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Abstract: An efficient synthesis strategy of a well-defined polylactide–dye conjugate in a controlled
fashion is presented. The introduction of coloring species as end groups of polylactide (PLA)
has been performed by using new homoleptic aminophenolate magnesium or zinc coordination
compounds. The molecular structure of metal complexes has been determined in solution
by NMR spectroscopy, and in the solid state by X-ray analysis. Lastingly colored polymers
were obtained with 2-[4-(Nitrophenylazo)-N-ethylphenylamino]ethanol (Disperse Red 1) and
2-[4-(2-Chloro-4-nitrophenylazo)-N-ethylphenylamino]ethanol (Disperse Red 13) at very high lactide
conversions, based on MALDI-ToF measurement, and the macromolecules were nearly fully chain
end dye-functionalized. Based on 1H NMR, the DPn of conjugates was in the range of 10–300,
which was consistent with the reaction setup. Various methods of gel-permeation chromatography
(GPC) analysis were applied, and they demonstrated that the number-average molar mass (Mn)
values (polystyrene (PS) standards) were a bit higher than calculated, the molar mass distribution
index ( M) values were moderate to high, the TDA (triple detection array) system was inappropriate
for analysis, measurements with PDA (photo diode array) detection at 470 nm gave nearly the same
molar mass distributions such as the refractometer, and the relative absorbance of conjugates at
470 nm increased linearly versus (DPn)−1. The presented approach connects the gap between the
current strategy of obtaining colored polymer fibers and the design of tailor-made initiators with eco
polyesters designed for the targeted applications.
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1. Introduction

Biodegradable polymers are considered as a green alternative to petropolymers and a long-term
solution for the environmentally damaging factor of plastics pollution [1–3]. In this class of commercially
valuable polymers, polyesters are a prominent group. This set contains polylactide (PLA), which is
currently the most important one on the market, because of the ecological profile of the industrial
production, and also, it presents with a wide spectrum of various applications [4,5]. PLA is often
referred to as double green because, apart from biodegradability, it is obtained from renewable raw
materials. Among others, the most developing sectors are technologically advanced bioapplications of
PLA for medicine and pharmacy [6–12]. However, it is necessary and at the same time still insufficient
to search for new technologies for the production of environmentally friendly short-time commercial
products for a sustainable future. Aromatic polyesters, mainly polyethylene terephthalate (PET) is
dominant in the apparel industry and packaging applications; however, they are not readily degradable
or recyclable [13]. In contrast, the not yet so popular PLA meets all the requirements for green
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polymers in terms of sustainability and degradation, which constitutes the key factors in the full
cycle of eco-profile assessment of polymers using the LCA (Life Cycle Assessment) tool [4]. PLA is
a material with a fairly high tensile strength; however, it is characterized by a quite high Young’s
modulus (little ability to deform and low impact strength). These, among other disadvantages, are
often compensated by the application of various types of chemical and physical modifications [14,15].
Chemical methods include the use of epoxy, anhydride, isocyanate, and carbodiimide (chain extenders)
during processing [16], or the formation of various types of statistical, block, or grafted copolymers at
the synthesis stage [17,18]. In industrial practice, physical modification methods are much more popular
by introducing various types of additives that lower the price (isotropic fillers), improve strength
(anisotropic fillers), increase flexibility (plasticizers), or adjust the color of compounds (dyes and
pigments) [19,20]. One of the examples of a targeted application is the use of PLA in fabrics for apparel
or filaments for 3D printing. PLA fiber is beneficial to the environment and is well described in the
literature [21]. On the contrary, the classical process of coloration of PLA is not so green, and it requires
improvement. The disperse dyeing of hydrophobic polymers such as PLA is performed in the presence
of an appropriate dispersant, but that process is also not so ecological [21]. Dispersant-free dyeing with
temporarily solubilized disperse dyes could extend the environmental friendliness. As a consequence,
the proposed processes do not ensure color fastness or resistance to changing conditions during use,
and they are prone to the uncontrolled release of dyes into the environment [21].

