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Major depressive disorder (MDD), affecting over 264 million individuals globally, is associated with 
immune system dysregulation and chronic neuroinflammation, potentially linked to neurodegenerative 
processes. This review examines blood-brain barrier (BBB) dysfunction in MDD, focusing on key regulators 
like matrix metalloproteinase 9 (MMP9), aquaporin-4 (AQP4), and ATP-binding cassette subfamily B 
member 1 (ABCB1). We explore potential mechanisms by which compromised BBB integrity in MDD 
may contribute to neuroinflammation and discuss the therapeutic potential of omega-3 polyunsaturated 
fatty acids (n-3 PUFAs). n-3 PUFAs have demonstrated anti-inflammatory and neuroprotective effects, and 
potential ability to modulate MMP9, AQP4, and ABCB1, thereby restoring BBB integrity in MDD. This 
review aims to elucidate these potential mechanisms and evaluate the evidence for n-3 PUFAs as a strategy 
to mitigate BBB dysfunction and neuroinflammation in MDD.
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INTRODUCTION

Major depressive disorder (MDD) exerts a signifi-
cant global burden, impacting individuals, communities, 
and healthcare infrastructures [1]. MDD stands as a pri-
mary cause of disability worldwide [2], carrying substan-
tial economic and social repercussions. The World Health 
Organization estimates that over 264 million individuals 
across all age groups are affected by depression globally 
[3]. Depression is also important in neurodegenerative 
processes as it can both exacerbate the progression of 
diseases like Alzheimer’s Disease and Parkinson’s Dis-
ease and be an early indicator of these conditions [4,5]. 
Despite extensive research efforts spanning decades, the 
precise etiology of MDD remains elusive, necessitating 
continued investigation into its underlying mechanisms. 
Recent evidence suggests that dysregulation of the im-
mune system, characterized by elevated levels of pro-in-
flammatory cytokines, plays a significant role in the 
pathogenesis of MDD [6]. This is because patients with 
MDD exhibit significantly higher levels of pro-inflamma-
tory mediators such as interleukin-1 beta (IL-1β), IL-6, 
and tumor necrosis factor-alpha (TNF-α) than healthy 
controls [7]. Moreover, treatment with pro-inflamma-
tory cytokines or their derivatives resulted in the onset 
of depressive symptoms in individuals with no previous 
history of depression [8,9]. Pro-inflammatory mediators 
disrupt the integrity of the blood-brain barrier (BBB), 
thus initiating neuroinflammatory processes within the 
central nervous system (CNS) [10]. Impairment in BBB 
structure and functions is an emerging phenomenon in the 
pathology of depression and other CNS disorders [11].

The integrity of BBB can be impaired in patholog-
ical states through several mechanisms such as matrix 
metalloproteinase 9 (MMP9) dysregulation and impaired 
regulation of aquaporin 4 (AQP4), or ATP-binding cas-
sette subfamily B member 1 (ABCB1) gene. MMP9 
participates in diverse physiological processes, including 
tissue repair, angiogenesis, and modulation of immune 
responses [12]. Dysregulation of MMP9 occurs in disease 
states such as inflammation [12], where it compromises 
the structural integrity of BBB [13]. Mounting evidence 
associated elevated MMP9 levels with BBB disruption 
in diverse disease conditions such as acute ischemic 
stroke [14] and traumatic brain injury [15]. AQP4, a 
water channel protein in astrocytic end feet, facilitates 
water movement between blood vessels and the brain 
parenchyma, crucial for brain homeostasis and metabolic 
waste clearance through the glymphatic system [16]. The 
glymphatic system depends on AQP4-mediated water 
flux for cerebrospinal fluid movement and waste removal 
[17]. Similarly, ABCB1 gene, encoding P-glycoprotein 
(P-gp), functions as an efflux transporter at the BBB [18]. 
P-gp actively transports toxins and xenobiotics out of the 

brain, protecting neural tissues from harmful compounds 
[19]. Taken together, strict regulation of MMP9, AQP4, 
and ABCB1 is paramount to maintaining the optimal 
structural and functional integrity of the BBB.

