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Classic visual sleep stage scoring is based on electroencephalogram (EEG) frequency
band analysis of 30 s epochs and is commonly performed by highly trained
medical sleep specialists using additional information from submental EMG and eye
movements electrooculogram (EOG). In this study, we provide the proof-of-principle in
40 subjects that sleep stages can be consistently differentiated solely on the basis of
spatial 3-channel EEG patterns based on root-mean-square (RMS) amplitudes. The
polysomnographic 3-channel EEG data are pre-processed by RMS averaging over
intervals of 30 s leading to spatial cortical activity patterns represented by 3-dimensional
vectors. These patterns are visualized using multidimensional scaling (MDS), allowing
a comparison of the spatial cortical activity patterns with the conventional visual
sleep scoring system according to the American Academy of Sleep Medicine (AASM).
Spatial cortical activity patterns based on RMS amplitudes naturally divide into different
clusters that correspond to visually scored sleep stages. Furthermore, these clusters
are reproducible between different subjects. Especially the cluster associated with the
REM sleep stage seems to be very different from the one associated with the wake
state. This study provides a proof-of-principle that it is possible to separate sleep stages
solely by analyzing spatially distributed EEG RMS amplitudes reflecting cortical activity
and without classical EEG feature extractions like power spectrum analysis.

Keywords: sleep stage analysis, EEG, spatially distributed cortical activity patterns, root-mean-square
amplitudes

INTRODUCTION

Sleep stage classification is largely based on electroencephalogram (EEG) frequency band analysis,
supplemented by detection of eye movements electrooculogram (EOG) and submental EMG. In
1937 sleep was first classified into five different stages (A to E) by Loomis et al. (1937) based on
different EEG patterns. Recordings of brain waves were then concentrated on visibly recognizable
patterns of cerebral activity in non-rapid eye movement (NREM) sleep. Originally, only the
wave patterns of alpha and delta frequency band activity and isolated graphic elements such as
K-complexes, spindles, vertex waves and posterior occipital sharp transients were identified. Rapid
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eye movement (REM) associated with respiratory and cardiac
events was first described in 1953 and later formally combined
to form the additional sleep stage REM (Aserinsky and Kleitman,
1953).

As the reliability of individual interpretations of EEG
patterns was relatively low, a standardized scoring manual
for the classification of human sleep was established in
1968 (Rechtschaffen and Kales, 1968). Its merits lay in the
introduction of standardized terminology and technology, and
a sleep classification system that was used worldwide for almost
40 years. A further scoring manual was not published until
2007, when the American Academy of Sleep Medicine (AASM)
produced a more comprehensive manual taking into account
the latest developments in sleep medicine, including additional
measurement categories and sleep-related phenomena, as well
as evolutionary sleep changes (Silber et al., 2007). The relevance
of spatial EEG patterns in the interpretation of the vigilance
level in extension of the classical frequency band analysis is
reflected in the current AASM manual by the modification of
the recommendation for electrode placement (F4-M1, C4-M1,
O2-M1) and is the gold standard for sleep stage classification to
date (Iber et al., 2007).

Nevertheless, there is a widely-held consensus that a
classification of the different stages of the sleep-wake cycle based
on the classic EEG frequency band analysis is still largely artificial
(Uchida et al., 1992; Younes et al., 2015). Unfortunately, although
rather successful on healthy subjects, existing approaches to
automatically classify sleep stages based on EEG data so far
do not work satisfactorily in patients (Boostani et al., 2017).
Hence, it would be desirable to have alternative features to
classify sleep stages. Although, there exist attempts to exploit
spatial differences of sleep spindles (Cox et al., 2017), we here
demonstrate that spatially distributed cortical activity, reflected
by effective (i.e., root-mean-square, RMS) EEG amplitudes across
the different recording channels, already includes all the relevant
information for differentiating the sleep stages. We believe
that this new, alternative approach of sleep stage classification,
besides classical EEG feature extractions like power spectral
density (PSD) analysis, will allow for the development of a fully
automated and hence fully objective sleep stage analysis with
even higher temporal resolution than the standard 30 s intervals
in the future.