The alternative greener conception could be the ring-opening polymerization (ROP) of lactide
(LA) by the “dye-initiated polymerization” method, which would be used for the synthesis of colored
PLA, with tailor made properties. That method allows for the synthesis of well-defined PLA–Dye
conjugates, which consist of PLA chains with precisely planned lengths and with dye end groups
that were obtained in a controlled fashion. In products that were obtained in this manner, the dyeing
would be much longer lasting than in classic physical dyeing systems, because there will be no adverse
phenomenon of migration of dyes [22,23]. The most important issue in the synthesis of PLA–Dye or
other conjugates is the selection of a suitable catalyst. The industrial standard for the production of
PLA is Sn(Oct)2, which operates for lactide polymerization in bulk conditions at elevated temperatures
(110–180 ◦C) and, which is worth underlining, causes the number of transesterification reaction acts,
so the distribution of molar masses is broad. Similarly, it is the most popular choice in conventional
studies involving the ROP of cyclic esters. The versatility of this catalytic system is obvious; however,
it induces also disadvantages and needs some improvements. The problem is particularly visible for
the synthesis of polymers with low or ultra-low molecular weight and for those with functional or
bulky end groups. Therefore, the synthesis of PLAs with well-defined properties matched to specific
applications in the presence of commercial Sn(Oct)2 is difficult or, in some cases, impossible. Although
Sn(Oct)2 is approved by the FDA as a food additive, the tin content in polymers should be lower than
20 ppm, as it has been found to have some cytotoxicity [24–27]. For example, the soluble tin compounds
such as Sn(Oct)2 can be harmful at the nutrition level even at the concentration of 0.1%. In this context,
the polymer obtained in the presence of tin catalyst should be handled with great care in biomedical
applications. It is connected with the fact that the bulk polymerization promoted by Sn(Oct)2 implies
that the catalyst residue remains inside the polymer material. On the other hand, the Scientific Panel
on Contaminants in the Food Chain (at European Food Safety Authority) established a group-tolerable
daily intake of 0.25 µg per kg of body weight for tri- and di-alkyl tin compounds [28]. This is an issue
from a toxicity point of view, and the catalysts residue can also dramatically alter the polymer properties
during thermal treatments at higher temperatures, thermo-modeling, or extrusion, for example [29–32].
Such rigorous requirements concerning PLA, especially for biomedical applications, are the reason
for the constant search for new biocompatible lactide ROP catalysts. Therefore, even if the results
obtained with Sn(Oct)2 are to be valued, new catalysts operating in solution under mild conditions
are highly desirable to develop the further use of functional polyesters. In this aspect, the rational
alternative to commercial catalysts is the catalytic systems based on biometal coordination compounds
that are suitable to a given targeted application. In this context, group 1 and 2 metals, as well as zinc,
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are still promising candidates, and here, the most perspective and effective are single-site initiators.
The synthesis of PLA–Dye conjugates is possible by using alternative appropriately designed ROP
initiators, which are based on the coordination compounds of metals with a single-site motif L-M-OR
(L: ancillary ligands, OR: initiating group) [33–35]. In such a system, dye molecules could be the
fragment of the ancillary ligands or the initiating group. Moreover, this approach requires the synthesis
of a new initiator for every used dye molecule. The proposed better solution here is based on the
use of bifunctional catalytic systems with homoleptic coordination metal compounds, which contain
an external initiating group. Catalytic systems containing homoleptic simple aminophenolate metal
compounds are selectively able to produce linear alkylesters or polyesters from extra-low to high
molecular weight polymer systems [36–40]. For this purpose, we studied our new binary catalysts
composed of the (Ldmp)2M compounds (Ldmp-2,6-dimethylpiperidine (dmp), aminophenolate ancillary
ligands, M–Zn, Mg), and the dye molecule possessing the hydroxyl functionalization DR1/13 (Scheme 1).
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Scheme 1. General scheme for “dye-initiated polymerization” of L-LA (lactide) in the presence of
magnesium/zinc complexes.

Herein, we report a new catalytic system containing precisely design ancillary ligands that prevent
the metal center against aggregation, and additionally, ligands redistribution reactions in the presence of
the bulky external initiating group. The homoleptic structural motifs of magnesium and zinc complexes
have been confirmed by X-ray diffraction studies. Detailed analysis of the presence of corresponding
species in solution indicated their dynamic behavior induced by the de-coordinating of amine arm of
ancillary ligands. That “gorilla effect” regarding dynamism plays a crucial role in the polymerization
reaction. The experimental data should allow for a new insight on the design of effective catalytic
systems that ensure the fit of both an ancillary and initiating group—for example, dye molecule during
the ROP reaction. The presented catalysts work in mild conditions and produce PLA with both short
and longer polymers chains in a few minutes. The proposed so-called “dye-initiated polymerization”
method gives the possibility for the synthesis of colored PLA with stable/long-lasting and planned
saturation of PLA fabric color, which is controlled by a polymer chain length.

2. Materials and Methods

The synthesis of complexes and polymerization reactions, which required an inert atmosphere
of N2, was performed by using a glove-box (MBraun) or standard Schlenk apparatus and vacuum
line techniques.
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Solvents for synthesis were purified by standard methods: MeOH (HPLC, VWR)
distilled over Mg, dichloromethane (99.8% VWR), and n-hexane (HPLC, VWR) was dried
and purified using the Solvent Purification Systems (Inert, PureSolv EN 1-7 Base), C6D6 was
distilled over CaH2. L-LA ((3S)-cis-3,6-dimethyl-1,4-dioxane-2,5-dione) (98%; Aldrich) was
recrystallized from toluene and sublimed prior to its use. Chemicals that were obtained
from commercial sources were used without further purification: 2,4-di-tert-buthylphenol
(99%, Sigma-Aldrich, St. Louis, MO, USA), cis-2,6-dimethylpiperidine (97%, Sigma-Aldrich),
formaldehyde (37% solution in H2O, Sigma-Aldrich), diethylzinc solution (1.0 M in heptane,
Sigma-Aldrich), di-n-butyl-magnesium solution (1.0 M in heptane, Sigma-Aldrich), Disperse Red 1
(2-[4-(Nitrophenylazo)-N-ethylphenylamino]ethanol, dye content 95%, Sigma-Aldrich), Disperse Red
13 (2-[4-(2-Chloro-4-nitrophenylazo)-N-ethylphenylamino]ethanol, dye content 95%, Sigma-Aldrich).

The NMR spectra were recorded at 298 K using a Bruker Avance 500 MHz spectrometer. Chemical
shifts are reported in ppm and referenced to the residual protons in the deuterated solvent (C6D6, 1H:
7.16 ppm, 13C: 128.06 ppm) [41]. HRMS spectra were recorded using Bruker MicOTOF-Q spectrometers
with an Electrospray ionization technique(ESI) and time-of-flight mass analyzer. Microanalyses were
conducted with an Elementar CHNS Vario EL III analyzer. The number-average molar mass (Mn) and the
molar mass distribution index ( M) of the samples were determined by gel-permeation chromatography
(GPC). The system was composed of a Viscotek GPCmax unit (pumping and degassing of solvent,
sample injection with autosampler), a 305 TDA detection unit (consisting of column, a UV measuring cell,
RI detector, hybrid Right-Angle Light Scattering/ Low-Angle Light Scattering (RALS/LALS) detectors,
and a viscometer), and a PDA UV detector (190–500 nm). The system was equipped with a Jordi Labs
DVB column (mixed bed, 5 µm), which worked with dichloromethane at 30 ◦C, with a flow rate of
1 cm3/min. The polymer populations (including repeating units and end groups) were characterized by a
MALDI-ToF system. The spectrometer used was Bruker ultrafleXtreme, measurements were carried out
in linear mode, with a DCTB (2-[(2E)-3-(4-tert-Butylphenyl)-2-methylprop-2-enylidene]malononitrile)
matrix and potassium as an ion source.