Omega-3 polyunsaturated fatty acids (n-3 PUFAs) 
have emerged as promising candidates for depression 
treatment and prevention with epidemiological and clin-
ical studies reporting their beneficial effects [20-23] with 
a high degree of tolerability and safety [24,25]. Despite 
these promising findings, the precise mechanisms un-
derlying the antidepressant effects of n-3 PUFAs remain 
incompletely understood. Available evidence shows that 
n-3 PUFAs exert antidepressant effects through the modu-
lation of inflammatory pathways and antioxidant defense 
systems [26,27], neuroplasticity promotion [28], and the 
modulation hypothalamus-pituitary-adrenal (HPA) axis 
[29]. However, it is not known if n-3 PUFAs can exert 
their antidepressant effects by preserving the integrity of 
the BBB. Consequently, in this review, we aim to discuss 
the evidence of BBB dysfunction in MDD pathophysiol-
ogy and the modulation of BBB integrity and functions 
as a potential therapeutic target for n-3 PUFAs in MDD.

BBB DYSFUNCTION IN MDD

The BBB is a sophisticated structure primarily com-
posed of endothelial cells that line the blood vessels with-
in the brain. These endothelial cells are specialized and 
tightly interconnected by tight junction proteins (TJPs) 
including junctional adhesion molecules, claudins, and 
occludins, forming a physical barrier that regulates the 
passage of molecules between the bloodstream and brain 
tissue [30]. The BBB is further supported by astrocytes 
surrounding the blood vessels, providing structural re-
inforcement [31]. Together, these cells create a selective 
barrier that permits essential nutrients like glucose and 
amino acids to enter the brain while preventing the entry 
of harmful substances, toxins, and pathogens [32]. TJPs 
between endothelial cells restrict the free diffusion of 
molecules across the BBB, necessitating passage through 
specialized transport systems like carrier-mediated trans-
porters and receptor-mediated endocytosis for specific 
molecules such as amino acids, ions, and glucose while 
excluding others [33]. BBB also plays a critical role in 
maintaining brain microenvironment homeostasis by 
limiting the passage of immune cells and inflammatory 
mediators into the brain [11]. Claudin-5 is the most ex-
pressed TJP within endothelial cells of the CNS, and pre-
clinical studies have shown that depletion of Claudin-5 is 
adequate to enhance BBB permeability [34,35]. Overall, 
preserving BBB integrity is crucial for shielding the brain 
from harmful substances, facilitating the passage of es-
sential nutrients, and maintaining proper CNS function. 
Conversely, BBB dysfunction can profoundly impact 
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brain health and is implicated in various neurological and 
psychiatric disorders, including MDD [36].

Undoubtedly, AQP4 and ABCB1 are pivotal in up-
holding the integrity and function of the BBB, particu-
larly concerning astrocytes and the glymphatic system 
[37,38]. AQP4, a water channel protein primarily found 
in astrocytic end feet, plays a crucial role in facilitating 
the efficient movement of water between blood vessels 
and the brain parenchyma [16,39,40]. This regulation is 
of paramount importance in maintaining brain homeo-
stasis, especially in the clearance of metabolic waste 
through the glymphatic system [41]. The glymphatic 
system heavily relies on AQP4-mediated water flux to 
drive CSF movement and waste clearance [42]. On the 
other hand, ABCB1, which encodes P-gp, is a key efflux 
transporter at the BBB [43,44]. P-gp actively transports 
various substances, including toxins and xenobiotics, out 
of the brain, thereby safeguarding neural tissues from po-
tentially harmful compounds [45]. In astrocytes, ABCB1 
modulates the cellular environment and influences the 
distribution and clearance of endogenous and exogenous 
molecules [46]. The combined functions of AQP4 and 
ABCB1 are instrumental in the dynamic regulation of 
the BBB, where AQP4 supports fluid balance and waste 
removal, and ABCB1 ensures neuroprotection by pre-
venting the accumulation of toxic aggregates. Their co-
ordinated efforts are indispensable for maintaining neural 
health and optimizing the efficiency of the glymphatic 
system in preserving cerebral homeostasis.

Emerging evidence suggests that dysfunction of the 
BBB plays a role in the pathogenesis of MDD [36,47]. 
Notably, individuals with MDD demonstrate impaired 
endothelial cell function, characterized by a reduced 
relative uptake ratio of blood flow in the brachial artery 
following hyperemic challenge using dynamic nuclear 
imaging, indicative of compromised endothelial function 
[48]. Shang et al. found that MDD patients exhibited el-
evated BBB leakage, evidenced by higher mean volume 
transfer constant (Ktrans) values in the thalamus, caudate, 
and olfactory regions compared to healthy controls, 
while Ktrans values in the thalamus and hippocampus were 
positively correlated with depression severity [49]. Ad-
ditionally, MDD patients exhibit elevated plasma levels 
of endothelial dysfunction markers, including soluble 
intercellular adhesion molecule (ICAM), soluble vascu-
lar cell adhesion molecule (VCAM), soluble E-selectin, 
and von Willebrand factor [50-52]. Consistent with this, 
serum samples from MDD patients show increased apop-
totic potential on endothelial cells in vitro compared to 
non-depressed controls [53]. MDD is associated with 
reduced expression of TJPs in various brain regions, 
such as reduced Claudin-5 mRNA levels in the nucleus 
accumbens and hippocampus [54,55]. Furthermore, re-
duced Claudin-5 expression correlates with the age of 

