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 80 
SUMMARY 81 

A long-standing challenge in human regulatory genomics is that transcription 82 

factor (TF) DNA-binding motifs are short and degenerate, while the genome is 83 

large. Motif scans therefore produce many false-positive binding site predictions. 84 

By surveying 179 TFs across 25 families using >1,500 cyclic in vitro selection 85 

experiments with fragmented, naked, and unmodified genomic DNA – a method 86 

we term GHT-SELEX (Genomic HT-SELEX) – we find that many human TFs 87 

possess much higher sequence specificity than anticipated. Moreover, genomic 88 

binding regions from GHT-SELEX are often surprisingly similar to those obtained 89 

in vivo (i.e. ChIP-seq peaks). We find that comparable specificity can also be 90 

obtained from motif scans, but performance is highly dependent on derivation 91 

and use of the motifs, including accounting for multiple local matches in the 92 

scans. We also observe alternative engagement of multiple DNA-binding domains 93 

within the same protein: long C2H2 zinc finger proteins often utilize modular DNA 94 

recognition, engaging different subsets of their DNA binding domain (DBD) arrays 95 

to recognize multiple types of distinct target sites, frequently evolving via internal 96 

duplication and divergence of one or more DBDs. Thus, contrary to conventional 97 

wisdom, it is common for TFs to possess sufficient intrinsic specificity to 98 

independently delineate cellular targets.  99 

 100 

Keywords: DNA binding specificity, Transcription factor, TF, Transcription factor binding 101 
site, Position weight matrix, PWM, ChIP-Seq, HT-SELEX, GHT-SELEX, SELEX, 102 
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INTRODUCTION 106 