X-ray diffraction data for a suitable crystal of each sample were collected using an Xcalibur CCD
Ruby with a ω scan technique. The data collection and processing utilized the CrysAlis suite of
programs [42]. The space groups were determined based on systematic absences and intensity statistics.
Lorentz polarization corrections were applied. The structures were solved using intrinsic phasing
SHELXT-2014/5 and refined by full-matrix least-squares on F2. All calculations were performed using
the SHELX suite of programs [43]. All non-hydrogen atoms were refined with anisotropic displacement
parameters. Hydrogen atom positions were calculated with geometry and were not allowed to vary.
Thermal ellipsoid plots were prepared with 50% of probability displacements for non-hydrogen atoms
by using the Mercury 3.9 program [44]. All of the data have been deposited with the Cambridge
Crystallographic Data Centre CCDC-1982025 for (Ldmp)2Zn and -1982026 for (Ldmp)2Mg. Copies of
the data can be obtained free of charge by application to CCDC, 12 Union Road, Cambridge CB21EZ,
UK or e-mail: deposit@ccdc.cam.ac.uk.

Syntheses details are presented in Appendix A.

3. Results and Discussion

The basic components of catalytic systems for PLA–Dye conjugates include the homoleptic
aminophenolate metal complexes (Ldmp)2M (M = Mg, Zn) and dye molecules with a hydroxyl terminal
group. In our findings, the ancillary ligand Ldmp-H has been obtained by a standard Mannich
condensation reaction between 2,4-di-tert-buthylphenol and cis-2,6-dimethylpiperidine. Next, it was
used for the new homoleptic zinc and magnesium compounds syntheses by a clean reaction with
commercially available metal precursors MR2 (e.g., Mg(n-Bu)2 or ZnEt2). The reaction was carried out
readily at room temperature in n-hexane, because aminophenolate ligands with a sizable substitution
in the ortho positions of the aryl core afforded expected bis-chelation products without stoichiometry
control (Scheme 2) [38].
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Scheme 2. Synthesis of zinc and magnesium aminophenolates.

The aminophenol and metal compounds were obtained in high yields—Ldmp-H (85%), (Ldmp)2Zn
(87%), and (Ldmp)2Mg (83%), respectively—and characterized by standard elemental analysis and
NMR spectroscopy (for details see, the Experimental Section and Supplementary Materials–Figures
S1–S16. The molecular structures of bis-chelate metal compounds were determined by X-ray analysis.
The solid-state structures of obtained zinc and magnesium compounds are presented in Figures 1
and 2, respectively, and Table S1 with summarized crystal data. Both zinc and magnesium compounds
are isostructural and reveal the expected monomeric nature. The metal centers in the magnesium
and zinc compounds adopt distorted tetrahedral geometries with typical bond lengths for Zn–O,
Mg–O, Zn–N, and Mg–N that are similar in characteristic ranges for the related compounds described
previously [39,40,45–50] (see ESI, Table S3).
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Figure 2. Molecular structure of (Ldmp)2Mg.

In both molecular structures, the dimethylpiperidinyl group of the ligand is disordered in two
positions with occupation factors of 0.929(4) (blue) and 0.071(4) (red) for Zn, and 0.873(5) (blue) and
0.127(5) (red) for Mg, respectively (Figure 3).
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Figure 3. Disordered dimethylpiperidinyl groups observed in molecular structures of zinc and
magnesium complexes.

Although the molecular structures of the magnesium and zinc bis-chelates are clear and anticipated
in the solid state, in solution, a mixture of isomers is formed (Figures 4 and 5). Such a phenomenon
is expected for homoleptic aminophenolates, and this fact results in the prochiral auxiliary ligands
located around the metal center, which after their coordination, induce dynamic behavior in the
solution [39]. The most significant difference between potential isomers in solution is a mutual position
of substituents at the nitrogen atoms and their transformation by decoordination of the amine arm of the
ligand. The 1H NMR spectra of (Ldmp)2M (M = Zn, Mg) contain two sets of signals (ratio 1:0.27 for Zn,
1:0.34 for Mg), indicative toward two potential isomers in the solution, which most likely correspond
to a dangling effect of the amine arm or a disorder observed in the solid state. The pattern of the
diastereotopic methylene signals suggests the “gorilla” effect (quick coordination and decoordination of
amine arm interchangeably), which was discussed earlier for similar aminophenolate bis-chelates [39].
The dynamic behavior in the solution, induced by such bond-dangling, changes the general geometry
around the metal center, and in turn improves the catalytic activity of bis-chelate complexes [40].
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The next step was the verification of the activity of the catalytic system based on structurally
analogous bis-chelates L2M and dye molecules as external initiating groups in the ROP of L-LA.
The proposed so-called “dye-initiated polymerization” method gives the possibility for the synthesis
of colored PLA with a stable and planned saturation of PLA fabric color, which is controlled by a
polymer chain length (Figures 6 and 7).