MATERIALS AND METHODS

Database
The study was conducted in the Department of
Otorhinolaryngology, Head & Neck Surgery, of the Friedrich-
Alexander University Erlangen-Nürnberg (FAU) between
March 2016 and November 2016, following approval by the local
Ethics Committee (# 323_16 Bc). All 40 participating subjects,
27 male and 13 female, mean age 32.5 (±11.5) years, were
recruited by the Department of Otorhinolaryngology, Head and
Neck Surgery. Written informed consent was obtained from
the participants before the cardiorespiratory polysomnography
(PSG). Inclusion criterion for this study was age between 21 and

TABLE 1 | Relative fraction of sleep stages in percent.

Sleep stage ≤45 years >45 years
(Median age) (Median age)

(± 95% CI) (± 95% CI)

REM 19.08 (±4.38) 17.45 (±4.22)
N1 14.33 (±2.71) 18.96 (±6.75)
N2 43.18 (±6.54) 46.32 (±5.83)
N3 23.40 (±7.96) 17.26 (±5.82)

80 years. Exclusion criteria were a positive history of misuse
of sedatives, alcohol or addictive drugs and untreated sleep
disorders. Data analysis was carried out during ‘‘time in bed’’
of the subjects, accumulating to a total recording time of 310 h,
14 min, 30 s (mean recording time/time in bed per subject: 7 h,
34 min).

The mean fractions of total sleep time of the individual
sleep stages (REM, N1, N2, N3; see below) were not different
over the subjects’ age. This conclusion was drawn from the
fact that, first, no linear correlations were found for the sleep
stage fractions of total sleep time and the subjects’ age (always
p> 0.05). Second, the subject cohort was separated at the median
age (45 years) into a ‘‘younger’’ and ‘‘older’’ group. Again, no
significant differences in sleep stage fractions of total sleep time
could be found (Student’s t-tests, always p > 0.05, see Table 1).
As revealed by 2-factorial ANOVA (age group × sleep stage;
factor sleep stage: F(3,116) = 80.45, p < 0.001), age groups did
not differ from each other with respect to sleep stage fractions
(F(1,116) < 0.001; n.s.). In addition, Tukey Post hoc tests revealed
(F(3,116) = 1.51; p = 0.21) that N2 had the largest proportion
(about 45%) of the total sleep time in both age groups (always
p < 0.001).