The DNA-binding sequence preference of a Transcription Factor (TF) is typically 107 
referred to as a motif, and is most commonly modeled as a position weight matrix 108 
(PWM), which describes the relative preference of the TF for each base in the binding 109 
site1. In human, TF binding motifs are generally short and flexible; PWMs are typically 8-110 
14 bases long2-4, and multiple bases can be tolerated at many positions5,6. Thus, a 111 
typical TF PWM scan with default parameters yields over a million potential binding 112 
sites in the 3-billion-base human genome, often with multiple high-scoring matches per 113 
gene. Very few of the potential target sites are utilized in cells7, however, and the actual 114 
number of bound sites, as measured by ChIP-seq8-10 or other assays11 is typically much 115 
lower than the number of motif matches.  116 
 117 
This deficit in specificity has been resolved conceptually by the widespread cooperative 118 
binding and synergy among TFs5,6,12,13, and evidence that the chromatin landscape 119 
generally dominates TF binding site selection30, such that TF motif matches only 120 
determine binding within permissible regions. In the latter model, only a special class of 121 
“pioneer” TFs can access target sequences to control the local chromatin. Indeed, some 122 
TFs have been shown to have high inherent specificity: for example, CTCF binds the 123 
majority of its strongest motif matches in the genome14, and repositions the surrounding 124 
nucleosomes15. PRDM9, which controls recombination hotspots, has been reported to 125 
independently specify roughly half of its binding sites in the genome16. Another possible 126 
explanation for the generally low apparent specificity of TF motifs, however, is that 127 
PWMs are inaccurate, or are used inappropriately, or that the PWM model is 128 
fundamentally flawed17. PWMs are often derived from a non-comprehensive set of 129 
bound vs. unbound sequences, and there is ongoing controversy regarding the best 130 
methods for derivation, underlying representation, and scanning of TF motifs1,18, as well 131 
as the impact of DNA shape19, dependencies among base positions17,20, multimeric 132 
binding21,22, and lower-affinity binding sites23.  133 
 134 
Many human TFs still lack binding motifs, and prominent among them are hundreds of 135 
C2H2 zinc finger (C2H2-zf) proteins24. These proteins recognize DNA sequences that 136 
approximate a concatenation of the three or four base specificities of their sequential 137 
constituent C2H2-zf domains25,26. Different C2H2-zf proteins can bind very different 138 
motifs due to both the malleability of the individual C2H2-zf domains and rearrangement 139 
of the individual C2H2-zf domains27. An enigmatic feature of the C2H2-zf proteins is 140 
their theoretical capacity to recognize very long sequences: the median number of 141 
C2H2-zf domains in human TFs is 11, which could contact up to 33 DNA bases, much 142 
more than would be needed to specifically recognize even a single target site in the 143 
genome, on average. Indeed, C2H2-zf proteins often use only a subset of their DBDs to 144 
contact DNA, and whether and how frequently human C2H2-zf proteins utilize different 145 
segments of the C2H2-zf domain array to bind different sequences has also been a 146 
long-standing question. In a well-studied example, CTCF binding sites appear to reflect 147 
a constitutive “core”, bound by fingers 4-7 of the 11 C2H2-zf domain array, flanked by 148 
sequences that are bound by alternative usage of upstream and/or downstream C2H2-149 
zf domains28,29. Analysis of the DNA-binding of C2H2-zf proteins to the genome is also 150 
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complicated by the fact that they often bind repeat elements such as endogenous 151 
retroelements30, and thus the target site similarity is derived both from DNA recognition 152 
and the shared ancestry of the binding sites. The limited resolution of ChIP-seq 153 
(>100bp) presents a related hindrance. These confounding factors, however, can be 154 
ameliorated by incorporating information about the bases that are likely preferred at 155 
each position of the binding site, as predicted by a C2H2-zf “recognition code” that 156 
relates the C2H2-zf amino acid sequences to their binding preferences. These machine 157 
learning-based predictions can assist in identifying the most plausible protein-DNA 158 
interactions in such cases, as our earlier work demonstrated31. 159 
 160 
Here, we describe GHT-SELEX (Genomic DNA HT-SELEX), a novel implementation of 161 
the HT-SELEX32 method for identification of the sequence specificity of DNA-binding 162 
proteins. HT-SELEX is a high-throughput implementation of SELEX (Systematic 163 
Evolution of Ligands by EXponential enrichment)33, using multi-cycle, automated affinity 164 
capture of protein-bound DNA in microwell plates, coupled to multiplexed Illumina 165 
sequencing. HT-SELEX utilizes random-sequence DNA, while GHT-SELEX is instead 166 
performed with fragmented human genomic DNA, and uses an associated new 167 
statistical analysis method, MAGIX (Model-based Analysis of Genomic Intervals with 168 
eXponential enrichment). GHT-SELEX is conceptually similar to Affinity-seq16 and DAP-169 
seq34, but it incorporates multiple selection cycles, and is thus related to earlier genomic 170 
SELEX approaches that utilized Sanger sequencing35,36. The use of barcoding, 171 
magnetic affinity beads and laboratory automation makes it possible to run GHT-SELEX 172 
in parallel with hundreds of samples. We developed GHT-SELEX in the context of the 173 
Codebook consortium project37, which was aimed primarily at analysis of 332 174 
uncharacterized putative TFs (together with 61 control TFs), and provides comparison 175 
data from several other platforms for the same set of TFs (HT-SELEX, ChIP-seq, 176 
Protein Binding Microarrays38, and SMiLE-seq39). We successfully applied GHT-SELEX 177 
to 179 human TFs, most of which are poorly characterized, thus providing a major 178 
expansion in the number of human TF motifs. For dozens of TFs, including some that 179 
are considered well-characterized, GHT-SELEX peaks correspond with in vivo binding 180 
(measured by ChIP-seq) much more accurately than current models would suggest. 181 
GHT-SELEX is particularly effective for C2H2-zf proteins,	and shows that they often use 182 
alternative subsets of their C2H2-zf domains to engage with different genomic target 183 
sites. We explore both explanations and ramifications of these observations. 184 
 185 
RESULTS 186 
 187 
Development and testing of GHT-SELEX 188 
 189 
GHT-SELEX combines the principles of previous genomic DNA selection protocols16,34 190 
with HT-SELEX, a method that has been applied successfully to hundreds of human 191 
TFs and is compatible with robotics32,40. We developed GHT-SELEX (Figure 1A) to run 192 
in parallel with HT-SELEX, in the context of the Codebook project. The intended 193 
purpose, initially, was to create a DNA library that contains sufficient representation of 194 
long repeat sequences that are common in the human genome (e.g. transposons and 195 
endogenous retroelements): we reasoned that the difficulty of obtaining long motifs 196 
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expected for C2H2-zf proteins may be due to the scarcity of long binding sites in a 197 
random pool, since representation of any sequence would decrease exponentially with 198 
its length. The GHT-SELEX DNA pool used in this study was produced by nonspecific 199 
enzymatic fragmentation of HEK293 DNA to fragments with a median length of ~64 bp. 200 
HEK293 DNA was chosen for compatibility with ChIP-seq data generated 201 
simultaneously (see accompanying manuscript41), and the length of the DNA was 202 
chosen to mimic standard HT-SELEX procedures and provide relatively high resolution.  203 
 204 
We initially tested GHT-SELEX on the Codebook control proteins. Thirty of the controls 205 
represented a sampling of well-studied TFs with different classes of DBDs, most of 206 
which were previously analyzed using the independent in vitro SMiLE-seq platform39. An 207 
additional 31 controls were C2H2-zf proteins for which published ChIP-seq data yielded 208 
motifs42. At the outset, we assumed that GHT-SELEX would yield continuous read 209 
coverage across the genome, given conventional estimates of up to a million PWM hits 210 
per TF7, such that the data could be analyzed directly for enriched motifs among the 211 
reads. Indeed, examination of individual mapped reads revealed that they usually 212 
accumulate at sites in which all reads overlap with what appears to be a motif match 213 
(Figure 1B). Remarkably, it also became apparent that GHT-SELEX data typically has a 214 
strong resemblance to ChIP-seq data, forming strong peaks found sparsely across the 215 
genome. Figure 1C shows raw read density for four control TFs, comparing GHT-216 
SELEX to ChIP-seq, and also to target site predictions based on existing and newly-217 
derived (see below) PWM models for the TFs. This observation prompted us to analyze 218 
the data as peaks, instead of raw reads.  219 
 220 
Peak calling from the GHT-SELEX data with conventional algorithms is confounded by 221 
the fact that different peaks have very different enrichment ratios across the cycles, 222 
presumably due to varying affinity of the TF for different sites, the overall increase in 223 
motif occurrences in the pool over the successive cycles, and simultaneous reduction in 224 
pool complexity, with the strongest binding sites dominating later cycles. As a 225 
consequence, enrichment information is distributed across the read cycles, with weaker 226 
peaks first appearing and disappearing, and the strongest peaks dominating in the later 227 
cycles. To adapt to these issues, we developed an analytical framework that capitalizes 228 
on the added information gained from multiple SELEX cycles (Figure 2A; see Methods 229 
for details). The approach relies on a statistical method that explicitly models the 230 
exponential growth of TF-bound genomic regions over the SELEX cycles, which leads 231 
to a progressively higher proportion of TF-bound fragments and depletion of relative to 232 
genomic background. The fragment abundances, in turn, are modeled as latent 233 
variables that determine the number of observed reads through a Poisson process. This 234 
hierarchical Bayesian model enables the integration of information across different 235 
selection cycles, experiments, and batches, to calculate an estimated enrichment 236 
coefficient (Figure 2B). We refer to this approach as MAGIX (Model-based Analysis of 237 
Genomic Intervals with eXponential enrichment). 238 
 239 
Among the 61 control proteins, 40 were deemed as successful on GHT-SELEX (see 240 
below and accompanying manuscripts37,43 for a description of how success was 241 
determined). Analysis of the data for the 40 successful controls by MAGIX resulted in 242 
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between 13 and 137,718 peaks (median 19,400) with enrichment coefficient exceeding 243 
5% FDR (see Methods). There is a clear enrichment of the motif occurrences for the 244 
corresponding TFs within the peaks, with the number of strong PWM hits, on average, 245 
declining rapidly at ~50 bp from peak centre, consistent with the DNA fragment size 246 
(Figure 2C; similar plots for all TFs analyzed are shown in Document S1). In addition, 247 
higher PWM scores (which would, in theory, predict higher relative affinity) are clearly 248 
associated with a higher GHT-SELEX enrichment coefficient (see below), suggesting 249 
that the GHT-SELEX/MAGIX is quantitative to some degree. 250 
 251 
Application of GHT-SELEX to the Codebook TF set 252 
 253 
We next performed GHT-SELEX and, in parallel, HT-SELEX using fragmented genomic 254 
DNA and random 40N ligands (Table S1), respectively, to assess DNA binding activity 255 
of 331 poorly characterized putative human TFs, as part of the Codebook project. We 256 
analyzed individual TFs with up to three types of constructs, and up to three protein 257 
expression strategies (two types of in vitro transcription–translation reactions, and 258 
expression in HEK293 cells, see Methods). Several experimental variables were 259 
modulated over the course of the experiments, resulting in improvement of success 260 
rates, particularly for TFs with long C2H2-zf domain arrays (see Methods and Table 261 
S2). For each TF, the constructs contained the full sequence of a representative 262 
isoform, or either all or a subset of its predicted DBDs. In total, we analyzed 1,315 263 
constructs encompassing the 61 control TFs and 331 of the 332 putative TFs in the 264 
Codebook set of poorly characterized proteins. With these constructs we performed 265 
1,534 GHT-SELEX and 1,578 HT-SELEX experiments (see Methods and Table S3). 266 
 267 
In separate parts of the Codebook project, this same set of proteins was analyzed using 268 
ChIP-seq, Protein Binding Microarrays38, and SMiLE-seq39, as described in the 269 
accompanying manuscripts37,41,44. We gauged the success of each TF in each 270 
experiment, including the GHT-SELEX experiments, largely based on whether similar 271 
DNA-binding motifs (i.e. PWMs) were obtained from different types of experiments, with 272 
all data types considered in aggregate by a team of expert curators. This process 273 
produced a list of “approved” experiments, as described in an accompanying study43. 274 
Selection of a single PWM for each TF for subsequent analyses is described in 275 
accompanying study37. The PWM selections incorporated those generated from all data 276 
types. PWMs and logos are available in accompanying study37 and online at 277 
https://codebook.ccbr.utoronto.ca, https://mex.autosome.org, and 278 
https://cisbp.ccbr.utoronto.ca45. 279 
 280 
In total, 139 previously uncharacterized Codebook TFs had at least one “approved” 281 
GHT-SELEX experiment (i.e., were successful in GHT-SELEX), of which 131 were also 282 
approved in HT-SELEX, 108 in ChIP-seq, and 102 in all three (Figure 3A and Table 283 
S3). The 139 were comprised mainly of C2H2-zf proteins, which are prevalent in the 284 
Codebook set (Figure 3B). In contrast, 163 of the putative TFs did not yield motifs in 285 
any of these assays, suggesting that they either do not bind DNA with sequence 286 
specificity, or require post-translational modifications or cofactors. In particular, only two 287 
of 49 proteins tested that lacked a known DBD yielded an approved experiment in GHT-288 
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SELEX (discussed in greater detail in the accompanying studies37). Including the control 289 
TFs, 24 types of DBDs were present among the approved experiments (Figure 3B), 290 
illustrating that the method can capture motif-containing genomic target site locations of 291 
diverse TF types. 292 
 293 
Unexpectedly high overlap between TF binding to the genome in vitro and in vivo 294 
 295 
GHT-SELEX analyzed with MAGIX, like ChIP-seq, produces peaks with a continuum of 296 
enrichment coefficient values and other associated statistics. Across both Codebook 297 
TFs and controls, there are typically a relatively small number of peaks with 298 
exceptionally high MAGIX enrichment coefficient values (hundreds to thousands), but 299 
we did not observe bimodal distributions that would imply a natural threshold which 300 
could be used to discriminate “bound” from “unbound” loci (examples in Figure 4A; 301 
distributions for all TFs in Document S1). We also examined the correspondence 302 