The study of ROP polymerization of the tested compounds has been investigated under comparable
reaction conditions by using the same dye molecules (Disperse Red 1 –DR1, Disperse Red 13–DR13)
with different molar ratios of (Ldmp)2M/L-LA/DR = 1/n/1. The ROP process was monitored by using
NMR spectroscopy; all polymerization reactions, which were carried out at room temperature, achieved
high conversion rates (>95%) in several minutes. The polymerization results obtained for (Ldmp)2M/DR
systems are summarized in Table 1. The homoleptic bis-chelate magnesium and zinc compounds show
decent control over the average molar mass of polymers obtained in the ROP processes. The obtained
conjugates of PLA-n-DR (where, n is the number of LA monomeric units, DR1 or DR13 indicates
the dye molecule applied for initiation) showed moderate to large values of M,PS while calculated
with conventional calibration based on PS standards. The Mn,PS values calculated with the same
method were similar to the ones calculated (Mn,cal) with respect to the fully controlled process with
a known initial monomer to initiator ratio ([L-LA]0/[ROH]0) and monomer conversion (pL-LA) in
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case of low DPn values in the range of 10–40 (nos. 1, 2, 6, 7). On the other hand, for samples with
DPn of 100 or higher (nos. 3–5, 10, 11) the Mn, PS tends to significantly exceed the calculated values.
For some unknown reason, the two samples nos. 8 and 9 with a DPn value of 100 initiated with DR1
showed lower Mn,PS values than Mn,cal. It is probably caused by more intensive transesterification
processes, which may be proved by broad molar mass distribution and higher M values. The rules
presented above are unrelated to kind of metal atom present in the catalyst structure. Additionally,
gel-permeation chromatography (GPC) results were calculated with an absolute calibration method,
using a triple detection array (TDA) system. M,TDA values were much lower than the M,PS ones;
however, there was no reasonable correlation found between Mn,TDA results and the other Mn values,
although some individual TDA results were very similar to those calculated. In this particular case,
the TDA results might not be valuable, especially for polymers of low DPn and broad distribution,
because of the huge differences in the refractive index increments for PLA and DR. Therefore, the DR
end groups were much better “seen” by the Refractive Index (RI) detector, which deflects the real
concentration particularly of shorter chains, bending self-calibration curve and hence the results.
Summarizing, one can say that better control in terms of the M might be achieved when DR13 was
used as a co-initiator than in the case of DR1, where the metal atom present in the initiator molecule had
no effect. The comparison of molar mass distribution measured with an RI detector and PDA detector
at 470 nm (DR molecules absorb at that wavelength, whereas PLA monomeric units do not) showed
that in the majority of samples, the distribution of dye overlaps fairly well with the distribution of the
polymer (Figure 8), as well as with the monomodal distributions in general. Furthermore, the GPC
traces and experimental Mn estimated within both detection systems are shifted toward higher molar
masses, once the ratio of [L-LA]0/[ROH]0 increased.
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Figure 8. Gel-permeation chromatography (GPC) traces for selected PLA-n-DR obtained from various
detection systems: refractometer (solid lines) and photo diode array (PDA) detector at 470 nm
(dashed lines) for various ratios of [L-LA]0/[ROH]0 for polymerization initiated with DR1 (left plot) or
DR13 (right plot) series.

Then, a plot of relative absorbance at 470 nm versus the inverse DPn was also prepared for all
samples broken down by the type of DR. Relative absorbance was determined by dividing the area
under the molar mass distribution measured with GPC, equipped with a PDA detector at 470 nm by
the sample concentration and injection volume. The experimental data of both DR series fit famously
to a linear trend (determination coefficients R2 > 99%); however, the slopes of the series are slightly
different due to the nature of the chromophore (Figure 9). The plot shows that a color intensity of the
polymer may be precisely adjusted by the initial ratio of monomer to initiator, as well as blending with
undyed PLA. Moreover, the kind of metal does not affect the trend, so from that aspect, both types of
initiators are appropriate.
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Figure 9. Relative absorbance of the PLA-n-DR at 470 nm versus inverse DPn for DR1 (red circles)
and DR13 (black squares) series; points are experimental data, whereas dashed lines are linear fits for
that data.
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Table 1. Ring-opening polymerization (ROP) of L-LA initiated by zinc and magnesium complexes with
Disperse Red 1 (DR1) and Disperse Red 13 (DR13) as co-initiators.

No. Initiator [I] ROH Molar
Ratios a

Time
(min.)

pL-LA
(%) b DPn

c Mn,cal
d CC-RI-GPC e TDA-GPC f

Mn,PS M,PS Mn,TDA M,TDA

1 (Ldmp)2Zn DR13 1/10/1 5 100 10 1.79 1.78 1.90 6.87 1.10
2 (Ldmp)2Zn DR13 1/40/1 5 100 40 6.11 6.79 1.81 12.9 1.04
3 (Ldmp)2Zn DR13 1/100/1 5 99.1 102 14.6 19.8 1.52 14.6 1.28
4 (Ldmp)2Zn DR13 1/200/1 10 97.3 192 28.4 34.8 1.55 31.6 1.10
5 (Ldmp)2Mg DR13 1/250/1 15 99.1 248 36.1 43.7 1.51 29.8 1.31
6 (Ldmp)2Zn DR1 1/10/1 5 100 10 1,76 1.39 2.00 3.77 1.05
7 (Ldmp)2Zn DR1 1/30/1 5 100 30 4.64 4.81 2.29 9.29 1.02
8 (Ldmp)2Zn DR1 1/100/1 5 99.8 100 14.7 10.4 3.12 15.5 1.25
9 (Ldmp)2Mg DR1 1/100/1 5 97.8 94 14.4 10.3 3.74 52.5 1.50
10 (Ldmp)2Mg DR1 1/200/1 15 99.6 190 29.0 38.9 1.97 21.6 1.63
11 (Ldmp)2Mg DR1 1/300/1 30 99.9 289 43.5 55.8 2.06 36.2 1.72

