
fmicb-10-00996 May 13, 2019 Time: 16:44 # 1

ORIGINAL RESEARCH
published: 14 May 2019

doi: 10.3389/fmicb.2019.00996

Edited by:
Raju Sekar,

Xi’an Jiaotong-Liverpool University,
China

Reviewed by:
Jianjun Wang,

Nanjing Institute of Geography
and Limnology (CAS), China

Paola Grenni,
Istituto di Ricerca sulle Acque (IRSA),

Italy
Christopher Staley,

University of Minnesota, United States

*Correspondence:
Cindy H. Nakatsu

cnakatsu@purdue.edu
orcid.org/0000-0003-0663-180X

†orcid.org/0000-0001-5376-597X
‡orcid.org/0000-0001-6963-6734

Specialty section:
This article was submitted to

Aquatic Microbiology,
a section of the journal

Frontiers in Microbiology

Received: 25 November 2018
Accepted: 18 April 2019
Published: 14 May 2019

Citation:
Nakatsu CH, Byappanahalli MN
and Nevers MB (2019) Bacterial

Community 16S rRNA Gene
Sequencing Characterizes Riverine

Microbial Impact on Lake Michigan.
Front. Microbiol. 10:996.

doi: 10.3389/fmicb.2019.00996

Bacterial Community 16S rRNA Gene
Sequencing Characterizes Riverine
Microbial Impact on Lake Michigan
Cindy H. Nakatsu1* , Muruleedhara N. Byappanahalli2† and Meredith B. Nevers2‡

1 Department of Agronomy, Purdue University, West Lafayette, IN, United States, 2 Great Lakes Science Center,
United States Geological Survey, Chesterton, IN, United States

Restoration of degraded aquatic habitats is critical to preserve and maintain ecosystem
processes and economic viability. Effective restoration requires contaminant sources
identification. Microbial communities are increasingly used to characterize fecal
contamination sources. The objective was to determine whether nearshore and
adjacent beach bacterial contamination originated from the Grand Calumet River,
a highly urbanized aquatic ecosystem, and to determine if there were correlations
between pathogens/feces associated bacteria in any of the samples to counts of
the pathogen indicator species Escherichia coli. Water samples were collected from
the river, river mouth, nearshore, and offshore sites along southern Lake Michigan.
Comparisons among communities were made using beta diversity distances (weighted
and unweighted Unifrac, and Bray Curtis) and Principal Coordinate Analysis of 16S
rRNA gene Illumina sequence data that indicated river bacterial communities differed
significantly from the river mouth, nearshore lake, and offshore lake samples. These
differences were further supported using Source Tracker software that indicated
nearshore lake communities differed significantly from river and offshore samples.
Among locations, there was separation by sampling date that was associated with
environmental factors (e.g., water and air temperature, water turbidity). Although about
half the genera (48.1%) were common to all sampling sites, linear discriminant analysis
effect size indicated there were several taxa that differed significantly among sites;
there were significant positive correlations of feces-associated genera with E. coli
most probable numbers. Results collectively highlight that understanding microbial
communities, rather than relying solely on select fecal indicators with uncertain origin,
are more useful for developing strategies to restore degraded aquatic habitats.

Keywords: microbial communities, freshwater lake, 16S rRNA gene, hydrodynamic model, Escherichia coli

INTRODUCTION

Aquatic microbial contamination by pollutants derived from anthropogenic sources is a problem
across the United States and worldwide; control of this contamination and restoration of degraded
habitats can cost millions of dollars and considerable on-the-ground effort by water and land
managers (Great Lakes Interagency Task Force, 2016; Steinman et al., 2017). Traditionally,
indicator bacteria, such as Escherichia coli and/or enterococci, have been used to monitor potential
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contamination of recreational waters (U.S. EPA, 1986). Often,
these bacteria are not adequate to identify contamination sources
because they can originate from a variety of warm-blooded
animals and from environmental sources (Byappanahalli and
Ishii, 2011). This lack of specificity has led to the development
of other methods, such as detection of source-host bacterial
indicators (see Field and Samadpour, 2007).

Microbial source tracking has been used in recent years
to identify specific sources of fecal contamination through
the use of targeted genetic markers (Harwood et al., 2014).
Genetic markers have been used to indicate microbial
contamination from humans, birds, dogs, and other animals
(Harwood et al., 2014). This targeted approach is useful for
identifying and mitigating microbial contamination if there is a
dominant contamination source, but restoration becomes more
complicated if there are multiple sources (Byappanahalli and
Ishii, 2011; Nevers et al., 2014).