between GHT-SELEX/MAGIX peaks, ChIP-seq peaks, and PWM scores, focusing on 303 
the 137 TFs for which both ChIP-seq and GHT-SELEX data were available (101 304 
Codebook TFs and 36 controls). In most cases, there was a much higher overlap with 305 
ChIP-seq peaks and high PWM scores among the highest-scoring GHT-SELEX/MAGIX 306 
peaks (examples are shown in Figure 4A, and plots for all TFs in Document S1). We 307 
did not, however, identify a specific peak enrichment coefficient or significance value 308 
across all experiments that uniformly corresponds to high enrichment of PWM hits, or 309 
the probability of overlap with ChIP-seq peaks.  310 
 311 
Lack of a universal enrichment coefficient threshold across all experiments could be 312 
accounted for by TF-specific parameters in both GHT-SELEX and ChIP-seq assays, 313 
including different binding kinetics for both sequence-specific and nonspecific DNA 314 
binding, the effective concentration of the TFs, and the ability of the TFs to compete or 315 
cooperate with nucleosomes and other cofactors in vivo. Given that these parameters 316 
are unobserved and difficult to estimate from the data available, we implemented a 317 
simple scheme to draw thresholds on both peak sets: by sequentially taking equal 318 
numbers of highest scoring peaks on a TF-specific basis, we identified the peak number 319 
that maximizes the Jaccard statistic of overlap between the GHT-SELEX/MAGIX peaks 320 
and ChIP-seq peaks (Figure 4B).  321 
 322 
This approach yielded a very striking result, which is that for many TFs, a peak number 323 
can be identified with a surprisingly high Jaccard value (Jaccard median 0.1117) (Figure 324 
4C,D and Table S4), indicating that the TF intrinsically (i.e. independently) specifies 325 
many of the in vivo binding sites above the threshold selected. Peak overlap is a 326 
demanding statistic, because random expectation (i.e. from choosing genomic regions 327 
at random) is near zero, as only a miniscule fraction of the genome is covered by the 328 
peaks in either data type, and both experimental variation and noise in generation of 329 
peaks will lead to fluctuation of the rank order of peaks, even for replicates. Indeed, this 330 
result is not obtained from permuted peak positions, or permuted experiments (i.e. 331 
mismatched TFs) (after permutation, Jaccard median 0.0073; Wilcoxon p=2.6x10-38) 332 
(Figure 4D). The peak numbers yielding these high Jaccard values are often relatively 333 
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low, and correspond to a wide range of ChIP-seq p-value thresholds and MAGIX 334 
enrichment coefficient values (Table S4). 335 
 336 
Overall, this outcome contrasts with traditional expectation, which is that individual TF 337 
would normally not be able to independently specify their DNA targets in the genome7. 338 
We note that many of the TFs with highest Jaccard maxima are uncharacterized C2H2-339 
zf proteins with long (and intuitively specific) motifs: Among those with Jaccard > 0.1, 340 
78% are C2H2-zf proteins (57 out of 73), vs 42% (27 out of 64) for those with Jaccard 341 
below 0.1, and overall, the median Jaccard value for C2H2-zf proteins is 0.1582, vs. 342 
0.0616 for non-C2H2-zf proteins (Wilcoxon p=5.14x10-8). CTCF, a control protein that is 343 
known to possess large number of genomic target sites, unusually high specificity and 344 
ability to control nucleosome positions14,15, is among those with high Jaccard values, 345 
although it is not the highest scoring in this dataset. Counterintuitively, high Jaccard 346 
maxima were also obtained for a subset of TFs with relatively short motifs, including 347 
NFKB1, GABPA, NACC2, and several CXXC proteins, such as CXXC4 and KDM2A, 348 
that mainly bind CG dinucleotides, as expected46 (Figure 5A). 349 
 350 
Multiple explanations for high sequence specificity observed in GHT-SELEX 351 
 352 
We next asked whether PWM predictions across the genome could achieve a level of 353 
correspondence to ChIP-seq that we obtained with GHT-SELEX/MAGIX. To do this, we 354 
performed a similar maximization of the overlap score (Jaccard) as described above for 355 
GHT-SELEX and ChIP-seq, here sweeping through PWM scores (i.e. using PWMs to 356 
predict and score “peaks” in the genome; see Methods for details). Remarkably, on 357 
average, the overlap between PWM predictions and ChIP-seq peaks is similar to that 358 
for GHT-SELEX/MAGIX and ChIP-seq peaks (Figure 5A, Table S4), and the numbers 359 
of peaks at which the maximum Jaccard was obtained is also typically similar (Figure 360 
5B). The slightly higher Jaccard for PWMs in some cases may be due to the simple 361 
PWM models smoothing experimental noise in the GHT-SELEX. In some cases, 362 
however, this explanation seems implausible; for example, in several instances, very 363 
small PWMs (e.g. that of CXXC4, which is mainly a single CG dinucleotide) yielded 364 
higher overlap with ChIP-seq peak locations than GHT-SELEX did. 365 
 366 
To our knowledge, such strong ability of PWMs to predict in vivo binding sites, over a 367 
large set of TFs, is unprecedented. We attribute two main sources. First, the PWMs 368 
used in these analyses were selected from a panel of hundreds to thousands of 369 
candidate PWMs, specifically choosing those that performed best across numerous test 370 
statistics and several data types. The Jaccard statistics against ChIP-seq and GHT-371 
SELEX were among the selection criteria. Thus, lower maximal Jaccard scores – often 372 
vastly lower - are obtained from virtually all other PWMs. Hence, in addition to 373 
optimizing the thresholds, part of the explanation for the high Jaccard values we 374 
obtained lies in the derivation of the PWM itself.  375 
 376 
The second apparent source of performance increase is the PWM scanning and scoring 377 
method. For some TFs, scoring a DNA fragment using the sum of predicted affinity 378 
scores over a sequence window (i.e. the sum of the PWM probability scores at 379 
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individual positions, rather than the log-odds that is output by most PWM scanning 380 
tools) results in considerably higher maximum Jaccard value than taking the maximum 381 
or sum of log-odds PWM scores (which are generally thought to represent binding 382 
energy47,48) (Figure 5C). Sum-of-affinity scoring presumably reflects the cooperation of 383 
multiple adjacent binding sites, traditionally referred to as “avidity”49. The effect is most 384 
striking for a subset of TFs that bind short or repetitive sequences, including CG 385 
dinucleotides and poly-A stretches (Figure 5D, but it also appears to underpin the 386 
specificity of NACC2 and ZNF48, which have unique, non-repetitive motifs (Figure 5E). 387 
Points above the diagonal in Figure 5A, where PWM prediction shows higher overlap 388 
with ChIP than the GHT-SELEX, may therefore represent the impact of TF binding sites 389 
over a larger window influencing ChIP-seq but not GHT-SELEX (we performed the 390 
PWM scans with a 200 bp window, while the GHT-SELEX fragments are only ~65 bp). 391 
For example, scanning 200-base windows with the short CG motif for CXXC4 may be 392 
better suited for detection of CpG islands (which dominate the CXXC4 binding sites37, in 393 
which the CG dinucleotides will be distributed over a large region (by definition >200 394 
bp). 395 
 396 
These analyses indicate that PWMs can often predict in vivo TF binding sites as 397 
effectively as actual measurements of binding to the genome made with GHT-SELEX. 398 
Figure 1C illustrates the increase in correspondence between PWM predictions and 399 
ChIP-seq peaks that can be achieved with carefully-selected PWMs and improved 400 
scanning procedures. There are, however, many TFs in which no PWM could be 401 
derived that rivals GHT-SELEX data in correspondence of ChIP-seq peaks (those below 402 
the diagonal in Figure 5A). These TFs are almost entirely proteins with a long array of 403 
C2H2-zf domains, which we examine more closely in the next section. 404 
 405 
Alternate usage of C2H2-zf domains within large arrays 406 
 407 
The expansive collection of GHT-SELEX, HT-SELEX, and ChIP-seq data for C2H2-zf 408 
proteins provided an opportunity to examine the long-standing issue of usage of 409 
individual C2H2-zf domains within large arrays. Anecdotally, we observed many 410 
instances where the motifs detected for C2H2-zf proteins were much shorter than 411 
expected based on the number of C2H2-zf domains, as well as examples in which 412 
multiple distinct motifs emerged, suggesting that the TFs might use partial subsets of 413 
their DBD array to engage DNA at different locations. Proving differential engagement of 414 
the specific C2H2-zf domains is challenging, however, due to low statistical power 415 
(there are many possible C2H2-zf domain sub-arrays, and a limited number of highly 416 
enriched peaks) and the fact that the genome is highly non-random and repeat-rich. To 417 
minimize the impact of these issues, we developed a new method that utilizes the 418 
C2H2-zf recognition code to assess which sets of C2H2-zf domains are likely to be 419 
engaged at any individual binding sites. We call this method RCADEEM (Recognition 420 
Code-Assisted Discovery of regulatory Elements by Expectation-Maximization) (see 421 
Methods for details).  Figure 6A shows a schematic, and the results of applying 422 
RCADEEM to CTCF, illustrating that it produces a “core” motif recognized by fingers 4-7 423 
at all sites, and alternative usage of flanking C2H2-zf domains in a subset of sites, very 424 
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similar to the differential usage of CTCF C2H2-zfs domains that has been previously 425 
described28. 426 
 427 
We applied RCADEEM to all 120 C2H2-zf proteins for which we had approved data 428 
from GHT-SELEX (Table S4). We applied RCADEEM on GHT-SELEX data and 429 
separately, if available, on HT-SELEX and ChIP-seq; for GHT-SELEX and ChIP-seq, we 430 
applied it both with and without repeat sequences (i.e. removing any peaks that overlap 431 
with the UCSC Repeatmasker track). In total, we obtained RCADEEM predictions for 86 432 
of them (Table S4), all of which are available via the web resources accompanying this 433 
paper (https://codebook.ccbr.utoronto.ca/). (For the remaining 34, the algorithm did not 434 
converge, suggesting that the sequence preferences of the protein do not closely follow 435 
the recognition code, and thus cannot be analyzed in this way). Most of the 86 436 
displayed what appears to represent alternative usage of segments of the C2H2-zf 437 
domain array on different DNA molecules (e.g. different genomic loci) within the same 438 
experiment. We manually classified the apparent C2H2-zf domain usage into the 439 
following categories, examples of which are shown in Figure 6B-F, while Figure 6G 440 
provides an overview of the descriptors and other properties of each of the C2H2-zf 441 
proteins. 1) Canonical (30 instances) follows the baseline assumption that a TF always 442 
uses the same set of C2H2-zf domains to recognize sites that can be described with a 443 
single PWM. 2) Core with extensions (24 instances), where all sites share a sequence 444 
motif bound by a subset of the C2H2-zf domains, which is supplemented by recognition 445 
of flanking sequences by adjacent C2H2-zf domains at some binding sites. 3) Finger 446 
shift (14 instances), where the TF recognizes a range of tiled target sites by binding with 447 
variable subsets of adjacent C2H2-zf domains. 4) Multiple DBDs (32 instances), in 448 
which subsets of the C2H2-zf domain array appear to function as independent DBDs. 449 
The last three binding modes are not mutually exclusive. For example, ZNF471 displays 450 
both multiple DBDs and core with extensions with one of the DBDs (Figure 6F), while 451 
the long finger shift in ZNF665 (Figure 6D) leads effectively to multiple DBDs, as the 452 
target sites of most N-terminal and C-terminal ends do not overlap with each other. 453 
Table S4 lists the annotations for all 86 proteins. 454 
 455 
Evolution of C2H2-zf protein DNA-binding specificities via internal duplication 456 
  457 
In the RCADEEM outputs, different segments of a C2H2-zf domain array (i.e., different 458 
DNA binding regions of the protein) are often predicted to bind similar yet distinct sets of 459 
sequences. For example, ZNF775 (Figure 6E) binds two types of sites that contain a 460 
shared GNWGAA consensus, followed by either TTT or GCA trinucleotides. RCADEEM 461 
predicts that these two sites are recognized by C2H2-zf domain arrays 1-4 and 5-8, 462 
respectively. Indeed, arrays 1-4 and 5-8, as well as 9-11, are homologous, on the basis 463 
of sequence identity (visualized at 464 
https://codebook.ccbr.utoronto.ca/details.php?TF=ZNF775), suggesting that they arose 465 
from duplications. All three arrays are present in mammals as distant as the Tasmanian 466 
devil, indicating that the duplications predate divergence from marsupials, and have 467 
since been conserved. The cellular and physiological functions of this protein are 468 
unknown, to our knowledge, but this degree of sequence conservation suggests a 469 
conserved role across mammals. 470 
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 471 
Another example is ZNF721: RCADEEM indicates that it has three DNA-binding modes, 472 
with related but distinct motifs (Figure 7A), corresponding to homologous C2H2-zf 473 
domain arrays containing fingers 6-13, 12-16, and 18-22 (Figure 7B). The distinct 474 
sequence preferences of the duplicated ZNF721 arrays are supported by experimental 475 
data for partial “DBD1” and “DBD2” constructs, corresponding roughly to the first and 476 
second half of the full array, which recognize largely distinct subsets of the genomic 477 
sites bound by full length TF in GHT-SELEX (Figure 7A) and prefer almost entirely 478 
distinct 10-mers in HT-SELEX (Figure 7C). The function of ZNF721 has not been 479 
determined, but sequences recognized by the first (6-13) and third (18-22) duplicated 480 
C2H2-zf domain arrays of ZNF721 are found in the highly numerous Alpha repeats, 481 
which are fast-evolving elements found at primate centromeres50. ZNF721 itself is 482 
present only in primates. ZNF721 also binds thousands of unique loci outside known 483 
repeat elements, and associates physically with TRIM28/KAP151, suggesting a role in 484 
gene silencing or heterochromatin formation.  485 
 486 
To survey the prevalence of internal duplication of C2H2-zf domains, we compared all 487 
pairs of individual human C2H2-zf domains occurring in the same protein and found that 488 
185 human C2H2-zf proteins (~25%) contain at least one pair of C2H2-zf domains that 489 
differ by 3 or fewer edits (substitutions, deletions or insertions; Table S6), suggesting 490 
that they are derived from recent duplications. Furthermore, as in ZNF775 and ZNF721, 491 
there are 140 proteins with apparent internal C2H2-zf domain array duplications, 492 
defined as two (or more) adjacent C2H2-zf domains (i.e. an array) related to a second 493 
such array with two (or more) C2H2-zf domains, with 5 or fewer edits per C2H2-zf 494 
domain. Based on recognition code predictions, C2H2-zf domain arrays within internal 495 
array duplications have more diverged sequence specificities from each other than 496 
individually duplicated C2H2-zf domains (Figure 7D, Table S6). The prevalence and 497 
diversification of internal C2H2-zf domain array duplications suggest that they are a 498 
common modality for evolution of novel functional roles for this large class of proteins.  499 
 500 
 501 