Reaction conditions: Vsolvent = 20 mL, CH2Cl2; T = 25 ◦C; general remarks: Mn,cal expressed in g/mol; Mn,PS
and Mn,TDA extressed in kg/mol; remarks: a initial molar ratio of [I]0/[L-LA]0/[ROH]0; b conversion of monomer
estimated by 1H NMR; c degree of polymerization estimated by 1H NMR; d calculated from the formula of
Mn,cal = [L-LA]0/[ROH]0 × pL-LA × 144.13 + MROH; e determined by GPC calibrated versus polystyrene standards;
f determined by GPC with TDA based on known sample concentration [51].

MALDI-ToF analysis of obtained products revealed that the population of linear macromolecules
initiated with respective DR, and the series of macrocycles of even and odd numbers of lactic acid
monomeric units were present (Table 2, Table S1, Figures S17–S24). The linear products, which formally
initiated with water molecules, were discovered only in the case of DR13 series with low DPn (Table 2,
no. 1 and 2); however, a fraction of a number of molecules in that population was merely 2%. It proves
that the ROP was exclusively initiated with DR alcohols. The presence of chains comprising odd
numbers of lactic acid repeating units, as well as macrocyclic products in all samples, indicate that
transesterification processes took place in the system, which broadened distributions of molar masses.
The fraction of number of molecules in a population for macrocyclic products increases for a higher
ratio of [L-LA]0/[ROH]0. However, those data are strongly distorted by the poor ability of long
linear chains present in those samples to undergo flight in the MALDI system, comparing with the
macrocyclic population which is rather of similar and quite low Mn in all samples (Table S1). Therefore,
we think that the most accurate results among the set of experiments presented in Table 2 are for
samples nos. 1, 2, 6, and 7, in which 0%, 4%, 0%, and 2.4% of cyclic macromolecules have been
demonstrated, respectively. The macrocyclization processes caused the odd and even numbers of
lactic acid monomeric units in PLA molecules to be comparable to each other in most of the cases.
The samples containing very low DPn, had even numbers, which were c.a. 1.5–1.7 times higher than
odd ones.

Differential Scanning Calorimetry (DSC) measurements were carried out for samples nos. 8 and 9,
which were obtained with the same co-initiator (DR1) and at the same targeted DPn of 100, but in the
presence of different catalysts comprising of Zn and Mg species, respectively (Figure 10, second heating).
It showed that the values of Tg of these samples are similar, whereas sample no. 9 revealed that its
temperature of cold crystallization is higher, and the melting temperature is lower than for sample no.
8. Similarly, the energetic effect of melting of sample no. 9 is almost as twice as low than for sample no.
8. It demonstrates that the ability to crystallize in the case of the sample obtained in the presence of Mg
based catalyst (no. 9) is lower, and it might be caused by the less regular microstructure of the polymer
chain. Although the samples were synthesized using L-LA, and therefore they should provide fully
isotactic PLA, some racemization side reactions could occur during or after polymerization in the
presence of the Mg complex, so in turn, the polymer microstructure was potentially affected and the
ability for the sample to crystallize diminished.
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Table 2. Fraction of number of molecules in population (by MALDI-ToF) of PLA obtained by ROP of
L-LA initiated by zinc and magnesium complexes with Disperse Red 1 (DR1) and Disperse Red 13
(DR13) as co-initiators.

No.
(Corresp.

to Table 1)

Fraction of Number of Molecules in Population (%) a

Macrocycles H–(LA)n–OH DR1–(LA)n–OH DR1–(LA)n–OH

Even Odd Even Odd Even Odd Even Odd

1 1.3 62.1 36.6
2 1.9 2.1 1.1 0.9 52.3 41.7
3 11.4 11.7 39.1 37.8
4 12.8 13.5 38.0 35.7
6 60.4 39.6
7 1.2 1.2 48.7 48.9
8 5.6 5.3 44.4 44.7
9 9.1 9.1 41.9 39.9
10 6.9 7.1 43.0 43.0
11 20.2 21.2 29.6 29.0

General remarks: empty field means ‘no population observed’; remarks: a determined by MALDI-ToF measurement:
populations of PLA chains comprised of even and odd numbers of lactic acid monomeric units.
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Figure 10. DSC curves of second heating cycle for products no. 8 and 9 (corresp. to Table 1). 
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The 1H NMR spectra with proton signals assigned to the structures of exemplary oligomeric
conjugates PLA-10-DR1 and PLA-10-DR13 are shown in Figures 11 and 12. The spectra showed the
expected chain ends: resonances due to dye molecules (denoted as red letters D–K) and a hydroxyl
group (blue letter A). The most intensive signals are multiplets at 5.04 ppm (blue B3) and 1.33 ppm
(blue C3), corresponding to methine (CH) and methyl (CH3) groups, respectively. These groups are
present in the oligolactide, which consists of eight repeating units. The adequate multiplets denoted as
B1, B2 at 4.12, 4.89 ppm correspond to CH. Doublets marked as C1, C2 at 1.41, 1.06 ppm are for CH3,
which refer to the unit located in the vicinity of the hydroxyl chain end. Quartets (B4, B5 at range
5.12–5.07 ppm) and doublets (C4, C5 at 1.36, 1.39 ppm) correspond to the unit located next to the dye
chain end.
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4. Conclusions