Cardiorespiratory Polysomnography (PSG)
Cardiorespiratory PSG was carried out using the 33-channel
cardiorespiratory SOMNOscreen diagnostic system
(SOMNOmedics, Randersacker, Germany). The technical
implementation of the PSG followed the recommendations of
the AASM using standardized procedures including an EEG,
right and left EOG, electromyogram (EMG) of the mentalis
and tibialis muscles, a nasal respiratory flow sensor (nasal
pressure cannula), thoracic and abdominal respiratory effort
sensors (induction plethysmography), body position sensors,
pulse oximetry, snoring microphone, a one-channel ECG and
an infrared video recording (Iber et al., 2007). Concerning
recordings of EEG data, the following EEG derivations were
used: F4-M1, C4-M1, O2-M1. Impedances were kept below
5 kΩ and data were sampled at 256 Hz with high-pass and
low-pass filters at 0.2 Hz and 35 Hz, respectively. Minimal digital
resolution was 16 bits per sample. ECG-signal elimination was
performed for M1. The sleep stages (wake, N1, N2, N3, REM)
were analyzed and scored visually in 30 s epochs as well as
associated events according to the AASM criteria (Version 2.1,
2014) by a sleep specialist accredited by the German Sleep Society
(DGSM; Iber et al., 2007; Berry et al., 2012). Thereby, typical
artifacts (Tatum et al., 2011) have been marked and removed
subsequently for further analysis and processing steps.
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Analyzing Spatiotemporal Patterns of
Neuronal Activity: General Approach,
Pre-Processing and Visualization of EEG
Data
Neurophysiological recording methods provide a measure of
neuronal activity that evolves over time. We may therefore view
such data as a time series of amplitude values, and in case of
multichannel recordings like EEG this separately applies to each
recording channel (Figure 1A). Consequently, the amplitude
values recorded across the different recording channels during
the same time bin reflect a spatial pattern of neuronal activity
present at that time. In case of three recording channels as
in our EEG measurements such patterns may be visualized
as points in three-dimensional space, and the evolution of
the recorded pattern over time forms a trajectory in three-
dimensional space (Figure 1B). Note that distance of points
within three-dimensional space is a measure of dissimilarity
of patterns. For the analysis of spatial EEG patterns in each
single subject the recorded potentials of the three EEG channels
(F4-M1, C4-M1, O2-M1) were considered as the dimensions of
a 3-dimensional vector: raw data (amplitude values) within each
EEG recording channel (C4-M1 (for x-axis), F4-M1 (for y-axis),
O2-M1 (for z-axis)) were z-scored (i.e., normalized to zero mean
and unit variance) and subsequently binned in 30 s intervals
by RMS averaging (Figure 1A; Colors from black to yellow
denote the progression of time). The RMS amplitudes of the
three recording channels correspond to a 3-dimensional vector
for each 30 s interval, whereas successive vectors form a trajectory
in 3-dimensional space (Figure 1B; Colors as in Figure 1A).

For easier visualization we may then project those points
from three-dimensional space onto a two-dimensional plane
by means of multidimensional scaling (MDS). MDS is used to

project points from a source space onto a lower dimensional
target space such that all mutual Euclidean distances, reflecting
dissimilarities of EEG patterns, are preserved (Torgerson, 1958;
Kruskal, 1964a,b; Figure 1C).

Subsequently each point (epoch) in the 2D-plot is assigned
to the individual epoch of sleep stage (W, N1, N2, N3, REM)
which was classified by visual sleep stage scoring. Visual sleep
stage analysis was blinded to the results of MDS. In addition,
for a clear graphical presentation each point (representing a
single epoch) was color coded (REM sleep (red), N1 (blue), N2
(green), N3 (yellow), W (pink)). Points (epochs) of the same
color correspond to the same sleep stage. Ideally five color-
separated point clouds will be the result. As can be seen in
Figure 1C, the spatiotemporal activity patterns recorded during
the different sleep stages form clusters of points rather than
‘‘color noise’’, that is, neuronal activity patterns recorded during
sleep are more similar within than between sleep stages. Based
on these similarities and dissimilarities we may now compare the
clusters of points associated with the different sleep stages.

Multidimensional Cluster Statistics
We applied a recently developed method to statistically compare
clusters of data points in n-dimensional space. The method
allows determining whether overlapping clusters are significantly
different from each other. It is based on calculating the so
called discrimination value taking into account all intra- and
inter-cluster distances between each pair of data points in
n-dimensional space. Those distances are a measure of how
similar or dissimilar two points in n-dimensional space are. The
more similar they are, the smaller their distance is.

Subsequently a number of permutations of the points’
labels are performed (i.e., random re-labeling) and intra- and