502 
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DISCUSSION 503 
 504 
GHT-SELEX assays direct and unassisted binding of a single TFs to the unmodified and 505 
unchromatinized genome in vitro, revealing surprisingly specific intrinsic sequence 506 
preferences for many human TFs. The assay, and the associated MAGIX analysis 507 
pipeline, offers several technical advantages over alternatives, including smaller 508 
fragment size and compatibility with the same instrumentation used for HT-SELEX. 509 
GHT-SELEX data are often more similar to ChIP-seq data than conventional wisdom 510 
would suggest it should be7,24, indicating that, for an apparently large subset of TFs, 511 
chromatin and cofactors have less critical influence on where binding occurs. This same 512 
observation implies that this subset of individual TFs may have greater ability to 513 
overcome the chromatin state than is commonly believed. This apparent discrepancy 514 
with expectation can be explained partly by technical shortcomings in previous PWM-515 
based genome scans, which are based on PWMs derived from other methods. HT-516 
SELEX and other in vitro approaches utilizing random sequence are powerful in that 517 
they are unbiased in terms of sequence composition52, but they are inherently limited in 518 
sequence length and context that can be surveyed. ChIP-seq is invaluable because it 519 
can assay binding within cells, but it does not inherently discern direct, indirect, and 520 
non-specific binding. Thus, PWMs derived from ChIP-seq and other in vivo approaches 521 
are influenced by factors other than the TF, in addition to the biased sequence content 522 
of the genome. GHT-SELEX provides a powerful intermediate that can resolve 523 
ambiguities of both motif discovery and PWM scanning, and thus provides data that 524 
complements both ChIP-seq and in vitro assays that utilize random sequences. 525 
 526 
GHT-SELEX is particularly effective with C2H2-zf proteins, and, together with 527 
RCADEEM, has an unprecedented ability to both obtain and dissect in vitro the multiple 528 
binding modes that are uniquely characteristic of this family, and inherently more difficult 529 
to represent as a single PWM. The existence of multiple binding modes also provides a 530 
potential explanation for the large number of C2H2-zf domains in each protein. In at 531 
least some cases, these large arrays derive from internal duplications of segments of 532 
the C2H2-zf domain arrays, possibly facilitating generation of evolutionary novelty via 533 
duplication and divergence. 534 
 535 
In contrast to the C2H2-zf family, the most well-studied TFs tend to be in the TF classes 536 
such as homeodomain, bHLH, bZIP, nuclear receptor and Sox TFs, because they are 537 
the most strongly conserved and often dictate specific biological processes (e.g. 538 
morphogenesis, body plan, lineage specification, etc.)24. Our study included some of 539 
these TFs (e.g. LEUTX, BATF2, RARA and SRY), and they displayed only limited 540 
overlap between GHT-SELEX and ChIP-seq peaks, indicating that many of them cannot 541 
independently specify in vivo binding locations and hence target genes. It has long been 542 
known that TFs controlling chromatin in yeast are largely distinct from those that 543 
regulate specific pathways24; we speculate that a similar division may exist in human 544 
and other animals.  545 
 546 
GHT-SELEX data, together with the larger Codebook dataset, provides an extensive 547 
new dataset of TF motifs (i.e. PWMs), encompassing most putative TFs currently 548 
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lacking them. Accompanying papers provide a thorough analysis of the results of this 549 
project, which underscore many challenges and benefits of accurate motif 550 
representations. Representation of TF sequence specificity remains an open challenge, 551 
more than four decades after the introduction of the standard PWM model53. More 552 
accurate representations of large and complex binding sites, in particular for C2H2-zf 553 
proteins, could be useful for a variety of purposes, including attributing deep learning 554 
filters to individual TFs. Finally, we propose that obtaining data from GHT-SELEX for 555 
additional TFs with “known” motifs and genomic binding sites from ChIP-seq will 556 
produce a more detailed view of their intrinsic DNA binding abilities, and how this 557 
intrinsic ability dictates TF-genome interactions in living cells.558 
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 1 

