scientific, New York,
NU, USA, K-Alpha) with a multi-channel detector that could endure high photonic energies
from 0.1 to 3 keV.

Thermal gravity (TG) analyses of the EPS, MDI/EPS, and IFR/EPS were performed
with a heating rate of 10 ◦C/min from RT up to 800 ◦C under a nitrogen atmosphere using
TA Instruments SDTA 851E. The micro-Raman spectra of the char residue was recorded
in the spectral range of 100–3000 cm−1 using a micro-Raman spectrometer (inVia Reflex
UV Raman microscope (Renishaw, U.K.), KBSI, Gwangju- center) that employed a He-Ne,
laser source with an excitation wavelength 633 nm and resolution of 1 cm−1 at 15 mW laser
power. The Fourier-transform infrared (FTIR) of EPS, MDI, and EPS/MDI (KBr method)
was recorded using a Perkin Elmer Spotlight 400 instrument.

2.5.1. Combustion Behavior

A butane spray gun jet was used for the combustion test and applied 5 cm away
from the cube-shaped EPS foam for 5 min. Further, the combustion test was monitored by
recording digital photographs at each stage.

2.5.2. Cone Calorimetry Test (CCT)

An FTT standard cone calorimeter (Fire Testing Technology Limited, UK) was used to
evaluate the flame retardance of the prepared EPS foam samples according to ISO5660 stan-
dards under an external heat flux of 50 kW/m2 with a specimen dimension of
100 × 100 × 50 mm3.

3. Results and Discussion
3.1. Chemical STRucture

The FT-IR spectra of methylene diphenyl diisocyanate (MDI), expanded polystyrene,
and MDI-coated EPS shown in Figure 1. In case of the MDI spectrum, the typical strong
peaks at 2274, 1770, and 1525 cm−1 were assigned to the –NCO group of pure MDI [48].
The neat EPS sample exhibited strong peaks between 3059 cm−1 ascribed to C–H stretching
vibration, Figure S1. The peak at 2918 cm−1 corresponds to the asymmetrical stretching
vibration of the CH2 group, whereas the peak at 2849 cm−1 corresponds to the symmetrical
stretching vibration of the CH2 group.

The peaks appearing between 1600–1455 cm−1 are associated with the C=C stretching
vibration of the benzene ring, whereas the peaks at 1068, 1028, and 757 cm−1 were attributed
to in-plane and out-of-plane deformation vibration of the benzene ring [49]. However, for
the MDI-coated EPS, we observed an additional peak at 2274 cm−1 from the stretching
vibration of the -NCO group, which indicates the presence of MDI. It is evident that no
chemical reaction occurred or new chemical bond was generated during the preparation of
this coating material. Therefore, the prepared MDI-coated EPS material had only physical
interactions between EPS and MDI.
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Figure 1. FT-IR spectra of MDI, EPS, and EPS/MDI samples.

3.2. Microstructural Study

The morphological analysis was carried out in order to confirm the quality of uniform
coating of MDI on EPS surface and intumescent flame retardant materials. The SEM images
of the neat EPS, MDI-coated EPS, EPS/IFR3, and EPS/MDI/IFR3 are shown in Figure 2.
The neat EPS had a spherical morphology with a smooth surface, which caused weak
compatibility between EPS and flame-retardant materials, Figure 2a,b. Figure 2c,d show
that the MDI was uniformly coated on the EPS surface. The smooth surface of the EPS
spheres was coated with a mesh network of the MDI coating. However, the smooth surface
of the neat EPS was unchanged after the MDI coating, which indicates there was no any
chemical reaction on the EPS surface. We believe this this mesh network would enhance
the compatibility between EPS and flame retardant materials.

As shown in Figure 2e,f, the EPS sphere was coated with IRF3 material. During the
combustion process, intumescent flame retardant materials act as a barrier layer. However,
the absence of an MDI layer affected the coating efficiency. As shown in Figure 2g,h, the
intumescent retardant materials were uniformly coated on MDI containing EPS spheres.
During the combustion process, intumescent flame retardant materials generated compact
char, and the shape of the sample remained the same.