onset and duration of depressive episodes in MDD pa-
tients [55]. Serum Claudin-5 levels are elevated in MDD 
patients, suggesting degradation of the protein [56,57]. 
Collectively, these findings underscore disruptions in 
BBB integrity in depression, although whether these dis-
ruptions precede or result from depressive states remains 
to be fully elucidated in humans. BBB dysfunction in 
MDD may result from several mechanisms such as dys-
regulations in MMP9, astrocytic and AQP4, and ABCB1.

MMP9 and BBB Dysregulation in MDD
Mounting evidence suggests the involvement of 

MMP9 in MDD pathophysiology. Indeed, elevated levels 
of MMP9 have been consistently observed in individu-
als with depression compared to control subjects across 
various studies. For instance, Domenici et al. (2010) re-
ported higher MMP9 levels in patients with depression 
compared to controls [58], while Bobińska et al. reported 
elevated MMP9 mRNA transcripts in depressed individu-
als [59]. Similarly, Hamed et al. (2020) discovered higher 
MMP9 and reduced tissue inhibitor of metalloproteinase 
1 (TIMP-1) levels in the blood of clinically diagnosed 
MDD patients [60]. Garvin et al. demonstrated a notable 
correlation between depressive symptoms and plasma 
MMP9 levels in a cohort of middle-aged individuals from 
Sweden [61]. Moreover, electroconvulsive therapy was 
found to reduce serum MMP9 levels in MDD patients 
who are responders but not in patients who relapsed 
[62]. Peripheral MMP9 levels appear to correlate with 
depression severity, as evidenced by studies indicating 
associations between MMP9 serum levels and depression 
severity [63]. Supporting these results, Bijata et al. ob-
served increased MMP9 activity in the hippocampus of 
individuals with MDD who died by suicide in a post-mor-
tem study [64].

Preclinical models of depression reinforce the 
relationship between MMP9 and depression. The corti-
costerone mice model of depression showed heightened 
MMP9 activity and protein concentrations in both the 
hippocampus and cortex, which correlated positively 
with behavioral impairment [65]. Additionally, increased 
MMP9 was accompanied by a decreased expression of 
nectin-3, an important MMP9 substrate in these brain 
regions [65]. Similarly, heightened MMP9 activity was 
found in the hippocampal CA1 region of mice, suggest-
ing its implication in chronic stress-induced social and 
cognitive alterations [66]. However, treatment with an 
MMP9 blocker has alleviated chronic stress-induced de-
pression-like social and cognitive alterations [66]. In an-
other study, chronic mild stress resulted in the elevation 
of MMP9 levels in the brain [67]. Cumulatively, these 
findings suggest a complex involvement of MMP9 in the 
pathophysiology of depression, highlighting its potential 
as a biomarker for depressive symptoms severity and 
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sive disorders. The study by González-Arias et al. [69] 
reveals that astrocytes exhibit dysfunctional Ca2+ signal-
ing in a chronic corticosterone mouse model of stress, 
characterized by altered dynamics and reduced sero-
tonin-mediated responses, contributing to depressive-like 
behaviors. Similarly, Cobb et al. [70] found that the 
density of glial fibrillary acidic protein-(GFAP)-immuno-
reactive astrocytes is notably reduced in the hippocam-
pus of individuals with MDD who were not undergoing 
antidepressant treatment. Gittins and Harrison [71] also 
noted a reduction in glial cell density, particularly astro-
cytes, in the anterior cingulate cortex (ACC) of subjects 
with mood disorders, suggesting a potential astrocytic pa-
thology contributing to the altered functionality observed 
in depression. Inflammation plays a significant role in 
these findings, with Xie et al. [72] demonstrating that 
astrocyte-derived extracellular vesicles (ADEs) show 
increased inflammatory markers in MDD patients com-
pared to healthy controls. This supports the inflammatory 
glial hypothesis of depression and highlights ADEs as 
valuable tools for assessing astrocyte activity in vivo.

