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Abstract: Neuropsychiatric systemic lupus erythematosus (NPSLE) has a broad spectrum of subtypes
with diverse severities and prognoses. Ischemic and inflammatory mechanisms, including autoanti-
bodies and cytokine-mediated pathological processes, are key components of the pathogenesis of
NPSLE. Additional brain-intrinsic elements (such as the brain barrier and resident microglia) are also
important facilitators of NPSLE. An improving understanding of NPSLE may provide further options
for managing this disease. The attenuation of neuropsychiatric disease in mouse models demonstrates
the potential for novel targeted therapies. Conventional therapeutic algorithms include symptomatic,
anti-thrombotic, and immunosuppressive agents that are only supported by observational cohort
studies, therefore performing controlled clinical trials to guide further management is essential and
urgent. In this review, we aimed to present the latest pathogenetic mechanisms of NPSLE and discuss
the progress in its management.

Keywords: systemic lupus erythematosus; neuropsychiatric lupus erythematosus; pathogenesis;
management; novel targeted therapies

1. Introduction

Systemic lupus erythematosus (SLE) is an autoimmune disease that may affect almost
every organ [1,2]. SLE with nervous system involvement is known as neuropsychiatric
systemic lupus erythematosus (NPSLE). NPSLE is a major contributor to morbidity and
mortality in SLE patients. The American College of Rheumatology (ACR) defined 19 neu-
ropsychiatric syndromes, ranging from central neurologic and psychiatric disorders to
peripheral neuropathy [3–5]. The challenge now is that the underlying pathogenesis re-
mains ambiguous [6–8], due to the limited access to nerve tissue, the complex nature of
clinical manifestations, and overlap with non-lupus-associated neuropsychiatric events.
These difficulties limit the optimization of NPSLE management.

In this review, we discuss the latest pathogenic mechanisms of NPSLE and explore
new ideas and directions for the management of this complicated disease.

2. Pathogenesis of NPSLE

The exact immunopathogenesis of NPSLE is complex and unclear. Ischemic and
autoimmune-mediated neuroinflammatory pathways are now considered two main, and
probably complementary, pathogenetic mechanisms leading to NPSLE (Figure 1).
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2.1. Ischemic Pathway

Ischemic injury to large- and small- blood vessels, mediated by antiphospholipid (aPL)
antibodies, immune complexes, and complement activation leads to focal (e.g., stroke) and
diffuse (e.g., cognitive dysfunction) neuropsychiatric events. Among these, aPL antibodies
play a predominant role in the intravascular thrombosis [9]. Some studies have reported
that SLE patients positive for aPL antibodies are approximately twice as likely to develop
NPSLE than aPL-negative patients. aPL antibodies may also increase the risk of subclinical
atherosclerosis, leading to a propensity for cerebral ischemia. The central nervous system is
more susceptible than most tissues to thrombus formation, which accounts for the increased
risk of stroke and transient ischemic attack seen in aPL antibody-positive patients [10].
Apart from thrombosis, aPL antibody positivity has also been correlated with other NPSLE
manifestations, such as seizures, chorea, cognitive dysfunction, and myelopathy [11–13],
especially psychosis [14–16]. Recent evidence suggests that aPL antibodies are also linked
to direct neuronal damage by inducing oxidative stress and damage to neuronal cell
membranes via the β2-glycoprotein. In an in vitro study, aPL antibodies bound to neurons
and other CNS cells, and the intracerebroventricular injection of aPL induced a hyperactive
behavior in animal models [17], thereby supporting a direct effect of these antibodies on
the brain.

The aPL-mediated procoagulant state has traditionally been considered noninflam-
matory. However, a recent study found that mice deficient in C3 and C5 complement
components were resistant to aPL-induced thrombosis and endothelial activation [18].
Thus, complement activation is associated with focal NPSLE, psychosis, and cognitive
dysfunction, suggesting an additional inflammatory pathogenic component in NPSLE [19].