3.3. Mass Calculation

Mass calculation is an effective quantitative analysis used to evaluate the flame retar-
dant materials coating on the EPS sphere surface. Table 2 displays the mass calculation
after coating for EPS/IFR3 and EPS/MDI/IFR3. A simple mass calculation method was
used for flame retardant material-coated compounds. We observed that the weight of
EPS/IFR3, and EPS/MDI/IFR3 increased from the initial EPS weight of 13 and 14.5 g to
35.5 and 41.90 g, respectively, after coating with flame-retardant materials.
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Figure 2. SEM images of the (a,b) neat EPS, (c,d) MDI-coated EPS, (e,f) EPS/IFR3, and (g,h) EPS/MDI/IFR3 at different
magnifications.
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Table 2. Mass of the flame-retardant materials coated on the EPS surface.

Sample Code Initial Wt. of EPS (g)
Final Weight(g)

after Drying
(1:3 ratio)

Wt. of IFR Coated on
EPS (g) Density (kg/m3)

EPS 13 - - 26
EPS/IFR3 13 35.5 22.5 71

EPS/MDI/IFR3 14.5 41.90 27.4 83

We found 13 g EPS + 2.6 g MDI resulted in to 14.5 g MDI/EPS after complete drying.
To estimate the amount of flame retardant materials used, the weight difference between
EPS microspheres before coating and after coating with flame retardant materials was
calculated. As shown in Table 2, the EPS/IFR3 sample contained 22.5 gm of flame retardant
materials, while the EPS/MDI/IFR3 sample contained 27.4 gm of flame retardant materials.
The EPS sphere with a uniform layer of MDI increased the compatibility of the flame
retardant materials.

On the other hand, the EPS/MDI/IFR3 sample contained a higher amount of intu-
mescent flame retardant materials compared with EPS/IFR3. This 27.4 g higher amount of
the actual IFR3 loading on the resultant EPS foam arose from the surface modification of
the MDI coating. In contrast, our non-modified EPS foam exhibited a lower amount, which
clearly indicates a lower amount of loading on the EPS surface. Therefore, MDI-coated
EPS with intumescent free flame retardant materials was expected to exhibit better flame
retardant performance than EPS coated with flame retardant material.

The apparent densities of EPS, EPS/IFR3, and EPS/MDI/IFR3 were measured and
are presented in Table 2. We observed an improved density of the EPS foam after MDI
coating. Neat EPS foam exhibited a density of 26 kg/m3, which increased up to 71 kg/m3

for EPS/IFR3 and 83 kg/m3 for EPS/MDI/IFR3. This increased density owing to the
MDI binder enhanced the compatibility between EPS and the water-based flame retardant
formulation. This improved density may lead to increased mechanical properties of the
EPS foam. However, further investigation on the mechanical properties of these developed
EPS is needed.

3.4. Thermogravimetric Analysis (TGA)

TGA is reliably used to measure the thermal degradation behaviors of the flame
retardant materials. Considering the fire safety standards, the thermal resistance of flame
retarding materials is important and plays a crucial role in the active application and
viability of flame retarding materials. Figure 3 shows the TGA curves of the EPS and flame
retardant EPS. The TGA plot display the EPS showing the initial weight loss temperature
at 340 ◦C and also exhibiting rapid decomposition steps at 450 ◦C with no residue left
after decomposition. However, after the coating of MDI, the thermal stability decreased
compared to neat EPS, and no residue was left after decomposition.

The final char residue weight of flame retardant EPS varied with different flame
retardant combinations, indicating that APP significantly accelerated the decomposition
of different flame retardant combinations. The initial weight loss of flame retardant EPS
showed a similar decomposition behavior, due to decomposition of the gypsum starting
from 100 to 150 ◦C corresponding to the evaporation of water molecules [34,36,50].