With the uncertainty associated with indicator bacteria
and microbial source tracking, as well as the need to refine
specificity of source identification, particularly in instances of
legal obligation, better characterization of pollutant sources
contributing to fecal contamination and associated links to
sources is needed. In the past 2–3 decades, molecular techniques
targeting the 16S rRNA gene and other genetic markers have been
developed to characterize and analyze microbial communities
from a variety of habitats including soil and water (Konopka
et al., 1999; Nakatsu, 2007; Tanaka et al., 2014). More recently, the
decrease in cost of next-generation high throughput sequencing
technology has enabled the use of metagenomic approaches
(targeted and non-targeted) to differentiate sources of aquatic
microbial contamination (Newton et al., 2013; Cloutier et al.,
2015; Newton et al., 2015). The depth of information acquired
by using these advanced molecular genetic approaches provides
a means to characterize microbial composition, distribution,
and transportation pathways in the environment and to relate
them to understand pollution mechanisms (Newton et al., 2013;
Halliday et al., 2014).

Through federal programs (e.g., The Beach Act of 2000;
Great Lakes Restoration Initiative, 2009-current; International
Joint Commission, 2012), federal-state partnerships have been
established to decrease contamination sources and the effects
of contamination on these lake ecosystems; among these
contamination concerns are beach closings due to high
concentrations of indicator bacteria such as E. coli. The objective
of this study was to determine if samples with elevated levels of
E. coli were correlated with potential pathogens or other fecal
indicator bacteria in the microbial community. A 16S rRNA
gene targeted high throughput sequencing approach was used
to determine microbial community structure and composition.
The objectives were (1) to determine the similarity of nearshore
and offshore lake microbial communities to the adjacent riverine
water source and (2) to determine the incidence and correlation
of pathogens/feces associated species in the aquatic microbiome
to the pathogen indicator species E. coli counts. The results
will help to illuminate the association of shoreline and riverine
bacterial communities and the potential contribution of bacteria
originating from the Grand Calumet River in northern Indiana.

The outcome of this work will contribute to determining
the critical role of microbial communities in these degraded
ecosystems and to aid in developing and assessing effective
strategies for management and restoration of these environments.

MATERIALS AND METHODS

Study Area
The study area is located in northern Indiana along the southern
shore of Lake Michigan of the Laurentian Great Lakes. The
focal point of the area is the Grand Calumet River, which has
been highly urbanized during industrialization of the early 20th
century. The Grand Calumet River flows into Lake Michigan
through the channelized Indiana Ship Canal, and the entire river
and associated shoreline is considered an “Area of Concern”
by the International Joint Commission on boundary waters
between the United States and Canada and therefore the focus
of significant restoration efforts.

Sample Collection
Sampling sites were located in the Grand Calumet River at
Columbus Drive (GCR), at the mouth of the river (GCM), at
offshore locations north (GCN) and east (GCE) of the peninsula
that lies between the river mouth and Jeorse Park, and at three
nearshore locations: Jeorse Park (JP), East Chicago, IN; Whihala
Beach (WH), Whiting, IN; and 63rd Street Beach (63rd), Chicago,
IL (Figure 1; Byappanahalli and Nevers, 2019).

Water samples (∼1.5 L) were collected in triplicate during
three independent events in the summer of 2015. Two dates
were during dry weather conditions (8/12, 9/1) and one date was

FIGURE 1 | Sampling locations along the southern shore of Lake Michigan.
Latitude and longitude for the study locations are as follows: 63rd,
41.782209/–87.572926; WH, 41.685118/–87.492282; GCR,
41.6394/–87.471276; GCM, 41.68719002/–87.43974003; GCN,
41.69217/–87.41554995; GCE, 41.66712/–87.40494006; and JP,
41.650478/–87.433551.
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after a rainfall event (9/21). The seven locations represented four
sources: river (9 samples), river mouth (9 samples), nearshore (27
samples), and offshore (18 samples), for a total of 63 samples.
Water from GCR was collected by tossing a sterile collection
bucket from the bridge crossing at Columbus Drive; offshore
surface water samples (GCM, GCN, GCE) were collected from
a boat by dipping a sterile 1-L collection bottle below the surface;
and nearshore samples (JP, WH, 63rd) were collected by dipping
a 1-L collection bottle below the surface in 45-cm deep water. All
samples were stored on ice directly after collection for return to
the laboratory for processing within 6 h of collection.

DNA Extraction
Upon return to the laboratory samples were concentrated
by vacuum filtration first through a 5.0 µm nitrocellulose
(Millipore) then 0.2 µm nitrocellulose filter (Millipore) then
stored at −80◦C until DNA extraction. Total genomic DNA
from each 0.2 µm filter was extracted using the MoBio
PowerWater kit according to the manufacturer’s instructions.
Nucleic acid quality (i.e., 260/280 ratio) was measured with a
Nanodrop 1000 spectrophotometer (Thermo Fisher Scientific,
Wilmington, DE, United States). DNA concentrations for all
samples were measured by fluorometric quantitation using a
Qubit R© instrument and High Sensitivity dsDNA HS Assay kit
(Thermo Fisher Scientific, Waltham, MA, United States); and
purified DNA extracts were stored at −80◦C until used.