The new homoleptic magnesium and zinc complexes active in the ROP of LA have been synthesized.
The molecular structures of bis-chelate metal compounds have been determined by X-ray analysis.
Both zinc and magnesium compounds are isostructural with a monomeric nature, where the metal
centers adopted distorted tetrahedral geometries. Although the molecular structures of the magnesium
and zinc bis-chelates are clear in the solid state, in solution, a mixture of two isomers are afforded,
corresponding to the dynamic coordination/de-coordination of an amine arm. Therefore, the dynamic
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behavior in solution, which was induced by such amine arm-dangling, changes the general geometry
around the metal center, allowing for easier bonding of the LA monomer to the metal center, which in
consequence improves the catalytic activity of bis-chelate complexes. Therefore, LA polymerizations
catalyzed with these species and co-initiated with Disperse Red 1 and 13 molecules allowed achieving
very high monomer conversion in just minutes at room temperature, and they resulted in almost fully
chain end dye-functionalized PLAs of even concentration of colorant molecules within the distribution
of polymer molar mass. On the other hand, the molar mass distributions are quite broad mainly due to
transesterification processes; however, it does not matter significantly from the point of view of fiber
application. The self-colored polymers of higher DPn could be used as fibers separately, whereas the
conjugates of low molar mass can be introduced to blends with commercial PLA as non-migratory and
miscible/compatible colorants. Summarizing, the proposed “dye-initiated polymerization” method
gives the “greener” possibility for the synthesis of lasting colored PLA with a stable and planned
saturation of PLA fabric color controlled by polymer chain length.
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Appendix A

Appendix A.1. Syntheses

Appendix A.1.1. 2:4-di-tert-butyl-6-(((2R,6S)-2,6-dimethylpiperidin-1-yl)methyl)phenol, Ldmp-H

To a solution of 1.50 g (7.20 mmol) of 2,4-di-tert-butylphenol and 1.00 mL (7.20 mmol) of
cis-2,6-dimethylpiperidine in methanol (50 mL), 0.80 mL (10.63 mmol) of formaldehyde (37% solution
in H2O) was added. The solution was stirred and heated under reflux for 24 h. Then, it was concentrated
in vacuo and it was placed at −15 ◦C until a product precipitated as a white crystalline solid. It was
collected by filtration, washed with cold methanol, and dried in vacuo to give Ldmp-H. Yield 85%
(2.03 g, 6.12 mmol). 1H NMR (500 MHz, C6D6, RT) δ: 12.71 (br s, 1H, OH), 7.43 (d, JHH = 2.3 Hz, 1H,
ArCH), 6.85 (d, JHH = 2.3 Hz, 1H, ArCH), 3.67 (s, 2H, Ar-CH2-N), 1.98 (br s, 2H, N-CH), 1.73 (s, 9H,
C(CH3)3), 1.39 (s, 9H, C(CH3)3), 1.38–1.31 (m, 1H, CH2), 1.28–1.18 (br s, 2H, CH2), 1.19–1.09 (m, 2H,
CH2), 1.08–1.01 (m, 1H, CH2), 0.97 (br s, 6H, CH3). 13C NMR (126 MHz, C6D6, RT) δ: 155.9 (s, 1C,
ArC-OH), 140.2 (s, 1C, ArC), 136.4 (s, 1C, ArC), 123.3 (s, 1C, ArC), 121.9 (s, 1C, ArCH), 121.1 (s, 1C,
ArCH), 60.0 (s, 2C, N-CH), 57.9 (s, 1C, Ar-CH2-N), 35.4 (s, 1C, C(CH3)3), 35.2 (s, 2C, CH2), 34.4 (s, 1C,
C(CH3)3), 32.1 (s, 3C, C(CH3)3), 30.0 (s, 3C, C(CH3)3), 25.6 (s, 1C, CH2), 21.3 (s, 2C, CH3). HRMS(ESI):
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calcd for C22H37NO: 332.291 [M + H]+, found 332.29. Elemental Anal. calcd (found) for C22H37NO: C,
79.70 (78.48); H, 11.25 (11.66); N, 4.22 (4.06) %.

Appendix A.1.2. (Ldmp)2Zn

To a solution of Ldmp-H (0.66 g, 2.00 mmol) in n-hexane (20 mL), ZnEt2 (1 mL, 1.00 mmol) was
added drop-wise at room temperature. The solution was stirred for 24 h, and then it was concentrated
in vacuo and placed at −15 ◦C until a product was precipitated as colorless crystals. It was filtered off,
washed with n-hexane (10 mL), and dried in vacuo to give (Ldmp)2Zn. Yield 87% (0.64 g, 0.87 mmol).
1H NMR (500 MHz, C6D6, RT) δ: Major form: 7.59 (d, JHH = 2.4 Hz, 2H, ArCH), 7.06 (d, JHH = 2.4 Hz,
1H, ArCH), 4.27 (br s, 2H, Ar-CH2-N), 4.00 (d, JHH = 13.2 Hz, 2H, Ar-CH2-N), 3.67 (br s, 2H, N-CH),
3.23 (br s, 2H, N-CH), 1.70 (s, 18H, C(CH3)3), 1.48 (s, 18H, C(CH3)3), 1.98–1.75 (m, 4H, CH2), 1.63–1.53
(m, 2H, CH2), 1.37–1.30 (m, 4H, CH2), 1.26–1.15 (m, 2H, CH2), 1.06 (d, JHH = 6.2 Hz, 6H, CH3), 0.90 (d,
JHH = 6.5 Hz, 6H, CH3); Minor form (selected chemical shifts): 7.61 (s, 2H, ArCH), 7.04 (s, 2H, ArCH),
4.16 (d, JHH = 11.9 Hz, 2H, Ar-CH2-N), 4.04 (d, JHH = 11.9 Hz, 2H, Ar-CH2-N), 3.43 (br s, 2H, N-CH),
3.06 (br s, 2H, N-CH), 1.71 (s, 18H, C(CH3)3), 1.50 (s, 18H, C(CH3)3). 13C NMR (126 MHz, C6D6, RT) δ:
163.6 (s, 2C, ArC-O), 137.8 (s, 2C, ArC), 135.5 (s, 2C, ArC), 126.7 (s, 2C, ArCH), 124.2 (s, 2C, ArCH),
119.86 (s, 1C, ArC), 54.5 (br s, 6C, Ar-CH2-N, N-CH), 35.5 (s, 2C, C(CH3)3), 34.2 (s, 2C, C(CH3)3), 32.4 (s,
6C, C(CH3)3), 30.2 (s, 6C, C(CH3)3), 29.7 (br s, 4C, CH2), 23.1 (br s, 2C, CH2), 17.1 (br s, 4C, CH3). Anal.
Calcd (Found) for C44H72N2O2Zn: C, 72.75 (71.89); H, 9.99 (10.30); N, 3.86 (3.77)%.