FIGURE 1 | (A) Electroencephalogram (EEG) data recorded from one subject at three electrode positions (top panel: C4, middle panel: F4, bottom panel O2). Root
mean square (RMS) values within 30 s bins of the z-scored raw recording data are plotted as a function of time. Note that the peaks correspond to wake states. The
RMS values serve as coordinates for the three-dimensional plot of the data given in (B). Colors from black to yellow denote the progression of time in both (A,B).
Note that each point in (B) represents a spatiotemporal activation pattern across the three recording electrodes, and the trajectory through these points reflects the
development of these patterns over time. (C) For visualization purposes, data were projected from 3-dimensional space onto a 2-dimensional plane by means of
multidimensional scaling (MDS) such that all mutual Euclidean distances in high-dimensional (3D) space, reflecting pattern dissimilarities, are preserved in the target
(2D) space. Colors now depict sleep stages as classified via visual sleep scoring by an accredited medical sleep specialist: red: REM; blue: N1; green: N2; yellow:
N3; pink: awake. Absolute coordinates of points have no particular meaning other than scaling relative distances between any pair of points, whereby distance
reflects pattern dissimilarity.
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FIGURE 2 | (A) Visualization of similarities and dissimilarities of sleep stage associated EEG patterns of one exemplary subject. EEG patterns associated with
particular sleep stages form clusters of points which shift along a systematic, ordered gradient, from REM sleep to N1 to N2 to N3. Results of multidimensional
cluster statistics (MCS) are summarized in the inset. The numbers in the matrix correspond to the percentage of significant p-values of the pairwise comparisons of
individual subjects’ sleep stage clusters. Note, that a significant p-value in MCS indicates that two given clusters are significantly different from each other despite a
possible overlap. Absolute coordinates of points have no particular meaning other than scaling relative distances between any pair of points, whereby distance
reflects pattern dissimilarity. (B) Same type of analysis for 39 further subjects.

inter-cluster distances are re-computed resulting in a new
discrimination value for each permutation. The distribution of
these discrimination values is used to estimate a p-value that
indicates if two given clusters are separated significantly. The
method is described in detail in Krauss et al. (2016).

RESULTS

Separation of Sleep Stages Based on
Spatially Distributed EEG Patterns
Figure 2A shows the visualization of EEG patterns during
sleep for one exemplary subject. Obviously, the EEG patterns
during different sleep stages formed clusters of points in clearly
separable regions (see color shaded areas), although there still
was some overlap. Interestingly, these clusters of similar neuronal
activity patterns associated with particular sleep stages were
not randomly distributed across the two-dimensional plane but
rather form a systematic gradient, from REM sleep to N1 to
N2 to N3.

Figure 2B shows the same type of analysis for 39 further
subjects. Although there may be considerable variability between
subjects, the general systematic described for the subject in

Figure 2A was again present in almost all subjects. Exceptions
could be a higher degree of scattering of the points within
a cluster, reflecting higher variability of EEG patterns during
a sleep stage and or higher degree of overlap between EEG
patterns associated with different sleep stages (see e.g., Figure 2B,
panels 19, 33). Other subjects showed highly homogeneous and
separable clusters of EEG patterns (see e.g., Figure 2B, panels 14,
22, 26). In one subject where REM sleep was missing (Figure 2B,
panel 31), the systematic relation of EEG patterns between the
NREM sleep stages was nevertheless preserved.

We analyzed the data with multidimensional cluster statistics
(MCS; ‘‘Materials and Methods’’ section, Krauss et al., 2016).
The results are summarized in Figure 2A inset. The numbers
in the matrix correspond to the percentage of p-values of the
pairwise comparison between different sleep stage clusters for
the individual subjects that became significant (p < 0.05). A
significant p-value in MCS indicates that two given clusters are
significantly different from each other, despite possible overlap.

In search for a general, interindividual systematic of EEG
patterns, we pooled the data across all 40 subjects (from
Figures 1C, 2) in Figure 3. Figure 3A gives a complete overview
across all 37229 data points (i.e., periods of 30 s of EEG
recording) obtained from the 40 subjects, thereby allowing
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FIGURE 3 | Visualization of similarities and dissimilarities of sleep stage associated EEG patterns across all 40 individual subjects. (A) Total overview encompassing
all 37229 data points (wake and sleep stages). (B,C) Zoom into the data shown in (A) to emphasize the sleep stages only. (D) Centroids of clusters given in (A). The
systematic shift of clusters and centroids demonstrates the interindividual similarity of the sleep stage associated EEG patterns. Absolute coordinates of points have
no particular meaning other than scaling relative distances between any pair of points, whereby distance reflects pattern dissimilarity.