2.2. Neuroinflammatory Pathway

Autoimmune-mediated neuroinflammatory pathways with complement activation,
enhanced the permeability of the blood–brain barrier (BBB), the intrathecal migration of
neuronal autoantibodies, and the local production of pro-inflammatory cytokines, and other
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inflammatory mediators are associated with mostly diffuse neuropsychiatric manifestations,
such as psychosis, mood disorders, and cognitive dysfunction [8,18,20,21].

2.2.1. Enhanced Permeability of Brain Barrier

BBB disruption was the first pathophysiological mechanism proposed to play an
imperative role in the development of NPSLE [22]. It establishes a structural and functional
interface between the brain and general circulation to prevent the passive transfer of
immune mediators from the blood to the central nervous system (CNS). Excessive levels of
neurotransmitters, cytokines, chemokines, and peripheral hormones may influence BBB
permeability [23].

Moreover, animal models of NPSLE have shown that increased BBB permeability is
essential for autoantibodies to enter the brain [20,21] and then bind to neurons, which
may lead to apoptosis [24]. However, the evidence for persistent BBB dysfunction is
controversial [25].

Aside from BBB, the blood–cerebrospinal fluid barrier (BCSFB)—located at choroid
plexus epithelial cells—is the natural ‘dam’ between the systemic circulation and the cere-
brospinal fluid (CSF). It is a secretory epithelial structure surrounding a highly vascularized
capillary plexus that produces cerebrospinal fluid (CSF) [26]. An increasing number of
studies have focused on BCSFB in animal models, demonstrating that the choroid plexus
epithelium has been identified as a route of entry into the CSF for pathogenic autoan-
tibodies and leukocytes and as a primary site of neuropathology [27–29]. Additionally,
some studies have implicated that in the absence of BBB dysfunction, the BCSFB could still
be disrupted, supporting BCSFB dysfunction as a possible causative factor for immune
mediators penetrating the brain [28].

Furthermore, the meningeal barrier and glymphatic system have also been proposed
as potential sites of neuroimmune interactions, but their exact pathogenic roles await
further validation in future studies [30,31].

2.2.2. Autoantibody-Induced Inflammation

A typical feature of SLE is the formation of various autoantibodies, several of which
are involved in NPSLE development. Here we will illustrate the identified autoantibodies
that have been linked to NPSLE and their potential role in its pathogenesis.

Anti-NMDAR Antibodies

N-methyl D-aspartate receptors (NMDARs) are receptors for the neurotransmitter
glutamate, which is a major excitatory neurotransmitter that is important for many brain
functions [32]. It has been reported that anti-NMDAR antibodies are related to the psychi-
atric manifestations of NPSLE [33–35].

Anti-NMDAR antibodies became important upon the observation that some anti-
DNA antibodies might cross-react with NMDARs subunits on neurons [36]. These cross-
reactive anti-NMDAR antibodies occur in SLE patients and are frequently associated with
NPSLE [37–39].

The CSF titers of these antibodies are higher in patients with active diffuse NPSLE than
in those with focal NPSLE or non-inflammatory CNS diseases [34,40]. In vitro studies have
shown that anti-NMDARs may damage the BBB and penetrate the CNS [41]. Furthermore,
the effect of anti-NMDARs is dose-dependent, as at low concentrations they seem to
impair synaptic transmission, whereas at high concentrations they may cause neuronal
apoptosis [32,33].

Nevertheless, these antibodies may also be present in SLE patients without neuropsy-
chiatric involvement [42,43]. Thus, further research is needed to investigate the effect of
anti-NMDARs on the pathogenesis of NPSLE development.
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Anti-RP Antibodies

Antibodies targeting the ubiquitous ribosomal P (RP) proteins have been associated
with NPSLE, especially when manifested as psychosis and depression [42,44,45]. Anti-
RP antibodies were predominantly detected in patients with SLE and were not detected
in the control population [21]. The levels of anti-RP were higher in the serum/CSF of
NPSLE patients with psychosis, depression, and asymptomatic cranial involvement [46],
suggesting a potential role of anti-RP in the pathogenesis of NPSLE. Despite the above
findings, some clinical studies that examined whether serum anti-RP antibodies correlated
with psychosis have yielded inconsistent results [22]. Moreover, serum anti-RP antibodies
are significantly associated with a worse prognosis in patients with diffuse NPSLE [47].