For the EPS/IFR1 sample, the major weight loss was observed between 180–450 ◦C.
At the temperature of 180 ◦C, the EG begin to decompose and release sulfur dioxide [51].
Meanwhile, APP began decomposing to form polyphosphoric acid. Further, the decompo-
sition step was attributed to a possible esterification reaction between acid and PER. With
increasing temperature, the degradation of the ester began to form char [52]. Moreover, the
talc and calcium carbonate could react with a polyphosphate network leading to a reduced
degradation rate and improved heat stability.
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Figure 3. TGA curves of the EPS and flame retardant EPS samples under a nitrogen atmosphere at a
heating rate of 10 ◦C/min.

On the other hand, the TGA curve of EPS/IFR2 sample shows that EG began decom-
posing at 180 ◦C. The major weight loss was observed between 210 to 450 ◦C due to the
interactions between APP and MC. The APP started decomposing and releasing NH3 and
water to form polyphosphoric acid. Enhancing the flame retardant properties, MC began
to decompose between 290 to 420 ◦C, and released incombustible nitrogen gas that could
further expand and inflate the formed char [53].

The further decomposition stage was attributed due to the decomposition of talc and
calcium carbonate. The TGA plot displays the char residue of EPS/IFR2 sample decreased
compare to the EPS/IFR1 sample, which may be due to MC acting as a blowing agent
as it has a limited char forming tendency. For the EPS/IFR3 sample, the major weight
loss was observed in the 180 to 410 ◦C region. The EG began decomposing and released
inflammable gases. The APP started to decompose, releasing water and ammonia to form
polyphosphoric acid. The esterification reaction occurred between acid and PER between
210 to 300 ◦C.

Boosting the flame retardant properties, MC began to decompose around 300–400 ◦C
producing incombustible nitrogen gases that swelled and inflated the char. With increasing
temperature, the talc and calcium carbonate reacted with the polyphosphate network
produce thermally stable char [38,54]. For the EPS/MDI/IFR3 sample, MDI plays the role
of a binder, which led to improved compatibility between EPS and the flame retardant
materials. The TGA curve displays a similar thermal degradation profile as the EPS/IFR3
sample except for the small weight loss observed in the 270–290 ◦C region.

This might be due to interactions between MC and iscocynate. The -NH2 group from
MC reacted with the -NCO group of MDI, which can suppress the amount of smoke release.
Our CCT results further revealed the interaction between MC and MDI [55]. The TGA
curve displays the char residue weight increase compared to the EPS/IFR3 sample. The
possible reaction mechanism during the combustion process is shown in Scheme 1.
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3.5. Combustion Behavior

The coating ratio between EPS and flame retardant materials play a key role in
achieving satisfactory flame retardancy. Incorporating the higher amount of flame retardant
material into EPS conciliate the quality of the foam. Therefore, optimization of amount of
the flame retardant materials is essential. To optimize the amount of the flame retardant
materials, we prepared different combinations of water-based intumescent flame retardant
materials with EPS. Digital photographs of the samples during the combustion test are
shown in Figure 4.
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Figure 4a shows a photograph of the neat EPS sample, which produced a large
amount of smoky and sooty flame, and no char was left after combustion. The sample
with a coating ratio of 1:1.5 had poor expansion properties resulting in discontinuous and
broken char (Figure S2). In addition, the sample with a coating ratio of 1:3 generated
enough char after the combustion process. In Figure 4b,c, the EPS/IFR1 and EPS/IFR2
samples produced more char compared to neat EPS but failed to generate continuous
and compact char during the combustion process. In contrast, Figure 4d,e shows that the
EPS/IFR3 and EPS/MDI/IFR3 samples generated a well-expanded and compact char layer
after combustion. This compact char layer acted as a protecting shield, resulting in an
enhanced flame retardant performance of the EPS foam.