Illumina 16S rRNA Gene Sequencing
The 16S rRNA gene in water DNA extracts was PCR-amplified
using primers targeting the V3-V4 region (343-forward TAC
GGR AGG CAG CAG and 804-reverse CTA CCR GGG TAT
CTA ATC C) (Liu et al., 2008; Nossa et al., 2010). Primers with
dual index tags were used to differentiate multiple samples in
a single run following the manufacturer’s (Illumina, San Diego,
CA, United States) suggested step out protocol (Gloor et al.,
2010). Reactions were carried out using ∼10 ng of template
DNA in Q5 R© High Fidelity DNA Polymerase 2X master mix
(New England Biolabs). PCR amplicons were purified using
AxyPrepMag PCR clean-up kit (Axygen Scientific) and quantified
using a Nanodrop 3000 fluorospectrophotometer after staining
with the QuantiFluor dsDNA System (Promega). Equimolar
amounts of amplicons from each sample were combined and sent
to the Purdue Genomics Core Facility for 2 × 250 paired end
sequencing using a MiSeq Illumina system. Sequence reads were
pre-processed to remove primer tags and low-quality sequences,
and paired end reads were merged using PANDAseq software
(Masella et al., 2012).

16S rRNA Gene Sequence Analysis
Sequences were analyzed using the QIIME pipeline (version
1.9.1) (Caporaso et al., 2010). Operational taxonomic units
(OTUs) were picked using the “pick_open_otus” option in
QIIME (Rideout et al., 2014) that uses a 97% sequence
similarity threshold, the uclust method (Edgar, 2010) for
clustering, sequence alignment using PyNAST (Caporaso et al.,
2010), and taxonomic assignment to the Greengenes data
set version 13_5 (McDonald et al., 2012) using the RDP

classifier (Wang et al., 2007). The lowest number of reads among
the samples, 24,890, was chosen to rarefy datasets to use
equal number of reads for all community comparisons. Beta-
diversity measures were calculated using phylogenetic Unifrac
distances (weighted and un-weighted) (Lozupone et al., 2011)
and non-phylogenetic distance (Bray Curtis). Alpha-diversity
measurements were used for richness and evenness (Shannon
diversity), richness (ChaoI index, observed-species), Faith’s
phylogenetic diversity (PD whole tree) and Good’s coverage to
assess the completeness of OTU representation in each sample.
Venn diagrams illustrating genera common to all samples was
produced using the Venny program (Oliveros, 2007/2015).

The SourceTracker (Knights et al., 2011) plugin in QIIME
1.9.1 was used to predict if river samples were significant
contributors of OTUs to offshore or nearshore sites. Default
conditions of the program were used after filtering out OTUs
that were present in less than 1% of samples. This method used
relative proportion of genera present to estimate the probability
that the river was a significant source of microbes into the lake.

Quantification of Indicator Bacteria
Water samples were analyzed for E. coli using the IDEXX
Colilert-18 and Quanti-Tray 2000 method (IDEXX Laboratories,
Westbrook, Maine), a defined substrate technology (Edberg et al.,
1991). Generally, 100 ml of water was analyzed; excessively
turbid samples were diluted as needed before analysis. Results
are calculated as most probable number (MPN)/100 mL
(Byappanahalli and Nevers, 2019).

Hydrometeorological Measurements
Ambient conditions were measured at the time of sample
collection: water and air temperature (◦C, H-B Instrument,
Trappe, PA, United States), current speed (U.S. EPA, 2008)
and direction (eastward, westward, float method), wind
direction and speed (m/s, SKYTECH, Weatherhawk, Logan,
UT, United States), wave height (inches, meter stick), rainfall
(<24 h, <48, <72, and >72 prior to sample collection), and
cloud cover (percent scale). Bird counts were recorded, as well
as general beach conditions, including amount of debris, trash,
and Cladophora algae. Water samples were analyzed for turbidity
in the laboratory (2100N, Hach, Loveland, CO, United States)
(Byappanahalli and Nevers, 2019).

Hydrologic data, including water temperature (◦C),
specific conductance (µs/cm), pH, DO (mg/L), and turbidity
(FNU) at East Chicago, IN (Jeorse Park, 04092788) and
Jackson Park, IL (63rd, 04092440) were extracted from
the United States Geological Survey National Water
Information System (2018) database for use in the analysis
(United States Geological Survey, 2018).