for a comparison of sleep associated EEG patterns with those
measured during the wake state. Obviously, EEG patterns during
wakefulness are much more heterogeneous than those during
all sleep stages. Figures 3B,C show zooms into the plot given
in Figure 3A, so that the display window in Figure 3C roughly
corresponds to those given in Figure 2, focusing on the sleep
stages only. The described systematic relation between sleep stage
associated EEG patterns that could already be seen for individual
subjects—despite considerable interindividual variation—was
again obvious in the pooled data across subjects: Again, a
systematic shift of clusters can be seen from REM sleep (red)
to N1 (blue) to N2 (green) to N3 (yellow). This is even more
obvious when the centroids of the different clusters of the pooled
data—so to say the ‘‘prototypical’’ EEG patterns for a given
sleep stage—are plotted, as shown in Figure 3D. Obviously this

systematic relation between EEG patterns associated with the
different sleep stages reflects an overall principal that is invariant
across the subjects’ individual brains.

Unexpectedly, we found the largest difference between the
EEG patterns associated with REM sleep and those recorded
during the wake state, although the respective EEG traces during
wake and REM sleep periods look very similar (both show low-
voltage, desynchronized brain waves in the alpha range and
above, see ‘‘Discussion’’ section). On the other hand, the smallest
differences were seen between ‘‘prototypical’’ EEG patterns of
N1 and N2.

Finally, these relations between the EEG patterns associated
with different sleep/wake stages are further quantified in
Figure 4: based on the individual data from Figures 1C,
2, 4 shows mean distances between points (inner circles)
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FIGURE 4 | Quantitative analysis of similarities and dissimilarities between the
EEG patterns associated with different sleep/wake stages. Circle diameters
represent mean distances between points (inner circles) and standard
deviation (outer circles), both within clusters (on the diagonal of the plot) and
between clusters (off the diagonal) of the individual recordings presented in
Figures 1C, 2.

and standard deviation (outer circles), both within clusters
(intra-cluster distances; on the diagonal of the plot) and
between clusters (inter-cluster distances; off the diagonal).
This quantitative analysis confirms that indeed the wake state
displays the highest variability of EEG patters (large intra-cluster
point distances), and that these patterns also show the biggest
differences to all sleep stages (top row in Figure 4). Furthermore,
REM sleep is characterized by very homogeneous EEG patterns
(i.e., small intra-cluster point distance), as are patterns from
N2 and N3. Nevertheless, the inter-cluster differences are
larger between REM and NREM sleep stages (N1, N2, N3),
demonstrating the EEG patterns during the different NREM
sleep stages are more similar to each other than to those during
REM sleep.

DISCUSSION

When visual sleep stage analysis was already being optimized
in 2007, awareness of the spatial organization of specific
EEG graphic elements (K complexes and delta activity in the
frontal leads, sleep spindles in the central leads, and alpha
rhythm over the occipital cortex) led the AASM to change
the earlier recommendation on electrode configuration made
by Rechtschaffen and Kales (McCormick et al., 1997; Werth
et al., 1997; De Gennaro et al., 2000; Happe et al., 2002; Iber
et al., 2007). Building on this, the present study investigated
spatially distributed EEG patterns based on RMS amplitudes
and correlated them with the current gold standard (visual sleep
stage analysis according to AASM). We were able to provide
the proof-of-principle that sleep stages can be differentiated only

on the basis of RMS amplitudes across three EEG recording
channels (F4-M1, C4-M1, O2-M1) and without using classic
EEG frequency band analysis, template matching or wavelet
analysis.

Beyond that, this novel approach even allows for
both qualitative and quantitative evaluations of sleep
architecture: Qualitatively, the homogeneity or heterogeneity
of spatiotemporal EEG patterns of a given sleep stage, and the
similarity or dissimilarity of such patterns between different
sleep stages can objectively be evaluated.