3.6. Cone Calorimetry Analysis

The cone calorimeter test is a scientific and effective method used to investigate
the combustion behavior and flame retardant mechanism of EPS foam for onsite appli-
cations [56]. Figure 5 illustrates the peak heat released rate (PHRR), total heat release
(THR), fire growth rate (FIGRA) and total smoke production (TSP) of neat EPS, EPS/IFR1
EPS/IFR2 EPS/IFR3, and EPS/MDI/IFR3. Detailed parameters are provided in Table 3.
The PHRR and THR curves of neat EPS are shown in Figure 5a,b. The result indicates that
the neat EPS quickly burned after ignition with a high PHRR of 295.5 kW/m2 and THR of
42.3 MJ/m2 values.
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Table 3. The cone calorimeter test results for different EPS foams.

Sample Code PHRR
(kW/m2)

THR
(MJ/m2)

FIGRA
(W/m−2s)

TSP
(m2)

EPS 295.5 42.3 6274.0 10.99
EPS/IRF1 70.2 17.6 3086.2 0.457
EPS/IRF2 70.3 12.3 3176.7 0.196
EPS/IRF3 65 10.9 2441.9 0.394

EPS/MDI/IFR3 57.6 7.3 2027.0 0.133
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However, after incorporating a water-based intumescent flame retardant into the
EPS foam, the EPS/IFR1 and EPS/IFR2 samples showed an obvious reduction in the
PHRR and THR values as compared to neat EPS, from 70.2 and 70.3 kW/m2 to 17.6 and
12.3 MJ/m2, respectively. This is a good indication that the water-based intumescent flame
retardant reduced the PHRR and THR values for the EPS/IFR1 and EPS/IFR2 samples.
We observed that the PHRR and THR values were drastically reduced to 65 kW/m2 and
10.9 MJ/m2 for EPS/IFR3. The reduced values indicate the synergistic effect of an optimized
combination of flame retardant materials, which produced a large amount of compact char.
This demonstrated that the EPS/IFR3 combination sample acted as a more effective barrier
layer as compared to the EPS/IFR1 and EPS/IFR2 samples.

Due to less compatibility between EPS and water-based intumescent flame retardant
materials, the EPS/IFR3 sample did not satisfy the fire safety norm. The EPS/MDI/IFR3
sample produced the lowest PHRR and THR values of 57.6 kW/m2 and 7.3 MJ/m2,
respectively, when compared to the other samples. This illustrates that MDI could enhance
the compatibility between EPS and flame retardant materials, thus, leading to lower PHRR
and THR values [57].

These values are optimal based on fire safety standards. Figure 5c shows the FIGRA
results evaluation regarding the burning properties of the materials. The FIGRA value of
the neat EPS, EPS/IFR1, EPS/IFR2, EPS/IFR3, and EPS/MDI/IFR3 samples were 6274.0,
3086.2, 3176.7, 2441.9, and 2027.0 W/m2s, respectively. A lower FIGRA value indicates
effective fire safety, and this means that there would be enough time to evacuate people or
to extinguish the fire [58].

The generation of smoke in a fire is one of the main causes of human death, ei-
ther directly by suffocation or by the inhalation of poisonous gases. The TSP curves
demonstrated that, after the flame retardant coating, the TSP value greatly decreased from
10.99 m2 for neat EPS to 0.457, 0.196, 0.394, and 0.133 m2 for EPS/IFR1, EPS/IFR2, EPS/IFR3,
and EPS/MDI/IFR3, respectively as shown in Figure 5d and Table 3. The substantial re-
duction in TSP demonstrated that the water-based intumescent flame retardant coatings
effectively suppressed smoke formation, which would remarkably increase the chances of
people escaping in a fire [59].

3.7. Char Residue Analysis

Figure 6 presents SEM micrographs of the char residue that were obtained after the
CCT test. Figure 6a shows the SEM micrograph of the residual char corresponding to
the EPS/IFR3 sample, revealing an incompact and discontinuous surface formed after
the combustion process. In contrast, the SEM micrograph of the residual char of the
EPS/MDI/IFR3 sample exhibits compact and continuous char formation compared to the
EPS/IFR3 sample. This compact char acts as effective, protective barrier layers during
combustion. Therefore, EPS/MDI/IFR3 showed excellent fire performance compared with
the EPS/IFR3 sample.