Appendix A.1.3. (Ldmp)2Mg

The synthesis of (Ldmp)2Mg proceeds in the same manner as for (Ldmp)2Zn using
di-n-butyl-magnesium instead of diethylzinc. Yield 83% (0.57 g, 0.83 mmol). 1H NMR (500 MHz, C6D6,

RT) δ: Major form: 7.61 (d, JHH = 2.6 Hz, 2H, ArCH), 7.11 (d, JHH = 2.6 Hz, 2H, ArCH), 4.10 (br s, 2H,
Ar-CH2-N), 3.88 (d, JHH = 13.0 Hz, 2H, Ar-CH2-N), 3.65 (br s, 2H, N-CH), 3.21 (br s, 2H, N-CH), 1.71 (s,
18H, C(CH3)3), 1.50 (s, 18H, C(CH3)3), 1.99–1.76 (m, 4H, CH2), 1.43–1.38 (m, 2H, CH2), 1.30–1.20 (m,
4H, CH2), 1.18–1.08 (m, 2H, CH2), 0.98 (d, JHH = 5.7 Hz, 6H, CH3), 0.88 (d, JHH = 5.7 Hz, 6H, CH3);
Minor form (selected chemical shifts): 7.62 (d, JHH = 2.6 Hz, 1H, ArCH), 7.09 (d, JHH = 2.6 Hz, 1H,
ArCH), 3.98 (d, JHH = 12.9 Hz, 2H, Ar-CH2-N), 3.92 (d, JHH = 12.9 Hz, 2H, Ar-CH2-N), 2.98 (br s, 2H,
N-CH), 2.92 (br s, 2H, N-CH), 1.72 (s, 18H, C(CH3)3), 1.51 (s, 18H, C(CH3)3), 1.04 (d, JHH = 6.0 Hz,
6H, CH3), 0.84 (d, JHH = 6.0 Hz, 6H, CH3). 13C NMR (126 MHz, C6D6, RT) δ: 163.0 (s, 2C, ArC-O),
137.1 (s, 2C, ArC), 135.3 (s, 2C, ArC), 126.5 (s, 2C, ArCH), 124.5 (s, 2C, ArC), 124.0 (s, 2C, ArCH), 59.2
(br s, 4C, N-CH), 52.4 (br s, 2C, Ar-CH2-N), 35.4 (s, 2C, C(CH3)3), 34.2 (s, 2C, C(CH3)3), 32.4 (s, 6C,
C(CH3)3), 30.1 (s, 6C, C(CH3)3), 29.2 (br s, 4C, CH2), 23.8 (br s, 2C, CH2), 16.2 (br s, 4C, CH3). Anal.
Calcd (Found) for C44H72N2O2Mg: C, 77.11 (76.79); H, 10.59 (10.83); N, 4.09 (3.89)%.

Appendix A.1.4. Representative Procedure for Solution Polymerization

The solution of (Ldmp)2M in CH2Cl2 (20 mL) was placed in a Schlenk flask, and next, L-LA and an
appropriate dye compound with hydroxyl group (ROH) were added simultaneously. The fixed molar
ratio of a metal center [M] to L-LA and dye: [M]/L-LA/ROH = 1/n/1. The resulted solution was stirred
at room temperature for a prescribed time monitored by 1H NMR spectroscopy.

Representative procedure for (Ldmp)2Zn/Disperse Red 1: [Zn]/L-LA/DR1 = 1/100/1; (Ldmp)2Zn
(0.036 g, 0.05 mmol), L-LA (0.72 g, 5.00 mmol), DR1 (0.016 g, 0.05 mmol), time 5 min. The conversion
was determined while observing 1H NMR resonances of the polymer and monomer by dissolving the
precipitates in C6D6. After reaction was completed, an excess of hexanes was added to the reaction
mixture. Filtration and vacuum drying yielded a red polymer. The resulting solid was dissolved in
dichloromethane, and the polymer was precipitated with excess cold n-hexane. The polymer was
collected by filtration, washed with methanol to remove unreacted monomer, and dried under reduced
pressure. The reaction mixtures were prepared in a glovebox; then, subsequent operations were
performed by means standard Schlenk techniques.
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Appendix A.1.5. PLA-10-DR1