In addition, at 63rd, hydrometeorological data were collected
from a multi-parameter weather station (Vaisala WXT520)
installed on a light post (30’) at the beach and a data buoy
(NexSens CB-100) installed in the swimming area (∼1.5 m
depth). Data obtained from the weather station included
measurements of wind direction and speed (m/s), air temperature
(◦C), rainfall (cm), solar radiation (LI-COR sensor; LI-200),
relative humidity (%), and barometric pressure (mm/Hg).
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Data obtained from the buoy included turbidity (NTU, FTS
sensor, DTS-12), wave height (m) and wave period (seconds)
(NexSens Accustage pressure transducer; OEM, Keller America),
and water temperature (◦C).

Statistical Analyses
Significant differences in beta diversity among communities
were determined using 999 permutations of PERMANOVA
(Anderson, 2001); then, PERMDISP (permutational analysis
of multivariate dispersions) (Anderson, 2006) was used to
ensure significant differences were not due to differences
in dispersion. Differences in alpha diversity metrics were
determined using non-parametric t-tests with 999 permutations.
Additionally, potential biomarkers differentiating collection sites
was determined using LEfSE (linear discriminate analysis effect
size) (Segata et al., 2012). LEfSE is a three-step process in which
non-parametric Krustal Wallis is performed to first identify taxa
that differed significantly among sources, then for these taxa,
pairwise Wilcoxon rank-sum test is performed and finally linear
discriminant analysis (LDA) is used to estimate the effect size and
biological consistency within groups being tested. Data output
are taxa with LDA greater than 2.0 at any taxonomic level
that is discriminating.

Correlations between genera and E. coli contamination levels
were determined using Spearman’s Rho. Associations among
relative abundances of genera in each sample and all measured
environmental factors (water temperature, air temperature,
turbidity, dissolved oxygen, and E. coli MPN) as well as
water source (river, river mouth, nearshore, or offshore) were
determined using canonical correspondence analysis (CCA) (Ter
Braak, 1986; Ter Braak and Verdonschot, 1995). Significantly
different correlations were calculated using a Monte Carlo
test with 999 permutations. Hydrometeorological data were
sub-divided into: 1, low; 2, medium; 3, medium/high; and 4,
high for analysis. This was accomplished using the visual binning
method in SPSS version 23 (SPSS, 2014); cut points for binning
were made using the ±1 SD option. All other statistics were
performed using the Paleontological Statistics package version
3.01 (PAST software1) or software available in QIIME. Differences
were considered significant if p ≤ 0.05 with multiple comparisons
using 999 permutations.

RESULTS AND DISCUSSION

One of the primary needs before initiating beach restoration for
recreational use is to determine sources of fecal contamination in
nearshore areas. Depending on the findings, remedial strategies
can then be employed to reduce or mitigate those sources
contributing to water quality; for instance, gull deterrence
using trained dogs and physical modifying structures (e.g.,
breakwalls) to improve water circulation and dissipation of
contaminants at shallow, embayed beaches are a few examples
of management actions to restore water quality (Ge et al., 2012;
Nevers et al., 2018).

1http://folk.uio.no/ohammer/past/index.html

The sampling locations for this study were specifically chosen
because the shorelines had traditionally suffered from elevated
levels of fecal indicator bacteria (E. coli) leading to frequent
beach closures (Byappanahalli et al., 2015; Nevers et al., 2018).
Specifically, the Grand Calumet River and associated shoreline
is an area designated for intensive restoration efforts under a
bi-national agreement between the United States and Canada
(International Joint Commission, 2012). Nearshore water quality
at Jeorse Park has steadily deteriorated between 2005 and until
recently, as evidenced by increased E. coli levels exceeding the
state recreational water quality standard for safe swimming
(Byappanahalli et al., 2015; Nevers et al., 2018). Early efforts
in source tracking have identified shorebirds and human fecal
contamination at these beaches. Unknown are the relative inputs
of point (river) and other non-point (shoreline) sources.

Illumina sequencing results produced an abundant number
of reads for bacterial communities across the sites. The 63 water
samples collected from seven locations on three dates produced
a total of 5,136,926 paired-end reads after quality filtering and
merging. There was an average of 81,538 ± 63,981 reads per
sample, ranging from 7,050 to 396,284 reads. The sample with
the lowest read (a river sample from the first sampling date)
was excluded from community analyses, and the remaining 62
samples were rarified to 24,890 reads per sample, with a Goods
coverage of 0.96 (±0.01 SD), ranging from 0.94 to 0.98.

Alpha Diversity Differences Among Sites
In terms of alpha diversity, rarefaction curves indicated Shannon
diversity reached saturation in all samples (Supplementary
Figure S1A) and was beginning to level off using other indices
(e.g., phylogenetic diversity, PD whole tree Supplementary
Figure S1B). The Shannon index, a measure of richness and
evenness, was statistically higher for river mouth samples
compared to the other sources (Figure 2A). Whereas, PD whole
tree, which only accounts for species richness, indicated the
phylogenetic diversity was statistically higher in lake nearshore
samples compared to lake offshore, river and river mouth samples
(Figure 2B). This could indicate more complex input sources
to the nearshore community because of coastal processes likely
mediated by (a) hydrometeorological events, previously seen for
E. coli in nearshore waters (Ge et al., 2012), (b) exchanges between
shoreline sources, and (c) interactions between nearshore and
offshore communities.