AQP4 emerges as a crucial player in the regulation of 
neurogenesis and depressive behaviors. Kong et al. [73] 
showed that AQP4 knockout mice exhibited disrupted 
fluoxetine-induced enhancement of hippocampal neu-
rogenesis and behavioral improvements, underscoring 

treatment response. Thus, MMP9 may offer a novel ther-
apeutic target for BBB-impairment-induced depression.

Indeed, the association between MMP9 and depres-
sion reported in several studies may be related to the neg-
ative impact of MMP9 on BBB integrity, however, evi-
dence supporting this in the context of MDD is generally 
lacking. Specifically, MMP9 plays a crucial role in BBB 
disruption by degrading the TJPs and the basement mem-
brane of the BBB [14]. This breakdown permits the pas-
sage of inflammatory cells and other harmful substances 
from the bloodstream into the brain, which triggers glial 
activation, initiating neuroinflammatory reactions [13]. 
Neuroinflammation has been linked to oxidative stress-in-
duced damage to neurons [26]; decrease in the synthesis 
of neurotransmitters crucial for mood regulation such as 
dopamine and serotonin [68]; and BBB impairment [47], 
further exacerbating neuroinflammation, perpetuating a 
cycle of neuronal injury and immune activation. These 
processes collectively contribute to the development of 
depression (Figure 1).

Astrocytic and AQP4 Dysfunction in MDD
The intricate relationship between astrocytic dys-

function and depression has been increasingly elucidated 
through various studies, highlighting the pivotal roles of 
astrocytes and AQP4 in the pathophysiology of depres-

Figure 1. Role of MMP9 in Depression. During inflammation, pro-inflammatory cytokines such as NF-κβ, IL1β, and 
IL6 stimulate the synthesis of MMP9. MMP9 can impair the integrity of BBB via the degradation of basement membrane 
of the BBB and tight junction proteins, allowing the entry of inflammatory cytokines and other neurotoxic substances 
into the brain, which leads to neuroinflammation. Neuroinflammation leads to depression through neuronal damage 
induced by oxidative stress and reduced availability of neurotransmitters. BBB: Blood-brain barrier; GFAP, Glial fibrillary 
acidic protein; IL, Interleukin; MMP9, Matrix metalloproteinase 9; TJPs, Tight junction proteins; TNF-α, Tumor necrosis 
factor alpha.
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could also help in identifying patients at higher risk for 
adverse psychiatric outcomes [84]. Studies in different 
populations, such as the Chinese Han population, reveal 
that certain ABCB1 polymorphisms (eg, rs6946119, 
rs28401781, rs4148739, and rs3747802) do not signifi-
cantly predispose individuals to MDD but may still influ-
ence treatment responses, underscoring the importance of 
considering ethnic and genetic backgrounds in research 
and treatment [85,86].

Variants like C3435T and rs1045642 have been linked 
to differences in remission times and required dosages for 
achieving remission. Patients with specific genotypes 
(eg, TT at C3435T and rs1045642) tend to have faster 
remission times and require lower doses of certain antide-
pressants, highlighting the potential for genotype-guided 
dosing strategies [87,88]. Certain ABCB1 gene SNPs (eg, 
1236 T, 3435 T, 2677 T/A) correlate with higher initial 
severity of depressive symptoms and decreased efficacy 
of antidepressants, indicating these genetic markers could 
be used to predict and monitor treatment response and 
adjust strategies accordingly [89]. Research indicates that 
while ABCB1 variants may affect antidepressant effica-
cy, they do not appear to influence cortisol regulation in 
patients undergoing treatment for MDD, suggesting that 
their role is more directly related to drug transport and 
response rather than broader endocrine effects [81]. Some 
studies found no significant association between certain 
ABCB1 polymorphisms and the predisposition to MDD, 
suggesting that these genetic variations may primarily 
influence treatment outcomes rather than the likelihood 
of developing depression [85]. Overall, these studies un-
derscore the importance of ABCB1 genetic variations in 
influencing antidepressant efficacy, treatment response, 
and potential adverse outcomes. They suggest that geno-
typing for ABCB1 variants could enhance personalized 
treatment strategies for depression, although further re-
search is needed to solidify these findings and implement 
them in clinical practice.