Figure 1. Overview of GHT-SELEX. A. Schematic of GHT-SELEX, showing parallels 
with HT-SELEX. B. Example of read accumulation over a TF motif match for NFKB1. C. 
Genomic binding for four positive control TFs on a genomic region showing (top to 
bottom) PWM scanning scores (moving average of affinity scores, from MOODS60 scan 
in linear domain, using a window of size 200bp) for literature (Ref) PWMs and 
Codebook PWMs, followed by read coverage signal observed in GHT-SELEX and 
ChIP-seq. 
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 2 

Figure 2. MAGIX method for interpretation of GHT-SELEX data.  A. A brief overview 
of the statistical framework of the generative model of MAGIX. Open circles, closed 
circles, and the diamonds represent latent variables, observed variables, and 
deterministic computations, respectively. si: library size for sample i; xi: vector of 
sample-level variables for sample i, including an intercept term and a term for the 
SELEX cycle, in addition to other terms for batch and background effects; βj: vector of 
model coefficients for interval j; mij: number of observed reads mapping to interval j in 
sample i. See Methods for description of other variables. B. Example of actual read 
count data for CTCF over five replicates of four cycles, illustrating enrichment patterns, 
fitted coefficients (right), and estimated library sizes (bottom). C. Distribution of PWM 
hits for the top-ranked TF PWM (highest AUROC on GHT-peaks as determined by 
accompanying study43) within the 5,000 highest scoring MAGIX peaks. PWM hits were 
identified with MOODS60 (P < 0.0001). Solid red lines represent the mean PWM hit 
position within MAGIX peaks and dashed lines represent one standard deviation about 
the mean. 
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Figure 3. Analysis of 331 Codebook proteins and 61 control TFs using GHT-
SELEX.  A. Venn diagram displays the number of TFs with approved experiments in 
GHT-SELEX, HT-SELEX, and ChIP-seq for all Codebook TFs (left) and control TFs 
(right) assayed with GHT- and HT-SELEX.  B. Bar chart shows the number of TFs with 
at least one approved GHT-SELEX experiment, categorized based by DBD type. C2H2-
zf proteins and those with an unknown DBD (at the beginning of the project) are inset 
due to large numbers. 
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Figure 4. Correspondence between GHT-SELEX and ChIP-seq peaks. A. 
Enrichment of ChIP-seq peaks and PWM hits within MAGIX peaks, for two example 
control TFs. The top 75,000 MAGIX peaks are sorted by their MAGIX enrichment 
coefficient (purple, left y-axis). Orange line shows the proportion of peaks (in a sliding 
window of 500 peaks over the ranked peaks, with a step size of 50) that overlap with a 
ChIP-seq peak (at MACS threshold P < 0.001). Black line shows the AUROC for PWM 
affinity scores (calculated by AffiMx52) of MAGIX peaks in the same window vs. 500 
random genomic sites. B. Illustration of peak number optimization (for CTCF as an 
example). C. Histogram of the optimal values of N (peak count) for the 137 TFs that 
have both GHT-SELEX and ChIP-seq peaks. D. Histogram of optimal Jaccard values, 
compared to the maximum Jaccard for mismatched TFs (i.e. between GHT-SELEX for 
one TF and ChIP-seq for a randomly selected TF).   
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 5 

Figure 5. High quality PWMs often predict in vivo binding sites as effectively as 
GHT-SELEX peaks. A. Scatter plot of optimal Jaccard value between GHT-SELEX 
peaks and ChIP-seq peaks (x-axis) vs. optimal Jaccard value between PWM-predicted 
sites and ChIP-seq peaks (y-axis), for all 137 TFs (dots). B. Scatter plot of optimal N 
(peak number) for the same peak set comparisons shown in (A). C. Scatter plot 
showing optimal Jaccard value between PWM-predicted sites and ChIP-seq peaks, for 
maximum-affinity PWM scoring and sum-of-affinities PWM scoring. Points (TFs) are 
scaled based on the optimal number of peaks (in the sum scoring), and the color 
reflects the fraction of binding sites comprised of multiple PWM hits. D. Scatter plot of 
the improvement in the optimal Jaccard value associated with sum-of-affinities PWM 
scoring vs. information content of the PWM. Points’ size and color are the same as 
panel (C). E. Examples of four TFs with multiple motif matches within a single ChIP-seq 
peak.  
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Figure 6. Alternative engagement of individual C2H2-zf domains at genomic 
binding sites inferred from the recognition code. A. RCADEEM applied to CTCF. 
Middle panel displays the top 2,000 nonrepetitive GHT-SELEX peaks. White vertical 
bars indicate the region that is expected to contact the DNA based on the assumption 
that each of the C2H2-zf domains define three contiguous bases. Left panel indicates 
which C2H2-zf domains are inferred to engage each DNA sequence, which is used to 
determine the row order in the figure. Right panel shows motifs for the major sub-sites, 
derived from base frequencies in the sequence alignment. B-F, Top 2,000 non-repeat 
peak sequences, as in (A), for representative TFs with different binding modes, as 
described in the main text. Above each is shown the sequence logo for the single 
representative Codebook PWM (top) and a motif generated by RCADEEM that 
represents all the observed sequences (bottom). G. Number of occurrences of each 
category among all 86 C2H2-zf proteins for which RCADEEM yielded a significant 
outcome; note that a TF might appear in multiple or no categories. 
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Figure 7. Evolution of C2H2-zf protein DNA-binding specificities through internal 
duplication of DBDs and DBD arrays. A. RCADEEM results for the pool of top 500 
peaks from full-length ZNF721 and two DBD constructs, after removing peaks that 
overlap repeats. The construct in which the peak was observed is indicated on the left. 
B. Similarity of C2H2-zf domains of ZNF721 (based on the number of mismatches in the 
global alignment). Apparent duplicated arrays are encircled by blue border (i.e. syntenic 
duplications), while single pairs that may also be duplicates are circled in red. C. 
Scatterplots of the HT-SELEX k-mer scores61 (relative counts) across the three ZNF721 
constructs D. Comparison of average per-base similarity (correlation of nucleotide 
frequency) in PWMs predicted by the recognition code, for those present in duplicated 
arrays vs. those duplicated as individual C2H2-zf domains, with duplicated C2H2-zf 
domains taken as pairs that are separated from each other by 5 or less edits. DBD pairs 
have been filtered to contain only combinations where both DBDs are likely to have 
retained their ability to bind DNA (have DNA binding functionality score59 >0.5). Error 
bars show standard error of the mean. 
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 559 
 560 
METHODS 561 
 562 
TFs and constructs. Selection of TFs, design of constructs for gene synthesis, and 563 
expression vectors are described in accompanying study37. Sequences and other 564 
information are available as described below in Data Availability.   565 
 566 
Protein production. We used three protein expression systems, which we refer to in 567 
Table S1 and below as Lysate, IVT, and eGFP-IVT, respectively. The Lysate system 568 
employed recombinant HEK293 cells, created in the accompanying study41, and in a 569 
previous study42, which express eGFP-tagged full-length proteins from a Tet-inducible 570 
promoter (plasmid backbones pTH1319542 and pTH12027). We induced expression by 571 
Doxycycline treatment for 24 hours prior to harvest, confirmed via fluorescent 572 
microscopy. Whole cell lysates were then harvested from a 10cm plate (~10 million 573 
cells) for each line using 1 ml of lysis buffer (50 mM Tris-Cl at pH 7.4 containing 150 574 
mM NaCl and 1% Triton X-100), supplemented with protease-inhibitor cocktail (Roche 575 
cOmplete mini, 04693159001), as described previously32. Each of the SELEX cycles 576 
used 50 ul of lysate. IVT used an in vitro transcription-translation reaction (PURExpress 577 
In Vitro Protein Synthesis Kit, NEB, Cat# E6800L) to express T7-driven, GST-tagged 578 
proteins (either full-length or DBDs) (plasmid backbone pTH683845). eGFP-IVT employs 579 
the TNT SP6 High-Yield Wheat Germ Protein Expression System (Promega, Cat# 580 
L3260) to express SP6-driven, eGFP-tagged proteins (either full-length or DBDs) 581 
(plasmid backbone pTH16505, an SP6-promoter driven, N-terminal eGFP-tagged 582 
bacterial expression vector, modified from pF3A–eGFP 39 to contain AscI and SbfI 583 
restriction sites after the eGFP. For IVT and eGFP-IVT production systems, we 584 
performed reactions according to kit instructions, but using a smaller volume: 7.5ul of 585 
IVT or 5ul of eGFP-IVT reaction sample was used in each binding reaction of each 586 
SELEX cycle.  587 
 588 
GHT-SELEX and HT-SELEX library preparation. We fragmented HEK293 genomic 589 
DNA (Genscript, USA; Cat. No. M00094) for 45 minutes using NEBNext dsDNA 590 
Fragmentase enzyme mix (NEB, M0348S), and then performed a size selection step to 591 
reduce the amounts of fragments larger than 200 bp. In the size selection we added 592 
0.9X volume of bead suspension (magnetic SPRI beads, supplied with the kit, NEB, 593 
E7103S) to the fragmented DNA, mixed the reaction for a minute, and then removed the 594 
large DNA fragment bound beads with a magnet, after which we diluted the supernatant 595 
5X with water, followed by purification with a PCR purification kit (NEB, T1030S), to 596 
recover fragments as small as 25 bp. Next the fragments were converted to an Illumina 597 
sequencing compatible library using NEBNext® Ultra™ II DNA Library Prep kit (NEB: 598 
E7103S) and NEB E7350 adapters. After adapter ligation, we purified the library with      599 
PCR purification kit (NEB, T1030S) and then amplified it for five PCR cycles to convert 600 
the partially single stranded adapter flanks to fully double stranded DNA, to increase the 601 
amount of the product and reduce the amount of methylated cytosine residues in the 602 
initial library. The ninety-six (96) HT-SELEX ligands were prepared as described54, with 603 
the exception that the reverse primer was replaced with a primer (5’ 604 
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CTGGAGTTCAGACGTGTGCTCTTCCGATCT 3’), that does not contain a T7 promoter 605 
sequence, and that HT-SELEX ligands differ from each other by containing a well-606 
specific variable region that flanks the randomized 40 bases indicated in the name of 607 
the experiments (e.g. AA40NCCAGTG contains 40-bases flanked by AA and CCAGTG 608 
sequences and Illumina adapter sequences). All primers and library preparation 609 
schemes are given in Table S1.  610 
 611 
HT-SELEX and GHT-SELEX. We modified protocols from a previously-described HT-612 
SELEX procedure32. HT-SELEX and the GHT-SELEX ligands contain the same flanking 613 
constant regions and thus there were no differences in the selections or sequencing 614 
library preparations. We conducted the magnetic bead washing operations below using 615 
a Biotek 405TS plate washer fitted with a magnetic carrier. We performed 21 different 616 
batches of SELEX, which varied in some technical respects in order to accommodate 617 
the three protein production systems and to implement improvements developed during 618 
the study (See Table S2 for description of conditions used in each experimental batch). 619 
Protein immobilization was carried out in buffers based either on Lysis buffer (150 mM 620 
NaCl and 1% Triton X100 in Tris-Cl, pH 8) or Low stringency binding buffer (LSBB)(140 621 
mM KCl, 5 mM NaCl, 1 mM K2HPO4, 2 mM MgSO4, 100 µM EGTA, 1 mM ZnSO4 and 622 
0.1% Tween20 in 20 mM HEPES-HCl (pH 7). All DNA-protein reactions used LSBB. For 623 
GST-tagged proteins, we used glutathione magnetic beads (Sigma-Aldrich G0924-624 
1ML), and for GFP-protein immobilization, we used GFP-Trap Magnetic Agarose” 625 
(Chromotek, gtma-100) for initial batches, and Anti-GFP antibody (ab290, Abcam) 626 
immobilized to Protein G Mag Sepharose® Xtra (Cytiva, 28-9670-70) for later batches, 627 
as the latter showed higher success rate. All selections used 1µl of the magnetic bead 628 
slurry, a volume that in majority of the cases, according to manufacturers’ information, 629 
contains excess protein binding capacity but is still visible in microwell plates allowing 630 
quality control of the washing steps.  631 
SELEX process: All of the protocols (described in Table S2) followed these general 632 
steps: 1) Affinity beads and 96-well plates were blocked with BSA for 15 minutes; 2) 633 
Beads and plates were washed to remove unbound BSA; 3) Protein was immobilized 634 
into beads for 1h on a shaker; 4) Beads were washed to remove nonspecific proteins 635 
and carryover DNA; 5) Protein coated beads were incubated with DNA ligand for 1h to 636 
allow the proteins to bind their target sites; 6) Unbound and weakly bound DNA ligands 637 
were removed with extensive washing; 7) DNA ligands were eluted by suspending the 638 
beads into heat elution buffer (0.4 µM forward and reverse primers, 1 mM EDTA and 639 
1% Tween 20 in 10 mM Tris-Cl, pH 8) transferring the suspension into a conical PCR 640 
plate and heat treating it in a PCR machine using a program that cycled between 641 
temperatures of 98 and 60°C, in order to denature the proteins and DNA, use 642 
convection to drive the DNA into the solution, and to hybridize DNA to the amplification 643 
primers; 8) Bead suspension obtained from heat elution was used as template in PCR 644 
and qPCR reactions; 9) An additional  DNA amplification cycle was performed with 2X 645 
more primers and dNTPs to ensure that majority of the ligands are in fully double-646 
stranded state and 10) For batches YWO through YWS, we performed an additional 647 
step in which the double-stranded ligands were treated with mung bean nuclease to 648 
digest single stranded DNA such as primers or unpaired bases within selection ligands. 649 
In each mung bean nuclease reaction, the pH of the solution (PCR reaction) was first 650 
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lowered by addition of 1:10 volume of 100 mM acetic acid, followed by addition of 1ul 651 
(0.75 units) of the enzyme and incubation for one hour at 37°C.  652 
 653 
Sequencing. Samples were prepared for sequencing by performing a PCR reaction 654 
that indexes each sample and its selection cycle with a unique combination of i7 and i5 655 
barcodes, followed by a double stranding reaction with primers that target regions of 656 
DNA outside indices (Table S1). Following this step, DNA libraries were pooled, purified 657 
with a PCR purification kit (NEB, T1030S), and then subjected to Illumina sequencing 658 
with 60bp reads at 3M reads per sample (Donnelly Centre sequencing core facility). 659 
 660 
HT- and GHT-SELEX read processing and mapping. HT-SELEX reads were filtered 661 
by Phred quality score (Q >= 30 in at least 90% of bases). GHT-SELEX reads were 662 
parsed with Trimmomatic55 to remove the constant regions from genomic fragments that 663 
were shorter than the sequencing read length (options: 664 
ILLUMINACLIP:CustomAdapters.fa:2:5:5, LEADING:3, TRAILING:3 MINLEN:25). The 665 
custom adapters in the fasta file were AGATCGGAAGAGCACACGTCTGAACTCCAG 666 
and AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGTTA. For GHT-SELEX, we 667 
mapped trimmed reads to the human genome build hg38 with bowtie2 (options: --very-668 
sensitive, --no-unal). The mapped reads were further filtered using Samtools (options: -669 
F 1548, version 1.20)56. 670 
 671 
MAGIX statistical framework. At the core of MAGIX is a generative model that 672 
explicitly connects the enrichment of TF-bound genomic intervals to the fragment counts 673 
observed across GHT-SELEX cycles. MAGIX, models how TF-bound intervals 674 
progressively occupy a higher proportion of selected fragments pool in each cycle 675 
relative to genomic background. These fragment proportions, in turn, are treated as 676 
latent variables in the model that, together with a sample-specific library size factor, 677 
determine the number of observed reads through a Poisson process. Consider the 678 
genomic interval j∈[1,G], where G is the total number of unique genomic intervals that 679 
we are modeling. Assume that fragments originating from interval j have a starting 680 
abundance of aj in the library. We also assume an exponential enrichment for the 681 
fragments, that in each cycle of SELEX, the abundance of these fragments changes by 682 
a factor of ebj, where bj is the log fold-change in abundance per cycle (referred to as 683 
enrichment coefficient), conceptually associated with biophysical parameters such as 684 
binding energies. Therefore, at cycle t, the abundance of the fragment originating from 685 
interval j is given by: 686 