Beta Diversity Differences Among Sites
and Dates
Beta diversity analysis of the 16S rRNA gene sequences indicated
that the bacterial community in the Grand Calumet River was
the least similar to the communities along the shoreline or
offshore. The PCoA plots of beta diversity distances among
samples from the four water sources illustrate that the main
separation was between the river samples and all other sources
(Figure 3A). The first three axes of Bray Curtis distances
accounted for ∼74% of the variation with the river samples
separated from the other sources along the first axis (PCoA
1 = 54.5%). This difference was statistically significant based on
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FIGURE 2 | Boxplots of means and SD (standard deviations) of within sample (alpha) diversity indices (A) Shannon (richness and evenness) and (B) PD whole tree
(Faith’s Diversity, phylogenetic richness) of samples from different water sources. Non-parametric two sample t-test with 999 permutations with significant differences
p < 0.02 illustrated by different letters above bars.

FIGURE 3 | Principal coordinate analysis (PCoA) of Bray Curtis dissimilarity
metrics of samples labeled according to the (A) water sources and by (B)
sampling date. Differences among microbial communities are significant,
PERMANOVA and ANOSIM P = 0.001 and meets the assumption of
dispersion homogeneity because PERMDISP is not significant.

PERMANOVA (P = 0.001) and ANOSIM (R = 0.598, P = 0.001)
and not significant due to dispersion (PERMDISP P = 0.41).
If the samples were differentiated into the seven sampling
locations, the differences remained significant. Using distances
based on phylogenetic relationship of community members
(weighted and unweighted Unifrac) yielded similar statistically

significant results (data not shown). Similarity between samples
collected at the mouth of the river and offshore samples
indicates that perhaps river flow is minimal, with an extensive
mixing zone in the river mouth. This suggests that during the
three sampling periods between August and September 2015,
bacterial contribution from the river to the lake was minimal.
These findings support previous research that much of the
Jeorse Park (JP) nearshore microbial contamination, which has
led to recreational beach closures, is from local, non-point
sources (e.g., birds, Cladophora algae) with few anthropogenic
contributions (e.g., combined sewer outflows) from the river
(Byappanahalli et al., 2015; Nevers et al., 2018). This indicates
that mitigation strategies for this shoreline will likely differ
from those initiated for other riverine habitats in the Grand
Calumet River corridor.

The date of sampling was also significantly different
(P = 0.001) although community differences were less
pronounced than between water types (Figure 3). Factors
that differed by sampling dates were rain events, temperature
and dissolved oxygen (Supplementary Table S5). While
collection dates targeted one rain event (9/21) to compare
it to two dry weather events, there was no difference in
collection dates that could be attributed to rain rather
than the other factors that differed among the three dates.
Interestingly, combined sewer overflow was recorded at the
Hammond Sanitary District on 9/212, but the volume of
water released was likely insufficient to impact the shoreline
microbial communities. The similarity of community
composition in the river between sampling dates and
dissimilarity with the shoreline communities may result
from a combination of frequent combined sewage overflows and
low river flow, respectively.

2http://www.hammondsd.com/cso-discharge-activity-maps/
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Microbial Taxa Represented
There were 50 phyla (Supplementary Table S1) represented
in the 16S rRNA gene sequences, and >90% of the relative
abundance could be attributed to three phyla: Proteobacteria
(45.6 ± 5.9%), Actinobacteria (26.8 ± 8.9%), and Bacteroidetes
(22.8 ± 6.1%) (mean ± SD). These findings are consistent with
other studies suggesting the dominance of these three phyla
in freshwater systems (Newton et al., 2011; Mou et al., 2013).
Among the remaining phyla, those representing >0.1% included
the Chloroflexi (0.9 ± 0.9%), Cyanobacteria (1.5 ± 1.3%),
Firmicutes (0.3 ± 0.3%), and Verrucomicrobia (0.7 ± 0.6%);
0.9 ± 0.4% was not assigned to a phylum. Of the remaining phyla,
25 represent currently tentative phyla likely lacking in cultivated
isolates needed for classification. Dominance of a few taxa was
found at all taxonomic levels of classification. For example, there
was a total of 786 genera assignments, of which 23 (∼3% of
total genera) had a mean relative proportion >1% (mean of
all samples) and accounted for 85.6 ± 4.0% of the community.
The majority, 505 (64%), could not be assigned to a genus or is
currently listed as a candidate genus.