In the present report, this comparison yielded two important
insights into the relation between EEG patterns associated with
different sleep/wake stages: First, we found the least dissimilarity
between the EEG patterns associated with N1 and N2. By
definition, a main difference between N1 and N2 is the existence
or absence of K-complexes and sleep spindles (Rechtschaffen
and Kales, 1968; Iber et al., 2007), whereas the ongoing EEG
activity (low-amplitude mixed frequency) in both cases is the
same. Therefore it seems plausible that the EEG patterns we
found during N1 and N2 do not differ much. This fact is even
more understandable by looking at the outdated 3 min rule of
the Rechtschaffen and Kales manual, where the occurrence of
a spindle or K-complex defines the following 6 epochs (3 min)
as N2 rather than N1, even if no further spindle of K-complex
was detected (Rechtschaffen and Kales, 1968). One therefore
may discuss if N1 and N2 really are separate sleep stages or
rather subtypes of the same sleep stage. On the other hand, as
our method may equally be applied to EEG data with more
than three recording channels, it may open the opportunity to
provide a more detailed description of sleep stages which could
possibly reveal further subtypes of sleep stages. Nevertheless,
the fact that it is already possible to discriminate between the
classical sleep stages based on EEG patterns of RMS amplitudes
only strongly emphasizes the analytical power of our new
approach.

A somewhat surprising result of our study was the large
difference between EEG patterns associated with wake vs. REM
sleep stages. Based on animal studies, EEG recordings between
these two states are considered to be virtually indistinguishable
by eye (see e.g., Corsi-Cabrera et al., 2001; Horne, 2013), and
also for human sleep the two stages have more in common than
features that separate them (for detailed review see Matarazzo
et al., 2011; Siegel, 2011; Horne, 2013). Therefore our tool seems
to provide a new, easy and reliable method to separate REM sleep
from wake.

Regarding the limitations of the study, we think that despite a
clear terminology as well as detailed technical specifications and
scoring rules, visual sleep stage analysis still has the problem of
substantial interrater reliability. Numerous studies have already
dealt with this topic and report inter-expert agreements (Cohens
kappa; κ) in sleep stage classification of 0.65–0.78 (Danker-
Hopfe et al., 2004, 2009; Pittman et al., 2004; Anderer et al.,
2005; Malinowska et al., 2009; Magalang et al., 2013; Wendt
et al., 2015). Especially NREM sleep stages N1 and N2 seem
to show only a fair to moderate observer agreement with a
κ = 0.31–0.46 and κ = 0.60 respectively (Danker-Hopfe et al.,
2004, 2009; Magalang et al., 2013). Although the observers in
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this study have many years of experience in the visual scoring
of sleep EEG data and have been accredited by the DGSM,
this limitation certainly also applies to our study. However,
since the visual evaluation continues to be the gold standard,
this limitation will not be avoidable for the time being. On
the other hand, this may explain the least dissimilarity between
the prototypical EEG patterns of N1 and N2 as seen in
Figure 3.

Another limitation of this study is that our proof-of-concept
still has to be tested in patients with untreated sleep disorders,
e.g., sleep disordered breathing.

We believe that in the future based on this new approach
the common but artificial segmentation of EEG recordings
into epochs of 30 s time intervals assigned to one single
sleep stage could be overcome by a fully automated and
hence fully objective method that could be used to perform
sleep stage classification with much higher temporal resolution
(i.e., assigning sleep stages to shorter time intervals than the
common 30 s intervals). A resulting adaptive scoring system
defining the start and end of each sleep stage without relying on
discrete epochs has already been considered by the AASMVisual
Scoring Task Force (Iber et al., 2007). One possible advantage
of such an approach might be a more natural representation
of sleep continuity including a more detailed impression of the
microstructure of sleep fragmentation (Silber et al., 2007). In

conclusion, we believe that this new approach of multichannel
EEG pattern analysis based on RMS amplitudes will be a powerful
supplement for the improvement of subsequent sleep stage
classification based on e.g., machine learning and deep learning
methods.
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