Figure 6. SEM images of the char residue after the CCT test (a) EPS/IFR3 and (b) EPS/MDI/IFR3.
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The Raman spectra was obtained to characterize the graphitization degree of carbona-
ceous char material [60,61]. As portrayed in Figure 7a, the Raman spectra of char shows a
carbon signal with the D band at ca. 1360 cm−1 and G band at ca.1580 cm−1. As a result,
the D and G bands have different intensities, which are associated with the amorphous
and graphitized carbon content [62]. The effectiveness of the flame-retardancy depends
not only on the amount of char residues present but also on the quality of those residues.
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A lower ID/IG ratio indicates a more stable char structure and more extensive graphiti-
zation results in higher flame retarding properties. The calculated ID/IG ratio for EPS/MDI/
IFR3 (0.50) was less than that of EPS/IFR3 (0.54), indicating an extensive graphitization
degree residue. The MDI-coated EPS could improve the compatibility with IFR, thus,
leading to facilitating the char graphitization after combustion. In addition, the XRD
patterns of the EPS/IFR3 and EPS/MDI/IFR3 residue char of samples was carried out
to identify the crystallinity, Figure 7b. The XRD pattern of the EPS/MDI/IFR3 sample
showed higher peak intensity due to improved crystallinity, which arose due to better
compatibility between EPS and the flame retardant materials, which is consistent with our
Raman analysis.

Chemical Composition Char Residue

After the cone calorimeter test, the chemical compositions of the char residues were
further analyzed using XPS. The detailed composition is shown in Table 4 and Figure 8.
The XPS spectra of the char residues for EPS/IFR3 and EPS/MDI/IFR3 after the CCT test
is shown in Figure S3. EPS/MDI/IFR3 had greater P/C and N/C ratios than EPS/IFR3,
which indicates that more P- and N-containing compounds were formed in the char residue.
According to Yuan et al., more P and N remaining in the char layer is beneficial to produce
a more compact char layer that efficiently limits heat and mass transfer [63].

Table 4. X-ray photoelectron spectroscopy data of the char residues for EPS/IFR3 and PS/MDI/IFR3.

Sample Name C% O% N% P% Ca% S% Mg% Si% C/O P/C N/C

EPS/IFR3 86.06 8.96 1.31 0.78 0.33 0.15 0.14 2.26 9.60 0.009 0.015
EPS/MDI/IFR3 88.61 7.6 2.7 1.31 0.4 0.24 0.13 0.01 11.39 0.015 0.031
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Furthermore, the C/O ratio of the EPS/MDI/IFR3 was larger than that of EPS/IFR3,
indicating that the anti-oxidation property of char was enhanced. EPS/MDI/IFR3 had a
larger carbon content in the residue char compared with EPS/IFR3, which may be due
to the high content of flame retardant materials. Figure 8a shows C1s core-level spectra
exhibiting the binding energy peaks at around 284.5, 285.0, and 286.3 eV assigned to C–C,
C–H, and C–O, C–N, or C=N, C=O groups, respectively [64].

EPS/MDI/IF3 had significantly higher C–O and C–N contents than did EPS/IFR3,
which indicates that more cross-linking frameworks including C–O or C–N predominated
in the char of EPS/MDI/IF3. This could be due to the high content of intumescent formu-
lation as stated in Table 4. As shown in Figure 8b, the N1s core–level spectra exhibited
C=N, C–N, or N–H bonding at 400.83 eV and 399.46 eV [65]. If we compare the N1S peak
intensity, the EPS/MDI/IFR3 sample exhibited higher intensity over EPS/IFR3.