One of the major advantages of using targeted metagenomic
techniques, such as the 16S rRNA gene sequencing, is that
they are culture-independent and can theoretically recover
almost all bacterial taxa in any habitat. However, despite rapid
advancements in this area, most bacterial species in communities
remain to be identified (Locey and Lennon, 2016). A general lack
of cultured organisms with sequencing information (in NCBI and
other databases) essentially limits taxonomic identification from
the sequenced data.

Taxa Differences Among Sites
Venn diagrams illustrate the total number of genera shared
among samples as well as the percentage of the total number
of genera. About one third (284 genera, 36.1%) of the total
genera identified were common to all samples (Figure 4A).
They represent an average of more than 60% of the relative
proportion of genera in these samples. Shared genera, such
as Actinobacteria ACK-M1, likely represent those common to
aquatic ecosystems (Newton et al., 2011; Mou et al., 2013). Only
an additional 1.3% more genera were common to the river and
river mouth samples only (Figure 4A), indicating there are very
few unique genera from the river flowing into the lake microbial
community, perhaps because of low river flow and minimal
mixing. The combined nearshore sites had the greatest number
of unique genera (19.1%). A comparison of the number of genera
common among the river and individual nearshore sampling sites
(Figure 4B), and river and offshore sites (Figure 4C) showed
41.4 and 41.2%, respectively, were shared. The nearshore sites
had unique genera ranging from 2.6 to 10.1%. This could be
the result of high variation among the nearshore collection sites:
63rd (an urban beach) is located much further north of the other
two sites, and JP and WH are situated on opposite sides of a
large constructed industrial peninsula. There are likely different
sources of microbial communities, potentially arising from beach
sand (Solo-Gabriele et al., 2016; Staley and Sadowsky, 2016) and
the nuisance shoreline alga Cladophora (Zulkifly et al., 2012;

Whitman et al., 2014a; Chun et al., 2017), and the relative
locations of 63rd and JP further isolates exchange along the
shoreline (Ge et al., 2012; Byappanahalli et al., 2015).

Potential for Grand Calumet River to
Contribute to Nearshore Microbial
Communities
Since the Venn diagrams only illustrated the presence and
absence of genera at each study site, additional analysis was
conducted using SourceTracker that accounts for the relative
proportions of each OTU. SourceTracker estimated that the
highest possible contributions of river water to the river mouth,
offshore, and nearshore (combined) (Table 1) or nearshore
sites, 63rd, WH, JP (individually) (Table 1) were on the first
sampling date (8/12/15). Krustal Wallis test indicated that there
was an overall significant difference (p < 0.002) in contributions
from the river; however, pairwise comparisons only showed
that nearshore was significantly different from river mouth and
offshore. Analysis specifically of the river to nearshore sites
indicated significantly higher contribution to 63rd on 8/12/15;
alternately, 63rd and WH had significantly lower contribution
than JP on 9/1/15 (Table 1).

The program LEfSE was used to identify the taxa that
differed among the different sampling sites and to determine
if any of these genera were potentially pathogens or indicators
of potential fecal contamination. LEfSE analysis identified
significant differences in taxa among sample sources (river,
nearshore and offshore) at all levels of taxonomic classification,
and also in comparisons of sampling sites and sampling dates.
Comparisons of sample sources (river, nearshore and offshore)
indicated there were 233 taxa with LDA effect sizes greater than
2.0 (Supplementary Table S2). The most taxa differences were
in the river samples (96 taxa) followed by river mouth (63
taxa), nearshore (55 taxa) and offshore (42 taxa). Examination
of taxa with LDA effect sizes greater than 4.0 at the lowest
level of classification showed that most belonged to taxa yet to
be classified (Figure 5A). Taxa that could be classified to the
genus level were Flavobacterium, Polynucleobacter, and Fluviicola
in the river samples and various unclassified taxa in the other
water sources (Figure 5A); Polynucleobacter has been shown to
be widespread in streams associated with human/anthropogenic
activities (Hosen et al., 2017).

When the sources were split into specific sites there were
313 taxa with LDA effect sizes greater than 2.0 (Supplementary
Table S3). The most taxa differences were in the river samples
(84 taxa) followed by the JP nearshore site (76 taxa), river
mouth (63 taxa), then nearshore site 63 (36 taxa), offshore site
GCE (34 taxa), GCN (12 taxa) and the nearshore site WH (9
taxa). In this comparison there were no taxa identified that
are considered indicators of fecal contamination, therefore the
data was reanalyzed to include only the nearshore samples.
A comparison focusing on just the nearshore sites including
GCM (river mouth) indicates GCM has more taxa that differ
significantly with LDA effect sizes greater than 3.0 at the lowest
level of classification (Figure 5B; taxa LDA >2.0 Supplementary
Table S4). Most of the differing taxa in GCM samples belonged to
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FIGURE 4 | Venn diagram illustrating shared and unique genera among (A) water sources, (B) river and nearshore sites, and (C) river, river mouth, and lake offshore
sites. Sampling sites in (A,B) represented by nearshore locations Jeorse Park (JP), Whihala beach (WH), and 63rd Street Beach (63) in Chicago, Grand Calumet
River (GCR), mouth of the river (GCM), offshore sites north (GCN) and east (GCE). Calculations and illustrations were determined using the Venny program (Oliveros,
2007–2015).