n-3 PUFAs in MDD
n-3 PUFAs are increasingly recognized to confer 

health benefits in several diseases, including neuropsy-
chiatric disorders [90-92]. Indeed, mounting evidence 
suggests that n-3 PUFAs deficiency resulting from inade-
quate dietary intake, disease, or both, is a clinical feature 
of depression [93] and several interventional studies re-
port that supplementation with n-3 PUFAs demonstrated 
benefits in improving depression severity [94-96]. Specif-
ically, n-3 PUFAs demonstrated a significant prophylactic 
effect on bipolar depression [20] and interferon-(IFN)-al-
pha-induced depression [22]. Moreover, n-3 PUFAs have 
been documented to exhibit higher tolerability and safety 
as evidenced by few adverse effects associated with their 
therapy compared to conventional antidepressant thera-

the essential role of AQP4 in mediating antidepressant 
effects. Liu et al. [74] found that chronic social defeat 
stress significantly elevated hippocampal AQP4 levels, 
and its knockdown alleviated depression and enhanced 
the expression of N-methyl D-aspartate (NMDA) recep-
tor subtype 2B and postsynaptic density protein 95. Ad-
ditionally, the study by Westermair et al. [75] identified 
a genetic variant associated with the AQP4 locus that in-
creases the risk of lifetime depression, further implicating 
AQP4 in the etiology of depression. Moreover, the role 
of AQP4 in mitigating corticosterone-induced depression 
by maintaining astrocyte function and hippocampal neu-
rogenesis is highlighted in studies like Kong et al. [76], 
which showed that AQP4 knockout mice displayed more 
severe depressive-like behaviors and reduced astrocyte 
density. Xia et al. [77] demonstrated that chronic stress 
impairs the glymphatic pathway and decreases AQP4 ex-
pression, leading to reduced Aβ clearance and increased 
accumulation, suggesting a mechanism linking depres-
sion to Alzheimer’s Disease. Finally, the exploration of 
AQP4 autoantibodies in treatment-resistant depression, 
as presented by Iorio [78], underscores the potential 
autoimmune component in certain forms of depression, 
highlighting the need for considering autoimmune factors 
in treatment-resistant cases. Despite some studies, such 
as Gur et al. [79], not finding significant associations 
between AQP4-IgG autoantibodies and major depressive 
episodes, the overall evidence points to the significant 
role of AQP4 in mood disorders through various mech-
anisms. These studies collectively emphasize the critical 
involvement of astrocytic dysfunction and AQP4 in the 
development and progression of depression, pointing to 
their potential as therapeutic targets. Understanding the 
intricate interplay between astrocytic dysfunction, in-
flammation, and AQP4 can pave the way for novel treat-
ments for depression and its comorbid conditions.

ABCB1 and Treatment Resistance in MDD
The ABCB1 gene, encoding P-gp, significantly af-

fects the concentration of antidepressants in the brain by 
modulating the BBB. Variations in this gene can lead to 
differences in P-gp expression, which in turn influences 
individual responses to antidepressant treatments [80]. 
Several studies highlight that specific polymorphism in 
the ABCB1 gene, such as rs2235040, rs9282564, and 
G2677T, are associated with higher remission rates and 
faster time to remission in patients treated with P-gp 
substrate antidepressants. These findings suggest that 
genotyping for these single nucleotide polymorphisms 
(SNPs) could potentially guide personalized treatment 
plans, although more research is needed to confirm their 
clinical utility [81-83]. Some ABCB1 variants, particu-
larly the G2677T allele, are associated with an increased 
risk of suicide attempts, indicating that genetic screening 
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tory effects of n-3 PUFAs on MMP9 in the context of de-
pression. However, several lines of evidence demonstrate 
that n-3 PUFAs can modulate MMP9 in both preclinical 
and clinical models of several diseases.