 687 
For convenience, we work with the logarithm of abundance, yj=log fj, transforming the 688 
exponential equation above to a linear equation as follows: 689 

 690 
which can be seen as the linear multiplication of a feature vector for all the 691 
samples i (and across different cycles) corresponding to the TF of interest, and the 692 
interval-specific parameters .  693 
We note that to accurately model the enrichment of each fragment per cycle, other 694 
factors also need to be taken into consideration, such as background or batch effects, 695 
and therefore, the linear equation above needs to be fitted not only to the samples that 696 
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correspond to the TF of interest, but also samples from other experiments. We embed 697 
these dependencies in a design matrix X∈ℝN×K, where N is the total number of samples 698 
and K is the number of variables to consider, including an intercept term (whose 699 
coefficient will correspond to log aj  above), a term for the SELEX cycle t (variable for 700 
the samples corresponding to a same TF), and other terms for batch and background 701 
effects. In addition to the variables included in X, the abundance of each fragment in 702 
each sample depends on a sample-specific scaling factor that is often referred to as the 703 
library size. Assume that this library effect, for each sample i∈[1,N], is the scaling factor 704 
si (in logarithmic scale). Therefore: 705 

 706 
Here, ŷij corresponds to the expected logarithm of the abundance of interval j in sample 707 
i, xi∈ℝK is a vector representing the i'th row of the design matrix X (i.e., the sample-level 708 
variables for sample i), and βj∈ℝK is an interval-specific vector of coefficients for the K 709 
variables included in the model. 710 
 711 
We note that the equation above does not have a unique solution. For example, any Δβ 712 
can be added to βj, followed by subtraction of XΔβ from s, without any change in ŷj: 713 

 714 
Therefore, to make the model identifiable, we limit βj so that Σj∈[1,G]βj=0, where 0 is the 715 
zero vector of length K. This constraint is also useful since it means that, across all G 716 
intervals, the mean of each coefficient in , including the coefficient for the SELEX cycle, 717 
is zero; in other words, the enrichment per cycle for each interval is calculated relative 718 
to the mean of all G intervals.  719 
To incorporate the experimental noise in the logarithm of the abundance of interval j in 720 
sample i (i.e. building the real distribution of ), we modeled it as a Gaussian random 721 
variable whose mean is given by ŷij (the linear model above) with a sample-specific 722 
variance σi2: 723 

 724 
To complete the Bayesian framework, we also assume a multivariate Gaussian prior for 725 
βj: 726 

 727 
Here, Σ, the covariance matrix of the prior distribution, is shared across all intervals.  728 
 729 
Altogether, the equations above form the following Bayesian model: 730 
 731 