TABLE 1 | Estimation of Grand Calumet River as a potential source† of bacterial populations (mean percentages ± standard error of mean) on three sampling dates for
(A) Lake communities as sink‡, or (B) Specific nearshore communities as sink§.

A B

Date River mouth Lake nearshore Lake offshore JP WH 63

8/12/15 83.7 ± 0.4%ab 81.1 ± 1.1%a 76.2 ± 0.9%ab 79.6 ± 1.5%ab 79.9 ± 2.2%ab 84.0 ± 1.0%a

9/1/15 80.7 ± 0.4%ab 71.9 ± 0.8%b 73.5 ± 2.1%ab 74.2 ± 0.9%ab 69.4 ± 1.1%b 72.0 ± 0.6%b

9/21/15 79.3 ± 0.3%b 78.7 ± 0.7%a 76.0 ± 0.8%ab 77.1 ± 0.3%ab 77.4 ± 0.3%ab 81.6 ± 0.4%ab

†Source contribution estimated using SourceTracker (Knights et al., 2011) plugin in QIIME 1.9.1 (Caporaso et al., 2010) using default conditions. ‡Sinks are river mouth,
nearshore, and offshore samples a (n = 3, 9, 6 per sampling date, respectively), Krustal Wallis (P = 0.00003). §Sinks are three nearshore beaches: Jeorse Park (JP),
Whihala (WH), and 63rd Street (63) in Chicago, Krustal Wallis (P = 0.004). Different superscripts letters in the tables indicate significant difference of pairwise comparisons
by date using Dunn’s post hoc test with Bonferroni correction.

the phylum Proteobacteria whereas in the JP samples they were
mainly in the Bacteroidetes and a mixture of Proteobacteria and
Actinobacteria in the site 63rd and WH samples. Bacteroidetes
are a common phylum in fecal samples but since the taxa that
differed are not classified to the genus level it is not possible
to speculate if they are feces associated. However, at LDA 2.0
unclassified Enterobacteriaceae are significant in the JP sample
(Supplementary Table S4). This group associated with fecal
contamination. Of the nearshore site JP had the highest frequency

of elevated E. coli MPN values (Supplementary Table S5).
This indicates that targeted metagenomic analysis can provide
additional data of fecal contamination.

Microbial Community and E. coli
Although the incidences of elevated E. coli MPN values
were limited, correlation analysis indicated that there were
positive correlations with other biomarkers and bacterial
genera commonly reported from fecal samples. There were
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FIGURE 5 | Linear Discriminate Analysis Effect Size (LEfSE) analysis of microbial communities from the various (A) water sources and (B) nearshore collection sites
and river mouth. Only taxa that differed significantly (p < 0.05) with LDA effect sizes greater than 4.0 in (A) and 3.0 in (B) are illustrated in the histograms. Taxa
names include phylum followed by lowest taxonomic assignment available. Nearshore beaches include Jeorse Park (JP), Whihala (WH), and 63rd Street (63) in
Chicago, and mouth of the Calumet River (GCM).
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few samples that had elevated E. coli (>235 CFU/MPN per
100 ml) that would lead to closures of recreational waters
(Supplementary Table S5; U.S. EPA, 2012). Spearman Rho
analysis of bacterial taxa relative abundances and E. coli MPN
(sorted into bins) indicated there were 52 genera with significant
positive correlations and 1 negative correlation (Supplementary
Table S6). Notable is the positive correlation with several
genera in the phylum Firmicutes that are associated with
fecal contamination, Enterococcus, Blautia, Faecalibacterium,
Clostridium, Collinsella, and Selenomonas as well as Bacteroides
from the phylum Bacteroidetes.

Enterococcus (Wheeler et al., 2002) and Bacteroides (Bernhard
and Field, 2000) are often used as fecal indicator species,
and more recently, Blautia (Koskey et al., 2014; Eren et al.,
2015) and Dialister (Jeong et al., 2011) have also been
proposed as indicator species. A species within Clostridium
(C. perfringens) has been suggested as a reliable indicator
of water quality in tropical areas (Fujioka and Shizumura,
1985; Fujioka et al., 1997), where traditional indicators
such as E. coli, and enterococci, are commonly found in
the environment (Byappanahalli and Ishii, 2011). Collinsella,
Blautia, and Faecalibacterium, are examples of commonly found
members of gut microbiomes that correlated with E. coli
MPNs. With the availability of high throughput sequencing
technology, others have suggested that community analysis
may be an additional means to assess water quality and can
be applied to microbial source tracking (Newton et al., 2013;
Henry et al., 2016).