The effects of n-3 PUFAs on MMP9 have been 
widely studied in the context of cancer as this enzyme is 
crucial for tumor angiogenesis and metastasis [105]. In 
the castrate-resistant chronic cancer progression model, 
Liang et al. found that treatment with n-3 PUFAs demon-
strated a significant reduction in MMP9 expression in 
tumor infiltrating M2-like macrophages [106]. Similarly, 
Yin et al. demonstrated a dose-dependent downregulation 
of MMP9 in non-small cell lung cancer cells by DHA 
[107]. Furthermore, suppression of cancer-associated 
fibroblasts MMP9 activity was reported following treat-
ment with n-3 PUFAs [108]. In addition, it was reported 
that DHA inhibits the metastasis of breast cancer cell by 
targeting metalloproteinases, particularly, MMP9 [109]. 
Furthermore, DHA prevented cell invasion following 
exposure to 12-O-tetradecanoylphorbol-13-acetate by 
inhibiting MMP9 expression in MCF-7 breast cancer 
cell lines [110]. In a separate study, colon cancer cells 
were exposed to a cytokine-enriched medium, resulting 
in the upregulation of MMP9-dependent neurogenic lo-
cus notch homolog protein 1 (NOTCH1) signaling [111]. 
However, treatment with EPA attenuated the observed 
effects of inflammatory stimulus on NOTCH1 signaling 
via the reduction of MMP9 activity [111]. Other studies 
similarly reported reduced MMP9 activity or reduction 
in protein levels in other tumor types following treatment 
with n-3 PUFAs [112,113]. Collectively, these findings 
indicate that n-3 PUFAs might exert anti-tumor effects by 
modulating MMP9 within the tumor microenvironment. 
Moreover, these results underscore the potential of n-3 
PUFAs to target other pathological conditions linked to 
MMP9 dysregulation.

The effects of n-3 PUFAs on MMP9 were similarly 
reported in other conditions, including the periodontal 
diseases as this enzyme centrally participates in the de-
struction of organic matrix of the dentin [114]. Specifi-
cally, a significant reduction in periodontal tissue MMP9 
expression was found in the murine periodontitis model 
following the treatment of with n-3 PUFAs [115]. Simi-
larly, resolvin (Rv) E1 and D1, metabolites derived from 
EPA and DHA significantly dampened the expression 
of MMP9 in immortalized mouse cementoblasts [116]. 
It was further shown in both in vitro and ex vivo teeth 
studies that n-3 PUFAs inhibit the proteolytic activity of 
MMP9 [117]. On the other hand, Liuzzi et al. treated cul-
tured rat microglial cells with different doses of n-3 PU-
FAs followed by lipopolysaccharide stimulation (LPS) 
[118], and a dose-dependent inhibition in LPS-induced 
synthesis of MMP9 was associated with n-3 PUFAs 
[118]. In addition, Chitranjali et al. treated LPS-stimu-

pies [24,97]. Several mechanisms have been postulated 
to be responsible for the observed antidepressant efficacy 
of n-3 PUFAs and their ability to modulate inflammatory 
pathways and antioxidant defense systems as important 
mechanisms [26,27]. Indeed, n-3 PUFAs reduce interfer-
on-(IFN)-γ- induced expressions of TNF-α, IL-6, nitric 
oxide synthase (NOS), and cyclo-oxygenase-2 (COX-2), 
while also promoting the upregulation of heme oxygen-
ase-1 (HO-1) in BV-2 microglia [98]. It was further found 
that treatment of astrocytes from mice with eicosapen-
taenoic acid (EPA) and docosahexaenoic acid (DHA) 
showed a dose-dependent decrease in reactive oxygen 
species (ROS) generation and significantly enhanced 
reduced glutathione (GSH) and glutathione peroxidase 4 
(GPX4) levels [99]. These effects were mediated via the 
modulation of nuclear factor erythroid 2-related factor 2 
(nrf2) [99], the master regulator of antioxidant enzymes.

Emerging evidence suggests that n-3 PUFAs antide-
pressant efficacy may be mediated by their metabolites, 
specialized pro-resolvin mediators (SPMs). Recently, 
Borsini et al. showed that metabolites from EPA and DHA 
produced by the lipoxygenase (LOX) and cytochrome 
(CYP) P450 enzymes; 4-hydroxydocosahexaenoic acid, 
5-hydroxyeicosapentaenoic acid, 18-hydroxyeicosapen-
taenoic acid (18-HEPE), 17(18) epoxyeicosatetraenoic 
acid, 19(20)-epoxydocosapentaenoic acid, and 20-hy-
droxydocosahexaenoic acid showed a significant increase 
in MDD patients following EPA and DHA supplementa-
tion [100]. Moreover, the levels of these metabolites were 
negatively correlated with depression severity [100]. 
Similarly, Yang et al. found a significant increase in plas-
ma eicosapentaenoylethanolamide which correlated pos-
itively with clinical remission following supplementation 
with EPA in patients with MDD [101]. In addition, EPA 
resulted in a dose- and time-dependent increase in plas-
ma EPA and 18-HEPE in patients with MDD and chronic 
inflammation [102]. Further corroborating these findings, 
higher clinical response to EPA was noted in MDD pa-
tients who demonstrated a greater ability to activate the 
synthesis of 18-HEPE [103]. n-3 PUFAs may also exert 
antidepressant effects via the modulation of the HPA axis 
[29], prevention of neurodegeneration [104], and pro-
motion of neuronal plasticity [28]. With the increasing 
evidence that BBB disruption is found in MDD [36,49], 
it is currently unclear whether n-3 PUFAs can exert their 
antidepressant efficacy by maintaining the integrity of 
BBB via the modulation of key players in BBB disrup-
tion, such as MMP9.