This is evidence of a higher cross-linked framework of C–N formed in EPS/MDI/IFR3.
Figure 8c corresponds to the O1s core-level spectra, with the binding energy peak at 532 to
533.15 eV allocated to C=O or P=O and C–O–C/P–O–P/C–OH or P–O–C groups. As stated
in Table 4, we observed that the oxygen content was decreased in the EPS/MDI/IFR3
sample. The P2p core-level spectra in Figure 8d shows the binding energy peak at
133.94 eV associated with P–O–P or PO3 groups.

The peak at 134.75 eV is allocated to a P–C–O group [66]. The EPS/MDI/IFR3 showed
a high percent of bands at 134.75 eV as compared to EPS/IFR3, which demonstrates that
more cross linked frameworks predominated in the char. From the above result, it is
clear that the MDI binder enhanced the compatibility between water-based intumescent
formulation and EPS foam, which led to more cross-linked structure being formed.
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3.8. Possible Reaction Mechanism

Based on the above analysis, the possible flame retardant mechanism of the EPS/MDI/
IFR3 sample is shown in Figure 9. During the combustion process, gypsum (CaSO4.2H2O)
released water molecules and formed anhydrous calcium sulfate (CaSO4). At the same time,
EG began expanding and releasing nonflammable gases, such as CO2, SO2 [67,68]. These
nonflammable gases diluted the oxygen and absorbed heat, leading to a decreased heat
release rate. With the increasing temperature, APP decomposed to generate incombustible
gases (NH3 and H2O), orthophosphate, and phosphoric acid. The esterification reaction
took place between phosphoric acid and PER under milder conditions and reduced the
combustion intensity.
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Simultaneously, interactions between MC and MDI generated a polymeric network
that produced a positive effect on the barrier. With increasing temperature, this began
decomposing and releasing nonflammable gasses (NH3, CO2, and H2O) that diluted the
oxygen concentration around the flame and swelled the precursor of intumescent char. This
led to prevention of the spreading flame further and suppressed the smoke release [53,69].
At higher temperatures, the talc and CaCO3 reacted with polyphosphoric acid resulting in
the formation of a thermally stable silicon phosphate and calcium phosphate containing
intumescent char that produced a positive effect on the anti-oxidation properties of the
char. As a result, more compact char was formed, which led to effectively boosting the
flame resistance performance of the EPS foam.
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4. Conclusions

In conclusion, we demonstrated the role of MDI as a binder and coating on expanded
PS beads to improve the compatibility between EPS and water-based flame retardant
formulations. Our SEM and FTIR analysis confirmed that the MDI was fully covered
on the expanded PS beads uniformly and that there was no chemical reaction occurring
between the EPS beads and MDI binder. The TGA analysis revealed that MDI-coated EPS
exhibited more thermal stability compared with the non-coated sample, which indicates a
key role of MDI and IFR in its thermal stability behavior. The CCT results exhibited that
the EPS/MDI/IFR3 sample provided lower THR (7.3 MJ/m2) and PHRR (57.6 kW/m2)
values as compared to the other flame retardant EPS foams.

The lower FIGRA and TSP values demonstrated the key role of MC and MDI interac-
tion. The char residue analysis confirmed that the MDI binder enhanced its compatibility
between the EPS and water-based flame retardant formulation, which led to more compact
char being formed after combustion. Our Raman and XRD analyses of the char confirmed
increased graphitization and crystallization, which may provide better thermal stability
and reduce the heat release rate. Our findings provide a framework and insight into the
development of EPS materials that fulfill fire safety standards.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/polym13162662/s1, Figure S1. Detailed FTIR analysis of MDI, EPS and MDI coated EPS.
Note: Colour codes are same for all graphs as per main text. Figure S2. The digital photographs
of the combustion phenomenon of (S1) EPS/IFR1 (S2) EPS/IFR2 and (S3) EPS/IFR3 (coating ratio
1:1.5). Figure S3. XPS survey spectra of char residues for EPS/IFR3 and EPS/MDI/IFR3 after cone
calorimeter test.
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