The synthesis was performed with the use of L-LA/(Ldmp)2Zn/DR1 in the ratio 1/10/1. Yield 77%
(0.68 g, 0.39 mmol). 1H NMR (500 MHz, C6D6) δ = 8.11–8.07 (m, 2H, ArCH), 7.96–7.92 (m, 2H, ArCH),
7.74–7.70 (m, 2H, ArCH), 6.46–6.42 (m, 2H, ArCH), 5.12–5.07 (m, 2H, CH), 5.04 (q, JHH = 7.0 Hz, 16H,
CH), 4.89 (q, JHH = 7.1 Hz, 1H, CH), 4.12 (p, JHH = 6.7 Hz, 1H, CH), 3.88–3.78 (m, 2H, NCH2), 3.05–2.87
(m, 2H, OCH2), 2.80 (q, JHH = 7.0 Hz, 2H, NCH2), 2.49 (d, JHH = 5.8 Hz, 1H, OH), 1.41 (d, JHH = 7.1 Hz,
3H, CH3), 1.39 (d, JHH = 7.1 Hz, 3H, CH3), 1.37 (d, JHH = 7.1 Hz, 3H, CH3), 1.33 (d, JHH = 7.1 Hz, 48H„
CH3), 1.06 (d, JHH = 7.1 Hz, 3H, CH3), 0.70 (t, JHH = 7.0 Hz, 3H, CH3). 13C NMR (126 MHz, C6D6)
δ = 175.4 (s, 1C, CO), 170.1 (s, 1C, CO), 170.0 (s, 2C, CO), 169.9 (16C, CO), 156.7 (s, 1C, ArCNN), 151.2
(s, 1C, ArCN), 148.0 (s, 1C, ArNO2), 144.6 (s, 1C, ArCNN), 126.6 (s, 2C, ArCH), 124.8 (s, 2C, ArCH),
122.8 (s, 2C, ArCH), 111.8 (s, 2C, ArCH), 69.5 (s, 2C, CH), 69.4 (s, 16C, CH), 69.3 (s, 1C, CH), 66.9 (s, 1C,
CH), 62.3 (s, NCH2), 48.3 (s, 1C, OCH2), 45.2 (s, 1C, NCH2), 20.8 (s, 1C, CH3), 16.7 (s, 1C, CH3), 16.6 (s,
1C, CH3), 16.5 (s, 16C, CH3), 16.4 (s, 2C, CH3), 12.0 (s, 1C, CH3).

Appendix A.1.6. PLA-10-DR13

The synthesis was performed with the use of L-LA/(Ldmp)2Zn/DR13 in the ratio 1/10/1. Yield 84%
(0.75 g, 0.42 mmol). 1H NMR (500 MHz, C6D6) δ = 8.13–8.08 (m, 2H, ArCH), 8.07 (d, JHH = 2.4 Hz, 1H,
ArCH), 7.65 (dd, JHH = 8.9, 2.4 Hz, 1H, ArCH), 7.50 (d, JHH = 8.9 Hz, 1H, ArCH), 6.40–6.36 (m, 2H,
ArCH), 5.12–5.06 (m, 2H, CH), 5.04 (q, JHH = 7.1 Hz, 16H, CH), 4.88 (q, JHH = 7.1 Hz, 1H, CH), 4.12 (p,
JHH = 6.7 Hz, 1H, CH), 3.88–3.77 (m, 2H, NCH2), 3.02–2.86 (m, 2H, OCH2), 2.80 (q, JHH = 7.0 Hz, 2H,
NCH2), 2.51 (d, JHH = 5.8 Hz, 1H, OH), 1.41 (d, JHH = 7.1 Hz, 3H, CH3), 1.40–1.36 (m, 6H, CH3), 1.33 (d,
JHH = 7.1 Hz, 48H„ CH3), 1.06 (d, JHH = 7.1 Hz, 3H, CH3), 0.69 (t, JHH = 7.0 Hz, 3H, CH3). 13C NMR
(126 MHz, C6D6) δ = 175.4 (s, 1C, CO), 170.1 (s, 1C, CO), 170.0 (s, 2C, CO), 169.9 (16C, CO), 152.8 (s, 1C,
ArCNN), 151.5 (s, 1C, ArCN), 148.0 (s, 1C, ArNO2), 145.2 (s, 1C, ArCNN), 134.3 (s, 1C, ArCCl), 127.2 (s,
2C, ArCH), 126.3 (s, 1C, ArCH), 122.6 (s, 1C, ArCH) 117.9 (s, 1C, ArCH), 111.9 (s, 2C, ArCH), 69.4 (s,
18C, CH), 69.3 (s, 1C, CH), 66.9 (s, 1C, CH), 62.2 (s, NCH2), 48.3 (s, 1C, OCH2), 45.3 (s, 1C, NCH2), 20.8
(s, 1C, CH3), 16.7 (s, 1C, CH3), 16.6 (s, 1C, CH3), 16.5 (s, 16C, CH3), 16.4 (s, 2C, CH3), 12.0 (s, 1C, CH3).
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38. Jędrzkiewicz, D.; Ejfler, J.; Gulia, N.; John, Ł.; Szafert, S. Designing Ancillary Ligands for
Heteroleptic/Homoleptic Zinc Complex Formation: Synthesis, Structures and Application in ROP of
Lactides. Dalton Trans. 2015, 44, 13700–13715. [CrossRef] [PubMed]

39. Ejfler, J.; Szafert, S.; Mierzwicki, K.; Jerzykiewicz, L.B.; Sobota, P. Homo- and heteroleptic zinc aminophenolates
as initiators for lactide polymerization. Dalton Trans. 2008, 46, 6556–6562. [CrossRef] [PubMed]
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