n-3 PUFAs, BBB, AND ANTIDEPRESSANT 
ACTION

Effect of n-3 PUFAs on MMP9
There is currently no direct evidence of the modula-
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aneurysm model [122-125]. Overall, n-3 PUFAs have 
shown promising effects on inhibiting the expression and 
activity of MMP9, indicating their therapeutic effects in 
pathological conditions characterized by MMP9 dysreg-
ulation, such as MDD (Table 1).

The effect of n-3 PUFAs on MMP9 was similarly 
studied in clinical studies (Table 2), corroborating find-
ings from preclinical studies. Shinto et al. demonstrated 
in an open-label study that relapsing-remitting multiple 
sclerosis (RRMS) patients supplemented with n-3 PU-
FAs (9.6g/day) for three months exhibited significantly 
lower MMP9 secretion from the immune cells [126]. In 

lated peripheral blood mononuclear cells (PBMCs) with 
n-3 PUFAs concentrate obtained from Dunaliella salina 
(a marine microalgae), and revealed that n-3 PUFAs 
blocked the expression of MMP9 in the PBMCs [119]. 
Similarly, aspirin-triggered RvD1 suppresses MMP9 ac-
tivity and reduces inflammation and oxidative stress in 
mice exposed to ultraviolet radiation [120]. It was further 
shown that n-3 PUFAs decrease MMP9 expression in 
the mice model of Duchenne muscular dystrophy [121]. 
Corroborating these findings, studies further showed that 
treatment with n-3 PUFAs reduces the aortas expression 
of MMP9 in the murine models of the abdominal aortic 

Table 1. Effects of n-3 PUFAs on MMP9: Evidence from Pre-clinical Studies
S/N Ref Model Main findings
1 [106] Castrate-resistant 

chronic cancer 
progression model

n-3 PUFAs decreased the expression of MMP9 mRNA

2 [107] In vitro non-small cell 
lung cancer

DHA reduces the levels of metastasis-associated proteins including 
MMP9 in a dose-dependent manner

3 [108] In vitro / in vivo n-3 PUFAs suppressed MMP9 activity in cancer-associated fibroblasts
4 [115] Murine periodontitis 

model
n-3 PUFAs decreased the tissue expression of MMP9

5 [116] In vitro Resolvin E1 and resolvin D1 significantly reduced the expression of 
MMP9

6 [117] In vitro n-3 PUFAs inhibited the proteolytic activity of MMP9
7 [118] In vitro n-3 PUFAs dose-dependently decreased MMP9 protein levels secreted 

from LPS-activated microglial cells
8 [119] In vitro n-3 PUFAs concentrate downregulated LPS-induced expression of 

MMP9 by peripheral blood mononuclear cells
9 [120] In vivo Aspirin-triggered resolvin D1 suppressed the activity of MMP9
10 [121] Duchenne muscular 

dystrophy model
n-3 PUFAs reduced MMP9 gene expression and improved myoblast 
engraftment, satellite cell activation, and muscle regeneration

11 [124] Abdominal aortic 
aneurysm model

MMP9 levels in the aortas were reduced following EPA treatment

12 [125] Abdominal aortic 
aneurysm model

EPA and DHA significantly decreased the expression of MMP9 in the 
aortas

EPA, Eicosapentaenoic acid; DHA, Docosahexaenoic acid; LPS, Lipopolysaccharide; MMP9, Matrix metalloproteinase 9; n-3 
PUFAs, omega-3 polyunsaturated fatty acids; PBMCs, Peripheral blood mononuclear cells.