The influence of physical conditions on overall microbial
community was also examined (Figure 6) using CCA. Factors
corresponding to the differences in the bacterial communities
were water type (river water being most distant from lake) along
the first axis explaining 64.3% of the variation; sampling time,
water temperatures and dissolved oxygen along the second axis
(14.3%) (Figure 6A); and E. coli MPN and turbidity along the

third and fourth axes (Figure 6B) (100 permutations, p < 0.01).
The influence of water type describing the microbial community
is like the finding of beta diversity analysis due to differences
of the river community to the other water types (Figure 3A).
A secondary factor was the difference in communities with
sampling time (Figure 3B) that was shown by CCA to be
influenced by increasing dissolved oxygen and decreasing water
temperatures (Figures 6A,B). The E. coli MPN corresponded
to the three river samples collected on the third sampling date
after rainfall (Figure 6B). This suggests that both shoreline
sources (e.g., gulls, runoff, nearshore sand-water interactions)
and large-scale processes (e.g., waves, currents, lake turnover),
as well as time of year, are likely to influence changes in
community along the shoreline. The relative impact of these
factors could have inter-annual variation. Integration of physical
modeling and multiple years of data could help resolve some of
these interactions.

Implications for Mitigation Strategies
After the recognition that aquatic systems have become degraded,
it is essential to develop strategies to restore compromised
ecosystems through appropriate remedial actions and in many
instances, those actions tend to be site-specific. For instance, at
the study locations, nonpoint sources of microbial contamination
by shoreline birds (gulls), has been previously identified as a
major contributing factor using microbial source tracking and
gull deterrence activities have significantly improved shoreline
water quality in recent years (Nevers et al., 2018). Similarly,
the periodic presence of the human marker Bacteroides HF183
(Byappanahalli et al., 2015) has been a cause of concern for
the potential significant human health threat; previously, the
Grand Calumet River was the presumptive source of any
human contamination. Results presented here, however, indicate
that the river, even following a rain event, was likely not
impacting shoreline bacterial communities. There may, therefore,

FIGURE 6 | Canonical correspondence analysis (CCA) of relative abundance of bacterial genera, water type (river, river mouth, nearshore, and offshore), Escherichia
coli most probable number (ECMPN), and the environmental variables water temperature (WaterT_C), water turbidity (Turbidity_FNU), dissolved oxygen in mgL-1

(DOmgLt) and sampling date (time). (A) CCA1 and 2 explain 64.3 and 14.4% and (B) CCA3 and CCA4 explain 11.8 and 6.6% of the total constrained variation,
respectively. Number of samples n = 63, overall P = 0.001.
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be additional sources of human contamination currently
unknown impacting these shoreline locations. At Jeorse Park
and 63rd, the shoreline configuration has also been identified as
contributing to the persistence of bacterial contamination due to
the tendency toward accumulation and the decrease in circulation
(Ge et al., 2012; Byappanahalli et al., 2015). Because the river is
not the major exogenous source of microbes into the nearshore
lake sites, efforts to curtail river flow toward recreational beach
areas would not be a sufficient means to decrease beach closures.
Efforts toward identifying and mitigating shoreline or nonpoint
sources, such as decreasing gull presence (Nevers et al., 2018)
and reducing other contributions (e.g., shoreline algae Whitman
et al., 2014b), would likely have a greater impact on eliminating
beach closures. By incorporating emerging technologies, such as
the microbiome, into water quality monitoring programs will
be helpful to study long-term changes and underlaying factors
that influence these changes which are difficult to elucidate with
traditional monitoring programs.

To summarize using a targeted 16S rRNA gene
sequencing approach to analyze aquatic microbial communities
demonstrated it is possible (1) to identify sources of
contamination using a consortium of microbes as an index
of pollutant sources rather than using one or two traditional
indicators (e.g., E. coli, enterococci) often used in monitoring
programs. Using this approach, we were able to show that the
Grand Calumet River had minimal influence on shoreline water
quality at the study sites, indicating that the sources contributing
to high E. coli levels (e.g., at JP, WH) were more likely internal
(e.g., shoreline birds, sand, Cladophora) with an intermittent
contamination from GCR. (2) The data gathered from this
research will be useful to management agencies, such as U.S.
EPA and Indiana Department of Environmental Management,
for addressing water quality restoration efforts currently under
implementation at the study locations. An example will be
delisting shorelines as impaired for beneficial use such as
recreation. This can begin the process to modify acceptable
approaches by government agencies to identify microbially
contaminated locations to implement effective mitigation.
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