 732 
 733 

 734 
 735 

 736 
 737 

Assuming that the values for yij are directly observed, we can obtain the maximum a 738 
posteriori (MAP) estimates of the parameters βj (for j∈[1,G]), s, and σi2 (for i∈[1,N]) 739 
through a block coordinate descent algorithm, as previously described48. 740 
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The prior covariance matrix Σ is a hyper-parameter that is obtained using an empirical 741 
Bayes approach. More specifically, we first obtain the maximum likelihood estimate 742 
(MLE) of the parameters βj, si, and σi2 without assuming any prior on βj, and then 743 
estimate the values of σβk2, the variance of each element k in βj, using the MLE 744 
solutions of all βj coefficients. The covariance matrix Σ is then constructed as 745 
Σ=diag(σβ12,…, σβK2). 746 
 747 
We note, however, that the log-abundance values yij‘s are not directly observable in 748 
GHT-SELEX data. Instead, we observe mij, the count of reads mapping to interval j in 749 
sample i (see HT- and GHT-SELEX read processing and mapping). This parameter 750 
adds another step to the framework, leading to the following hierarchical Bayesian 751 
model: 752 

 753 
 754 

 755 
 756 

 757 

 758 
 759 

Here, y*ij is the logarithm of the true abundance of fragment j in sample i, which is latent. 760 
We obtain the MAP estimates of the parameters βj (for j∈[1,G]), si, and σi2 (for i∈[1,N]) 761 
using an expectation maximization (EM) algorithm, in which at each E-step we obtain 762 
the expected value of each y*ij given the observed read count mij and the current model 763 
parameters, followed by re-estimation of the model parameters in the M-step, similar to 764 
a previous method established for EM optimization of Poisson-lognormal models48. 765 
 766 
Identifying GHT-SELEX peaks with MAGIX. The statistical framework described 767 
above calculates, for each genomic interval, the rate of enrichment across GHT-SELEX 768 
cycles. To identify GHT-SELEX peaks, we used this framework along with the procedure 769 
described below to systematically examine all genomic intervals and identify regions 770 
with the highest signal (peaks). First, we binned the entire human genome (build hg38) 771 
into ~13M non-overlapping intervals of 200 bp and then, for each TF, calculated the 772 
read count profiles of these intervals across the GHT-SELEX cycles and replicates. 773 
Counts were obtained using bedtools multicov (version 2.30.0)57. These read count 774 
profiles were used as the input to MAGIX to obtain an enrichment coefficient for each 775 
200 bp interval (while controlling for batch effects by including batch-specific pooled 776 
controls and variables in the design matrix). Next, the top 200,000 regions with the 777 
highest enrichment coefficients were selected as candidate intervals for peak 778 
refinement. 779 
 780 
To refine the peak coordinates, we first merged any adjacent candidate intervals, and 781 
then calculated the base pair-resolution read count coverage profile across each 782 
merged interval (and sum of all GHT-SELEX cycles). The position with the highest read 783 
coverage was selected as the candidate peak summit. The read counts overlapping the 784 
±100 bp around the summits were computed, which were used as input to the MAGIX 785 
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statistical inference component (above) to recalculate enrichment coefficients, while 786 
reusing the library sizes and the empirical hyperparameters estimated from the analysis 787 
of all 13M genomic intervals, without re-optimization. For each candidate peak, we also 788 
calculated a P-value, representing the statistical significance of the enrichment 789 
coefficient (null hypothesis is that the enrichment coefficient is zero). To do so, we 790 
obtained maximum likelihood estimate of the model coefficients for each coefficient (i.e., 791 
ignoring the prior distributions), and performed a likelihood ratio test (LRT) against a 792 
reduced model in which the enrichment coefficient was restricted to zero.  793 
 794 
To calculate empirical FDRs for the peaks, we first obtained negative peaks by 795 
repeating the procedure described above but inverting the cycle labels. In other words, 796 
we obtained depleted peaks, relative to the pool, instead of enriched peaks. Then, we 797 
calculate the FDR as the fraction of depleted peaks relative to enriched peaks for each 798 
coefficient value. The source code for MAGIX is available at 799 
https://github.com/csglab/MAGIX.  800 
 801 
Selection of thresholds for peak sets. We sorted the GHT-SELEX peaks by their 802 
MAGIX score (enrichment coefficient, or as named in the peaks BED files, coefficient.br, 803 
which estimates cycle enrichment). Similarly, we sorted the merged ChIP-seq peaks by 804 
P-value. Then, for different values of N (between 100 and the total number of peaks), 805 
we took the top N peaks for both peaks sets and calculated the Jaccard index (= O/(2N-806 
O), in which O is the intersection of peaks). To eliminate the error in the cases when one 807 
peak in a set overlaps with multiple peaks in another set, we used the average of the 808 
overlaps for the intersection (i.e. O=(O1+O2)/2, in which O1 is the number of peaks in 809 
set1 overlapping with any peaks in the set2 and vice versa). The value of N that yielded 810 
the maximum Jaccard value was identified, and the threshold for each peak set taken 811 
as that which yielded this maximum N. The same process was applied to compare 812 
PWM-predicted binding sites and ChIP-seq peaks. 813 
 814 
Comparing PWM scoring methods. To create in silico predicted binding sites for a TF, 815 
we first scanned the genome using the generated PWM (see the Codebook overview 816 
manuscript for the details on PWM selection), using MOODS58 with a p-value threshold 817 
of 0.0001. We then merged the clusters of PWM hits with a distance less than 200bp 818 
between neighboring hits, since this is the median length of ChIP-seq fragments, and 819 
the task is predicting in vivo binding sites; this length is also consistent with the MAGIX 820 
bin size. Singleton PWM hits and boundary hits were also expanded to have a width of 821 
at least 200bp. The clusters of PWM hits were re-scored using sum-of-affinity (i.e. with 822 
PWM log-odds scores at each base converted to linear/probability space, prior to 823 
calculation of the sum) and maximum-affinity methods, by either applying a sum or 824 
maximum, respectively, over the PWM scores of the cluster members. The resulting 825 
sites were sorted by their new score and processed through the same optimization 826 
procedure described above for peaks, to maximize their overlap with ChIP-seq peaks. 827 
 828 
Modeling alternative C2H2-zf binding modes with RCADEEM. RCADEEM uses a 829 
hidden Markov model (HMM) to represent multiple, alternative DNA-binding motifs, 830 
each corresponding to the binding preference of a C2H2-zf array. Briefly, the DNA 831 
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sequences (e.g., GHT-SELEX peaks) are modeled as sequences generated from a 832 
discrete Markov process with hidden states that include a background state (S0) and M 833 
motif states Sm (m∈[1,M]). The background state, with marginal probability π0, emits 834 
each nucleotide n with probability b0(n) (Σnb0(n)=1). The background state can transition 835 
to itself (i.e., consecutive DNA nucleotides can be generated from the background state) 836 
with probability a0,0, or to each motif state Sm (m∈[1,M]) with probability a0,m 837 
(a0,0+Σma0,m=1). Each motif m, with marginal probability πm, generates a sequence of 838 
length lm, with each nucleotide n at position i emitted with probability bm,i(n) (Σnbm,i(n)=1 839 
∀m∈[1,M], i∈[1,lm]). Note that, for each m∈[1,M], the values bm,i(n) form a position-840 
specific frequency matrix (PFM, i.e. the exponential of the classical log-odds PWM) with 841 
width lm, which is fixed to be 3 times the number of zinc finger domains in the array 842 
represented by motif m, as each zinc finger domain binds to three nucleotides. Finally, 843 
each motif state Sm transitions to the background state with probability am,0=1. 844 
 845 
We start the model by including the motifs representing all possible consecutive zinc 846 
finger domain arrays50. We initialize the emission probabilities bm,i(n) for each motif m 847 
using the PFM predicted for the associated zinc finger array by a previously created 848 
C2H2-zf recognition code51—this recognition code is a machine learning model that, 849 
given the sequence of a zinc finger array, predicts the expected binding preference. The 850 
HMM parameters, including all marginal state probabilities, state transition probabilities, 851 
and emission probabilities are then optimized via expectation maximization using 852 
Baum–Welch algorithm. Then, each of the optimized PFMs are tested for (i) enrichment 853 
of the motif in actual sequences compared to dinucleotide-shuffled sequences, and (ii) 854 
similarity to the original recognition code-predicted PFM. To achieve (i), for each position 855 
x in each DNA sequence k, we calculate γk,x(Sm), the probability that it was generated 856 
from motif state Sm, using the forward-backward algorithm. The motif score for DNA 857 
sequence k is then calculated as Σxγk,x(Sm)/lm, representing the expected number of 858 
times the state Sm is seen in sequence k. For each motif m, these scores are calculated 859 
both for actual GHT-SELEX peak sequences and their dinucleotide-shuffled version. 860 
Then, the top 100 sequences with the largest scores for each motif are tested to see 861 
whether they are enriched in the motif compared to shuffled sequences (Fisher’s exact 862 
test, FDR≤0.01). Motifs that do not pass this cutoff are removed from the model. To 863 
achieve (ii), each HMM-optimized PFM is first converted to log-scale (representing a 864 
PWM), followed by calculation of Pearson correlation of the PWM entries with those 865 
predicted by the recognition code. Pearson correlations are then converted using Fisher 866 
transformation in order to calculate a P-value, followed by removal of motifs that do not 867 
pass the FDR cut-off ≤0.01. The remaining motifs are then used to reconstruct a smaller 868 
HMM, similar to the procedure described above, followed by another round of EM 869 
optimization. This procedure is repeated until all motifs pass the cut-offs for enrichment 870 
in GHT-SELEX sequences while maintaining significant similarity to the original 871 
recognition code-predicted sequences.  872 
 873 
To visualize the binding modes predicted by RCADEEM, the resulting PWMs are used 874 
to identify their best match in each of the input sequences using AffiMx52. Then, for each 875 
sequence, the PWM with the highest weighted HMM score on the best match is kept as 876 
the predicted binding mode. To align the sequences, offsets are calculated based on the 877 
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corresponding C2H2-zf domains (Figures 6A-F). C2H2-zf proteins were categorized 878 
based on their alternative usage of C2H2-zf domains (i.e., Multiple DBDs, Finger shift, 879 
Canonical, and Core with extensions; Figure 6) through an expert-curated evaluation 880 
(Table S5). To make a motif model for each binding mode, we manually selected 881 
representative peaks corresponding to each biding mode over the 2000 GHT-SELEX 882 
peaks with the highest enrichment coefficient. The sequence (already aligned by 883 
RCADEEM) and C2H2-zf domain array coordinates of these peaks were used to create 884 
PFMs. The resulting PFMs for those C2H2-zf TFs are available in Document S2 and 885 
online at https://cisbp.ccbr.utoronto.ca45. The logos, coordinates, selected sequences, 886 
annotated sequence heatmaps, and associated metadata are available online at 887 
https://codebook.ccbr.utoronto.ca. The source code for RCADEEM is available at 888 
https://github.com/csglab/RCADEEM.  889 
 890 
Comparison of C2H2 DBDs. C2H2 DBD similarities were compared by pairwise 891 
alignment with Needleman-Wunsch algorithm, as implemented in R-package Biostrings 892 
and counting substitutions, insertions and unmatched flanking bases as edits. DNA-893 
binding functionality scores and predicted motif similarity for the DBDs were analyzed 894 
as described previously59. 895 
 896 
DATA AVAILABILITY 897 
 898 
The sequencing raw data for the HT-SELEX and GHT-SELEX experiments have been 899 
deposited into the SRA database under identifiers PRJEB61115 (HT-SELEX) and 900 
PRJEB76622 (GHT-SELEX). Additionally, genomic interval information generated for 901 
the GHT-SELEX, has been deposited into GEO under accession GSE278858. The 902 
entire Codebook data structure, with many accessory files and browsable results at is 903 
available at https://codebook.ccbr.utoronto.ca. Larger collection of motifs generated for 904 
these experiments in an accompanying study43 can be browsed at mex.autosome.org. 905 
Source codes for MAGIX and RCADEEM are available from Github 906 
(https://github.com/csglab/MAGIX and https://github.com/csglab/RCADEEM). 907 
 908 
 909 