Table 2. Effects of n-3 PUFAs on MMP9: Evidence from Clinical Studies

S/N Ref Patients Main finding
1 [126] Relapsing-remitting 

multiple sclerosis 
patients

EPA and DHA resulted in a significant decrease in MMP9 protein and 
activity in the PBMCs

2 [127] Healthy subjects n-3 PUFAs significantly decreased MMP9 secretion from the PBMCs
3 [128] Clinical The activity of MMP9 in the amnion was significantly reduced by 

treatment with EPA and DHA compared to control
4 [129] Dry eye disease patients n-3 PUFAs decrease MMP9 positivity

EPA, Eicosapentaenoic acid; DHA, Docosahexaenoic acid; MMP9, Matrix metalloproteinase 9; n-3 PUFAs, omega-3 
polyunsaturated fatty acids; PBMCs, Peripheral blood mononuclear cells.
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factors have binding sites on the MMP9 gene promoter 
[130,131], hence, their inhibition by n-3 PUFAs decreas-
es the transcription of the MMP9 gene. Additionally, n-3 
PUFAs may lower MMP9 levels by reducing the expres-
sion of proinflammatory cytokines such as IL-1β and IL-
6. The ability of n-3 PUFAs to dampen the production of 
these cytokines has been well-established [132].

Effects of n-3 PUFAs on AQP4 and ABCB1
n-3 PUFAs have a profound impact on AQP4 and 

the glymphatic system—crucial for brain health. Several 
studies underscore the pivotal role of n-3 PUFAs in en-
hancing the glymphatic clearance of neurotoxic substanc-
es, particularly Aβ, through mechanisms heavily reliant 
on AQP4 [133]. n-3 PUFAs significantly improved glym-
phatic function, reduced Aβ accumulation, and restored 
AQP4 expression and polarity, which are crucial for 
maintaining neurological health and function, especially 
during post-traumatic brain injury [134]. These fatty ac-
ids exhibit neuroprotective and anti-inflammatory effects, 
supporting cognitive function and potentially delaying 
or preventing neurodegenerative disorders such as AD 
[104]. Enriched n-3 PUFAs have been shown to enhance 

the study, more than a 50% decrease in MMP9 secretion 
from the PBMCs was found after three months compared 
with the baseline [126]. In another study, PBMCs from 
healthy controls were treated with EPA and DHA and 
were stimulated with concanavalin A [127]. The study 
found a significant reduction in MMP9 protein levels 
and MMP9 activity in the PBMCs associated with both 
EPA and DHA [127]. Frew et al. further demonstrated a 
reduction in MMP9 activity in amnion exposed to EPA 
and DHA compared with control [128]. Epitropoulus et 
al. demonstrated in a randomized controlled trial involv-
ing patients with dry eye disease that supplementation 
with n-3 PUFAs, compared with placebo is associated 
with a significant decrease in MMP9 positivity (67.9% 
vs. 35.0%) [129].

The reported inhibitory effects of n-3 PUFAs on 
MMP9 production in multiple studies may be likely 
linked to their ability to regulate inflammatory processes 
(Figure 2). Notably, n-3 PUFAs can inhibit the synthe-
sis of MMP9 through several mechanisms. Specifical-
ly, n-3 PUFAs can inhibit the DNA binding activity of 
transcription factors such as activator protein (AP-1) and 
nuclear factor kappa-beta (NF-κβ). These transcription 

Figure 2. Potential Mechanisms Associated with n-3 PUFAs Antidepressant Effects via the Improvement of 
BBB Integrity. n-3 PUFAs can decrease the expression of MMP9 via mechanisms including direct inhibition of NF-κβ 
and AP-1, resulting in reduced transcription of MMP9 gene. Further, n-3 PUFAs indirectly decrease MMP9 transcription 
by reducing the levels of NF-κβ, IL-1β, and IL-6, which stimulate MMP9 synthesis. Collectively, this reduces the extra-
cellular levels of MMP9 thus limiting its proteolytic effects on the BBB and ultimately depression. AP-1, Activator protein 
1; BBB, Blood-brain barrier;  FFAR4, Free fatty acid receptor 4;  IL, Interleukin; MMP9, Matrix metalloproteinase 9; n-3 
PUFAs, Omega-3 polyunsaturated fatty acids; NF-κβ, Nuclear factor kappa beta; NLRP3, Nucleotide-binding oligom-
erization domain-like receptor protein 3; TIMP-1, Tissue inhibitors of metalloproteinase-1; TNF, Tumor necrosis factor.
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symptoms. These insights would furnish an additional 
mechanistic understanding of the antidepressant effects 
attributed to n-3 PUFAs, potentially facilitating the devel-
opment of more effective antidepressant therapies.
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