910 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 12, 2024. ; https://doi.org/10.1101/2024.11.11.618478doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.11.618478
http://creativecommons.org/licenses/by-nc-nd/4.0/


 23 

ACKNOWLEDGEMENTS 911 
 912 
 913 
We thank the IT Group of the Institute of Computer Science at Halle University for 914 
computational resources, Maximilian Biermann for valuable technical support, Gherman 915 
Novakovsky for providing feedback, Berat Dogan for testing earlier versions of 916 
RCADEEM, and Debashish Ray for assistance with database depositions. 917 
 918 
This work was supported by the following: 919 
• Canadian Institutes of Health Research (CIHR) grants FDN-148403, PJT-186136, 920 

PJT-191768, and PJT-191802, and NIH grant R21HG012258 to T.R.H. 921 
• CIHR grant PJT-191802 to T.R.H. and H.S.N. 922 
• Natural Sciences and Engineering Research Council of Canada (NSERC) grant 923 

RGPIN-2018-05962 to H.S.N. 924 
• Russian Science Foundation grant 20-74-10075 to I.V.K. 925 
• Russian Science Foundation grant 24-14-20031 to F.A.K. 926 
• Swiss National Science Foundation grant (no. 310030_197082) to B.D. 927 
• Marie Skłodowska-Curie (no. 895426) and EMBO long-term (1139-2019) fellowships 928 

to J.F.K. 929 
• NIH grants R01HG013328 and U24HG013078 to M.T.W., T.R.H., and Q.M. 930 
• NIH grants R01AR073228, P30AR070549, and R01AI173314 to M.T.W. 931 
• NIH grant P30CA008748 partially supported Q.M. 932 
• Canada Research Chairs funded by CIHR to T.R.H. and H.S.N. 933 
• Ontario Graduate Scholarships to K.U.L and I.Y. 934 
• A.J. was supported by Vetenskapsrådet (Swedish Research Council) Postdoctoral 935 

Fellowship (2016-00158) 936 
• The Billes Chair of Medical Research at the University of Toronto to T.R.H. 937 
• EPFL Center for Imaging 938 
• Institutional funding from EPFL 939 
• Resource allocations from the Digital Research Alliance of Canada 940 

941 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 12, 2024. ; https://doi.org/10.1101/2024.11.11.618478doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.11.618478
http://creativecommons.org/licenses/by-nc-nd/4.0/


 24 

SUPPLEMENTARY TABLES AND DOCUMENTS 942 
 943 
Table S1. HT- and GHT-SELEX ligand sequences and descriptions. Table lists the 944 
oligonucleotide sequences used in the assay and describes how they anneal with each 945 
other on the synthesis and amplification steps. 946 
 947 
Table S2. Experimental batch specific protocol details. Table lists the reagents and 948 
experimental conditions that varied between different experimental batches. 949 
 950 
Table S3 GHT-SELEX-experiment metadata. Table lists all GHT- and HT-SELEX 951 
experiments performed in this study indicating: unique experiment identifier; human 952 
readable identifier; plasmid identifiers; HNGC symbol; experimental batch; construct 953 
type; protein production approach, position in the 96-well; sequencing strategy; number 954 
of selection cycles; and whether the experiment was approved or not. Note that GFP 955 
control experiments (i.e. empty plasmids) are also included in the table (5 GHT-SELEX 956 
and 7 HT-SELEX). 957 
 958 
Table S4: Genomic region overlap of GHT-SELEX and ChIP-seq peaks and PWM-959 
predicted target regions. Table shows the overlap of optimal ChIP-seq peaks with 960 
GHT-SELEX/MAGIX and PWM based predictions for each of the TFs where both 961 
datasets were available. Columns show the highest Jaccard coefficient between each 962 
pair of datasets and the number of peaks that yielded it. 963 
 964 
Table S5: C2H2-zf protein DNA-binding mode annotation. Table lists the 86 C2H2 965 
TFs for which RCADEEM result was obtained (out of 120 total C2H2-zf TFs with GHT-966 
SELEX data available) with information of: Total number of C2H2 zinc finger domains; 967 
amino acid gaps between these DBDs; number of distinct motifs bound by the TF; 968 
modular binding activity annotated for it; whether the protein is likely to contain zinc 969 
fingers obtained from internal duplications and whether data was obtained from 970 
experiments that expressed different subsets of the TFs C2H2-zf domains. 971 
 972 
Table S6: Intra-protein C2H2-zf domain duplication dataset. Table displays all pairs 973 
of human C2H2 DBDs that are separated from each other by five or less edits.     974 
 975 
Document S1: Motif centrality and enrichment in GHT-SELEX/MAGIX peaks and 976 
its correspondence with ChIP-seq peaks. Same plots as in Figure 2C and Figure 4A 977 
for all the TFs and DBD constructs in this study with approved GHT-SELEX 978 
experiments. Top, top-ranked TF PWM (highest AUROC on GHT-peaks as determined 979 
by 43). Middle, Distribution of PWM hits within the 5,000 highest scoring MAGIX peaks. 980 
Solid red lines represent the mean PWM hit position within MAGIX peaks and dashed 981 
lines represent one standard deviation about the mean. Bottom, Enrichment of ChIP-982 
seq peaks and PWM hits within MAGIX peaks. Orange line shows the proportion of 983 
peaks (in a sliding window of 500 peaks over the ranked peaks, with a step size of 50) 984 
that overlap with a ChIP-seq peak (at MACS threshold P < 0.001). Black line shows the 985 
AUROC for PWM affinity scores of MAGIX peaks in the same window vs. 500 random 986 
genomic sites. 987 
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Document S2: PFMs of C2H2-zf proteins with alternative binding modes. PFMs 988 
representing the different binding modes of C2H2-zf proteins.  989 
 990 

991 
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