Importantly, the injection of anti-RP antibodies through the nervous system or pe-
ripheral circulation leads to cognitive impairment and depression in mice [21,48]. In vitro
studies have shown that anti-RP antibodies could induce concentration-dependent neu-
ronal dysfunction or apoptosis by increasing intracellular calcium release and disrupting
protein synthesis [9,49].

Above all, anti-RP antibodies may be a relatively strong marker associated with
psychiatric NPSLE.

AECAs

Anti-endothelial cell antibodies (AECAs) mediate the expression of adhesion molecules
in endothelial cells. They are found in more than half of patients with NPSLE and are
also correlated with psychosis and depression manifestations [50,51]. The activation of
endothelial cells by AECAs might contribute to cerebral vasculopathy, which, in turn,
induces the neuropsychiatric symptoms of SLE [8].

Anti-Ganglioside Antibodies

Gangliosides, spread across neurons’ surfaces, are crucial for signal transition [52].
One study reported that positivity for anti-ganglioside antibodies is frequent in lupus
patients with PNS involvement [53]. However, this finding needs further investigation to
achieve a consistent result [54].

Endothelial cells connected by tight junctions form the blood–brain barrier (BBB). After
the BBB is compromised, antibodies gain access to the CSF while activated endothelial
cells secrete pro-inflammatory cytokines, including interleukin-6 (IL-6) and interleukin-8
(IL-8). The associated signaling pathways involve the cytokine tumor necrosis factor-like
weak inducer of apoptosis (TWEAK) to promote BBB disruption through the induction
of inflammatory cytokines. Cytokines and chemokines, such as IL-6 and a proliferation-
inducing ligand (APRIL), enhance B-cell activation and survival.

Immune complexes could induce interferon-α (IFN-α) production. IFN-α could acti-
vates microglial engulfment of neurons and directly damages them. Microglial activation
further propagates local cytokine and chemokine signaling cascades. Furthermore, IFN-α
enhances microglial cytokine and chemokine (IL-6, IL-8, MCP-1, IP-10) production. Finally,
several neuropathic autoantibodies have been implicated in NPSLE. Autoantibodies, such
as anti-NMDAR and anti-RP, directly bind to neurons and lead to neuronal dysfunction
or apoptosis. Following neuronal cell damage, antibodies form immune complexes with
neuronal antigens, contributing to the diffuse neuronal damage/dysfunction in the brain.
Created with biorender.com.

2.2.3. Cytokines-Mediated Inflammation

In CNS, cytokines are expressed at low levels by neurons, astrocytes, microglia, and
oligodendrocytes. The expression of genes encoding cytokines and their receptors in
the brain suggests that cytokines contribute to the normal physiological functions of CNS.
Cytokines and other immune factors are important for the modulation of brain development
and affect adult neuronal plasticity, leading to cognitive and mood disorders [55]. Below,
we will discuss the cytokines that potentially participate in the pathogenesis of NPSLE.
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TWEAK/Fn14

The tumor necrosis factor-like weak inducer of apoptosis (TWEAK), a member of the
tumor necrosis factor (TNF) superfamily of cytokines, promotes the activation of NF-kB and
mitogen-activated protein kinase (MAPK) by binding to fibroblast growth factor-inducible
14 (Fn14), a 14 kDa member of the TNF receptor superfamily. Fn14 is expressed in a variety
of cells and tissue types, including fibroblasts, endothelial cells, and epithelial cells [56].

TWEAK plays an important role in BBB disruption and the development of NPSLE [57].
Fn14 exhibited upregulation within the cerebral cortex of lupus-prone mice. In addition,
the severe depression-like behavior observed in MRL/lpr mice was significantly reduced in
Fn14-deficient mice, indicating that Fn14 improved depression and cognitive function [58].
Moreover, the intracerebroventricular injection of TWEAK in wild-type mice induced
cognitive dysfunction and depression-like behavior through increased BBB permeability
and accelerated neuronal apoptosis [59]. However, this cytokine seems to be elevated in the
CSF of SLE patients, regardless of the presence or absence of neuropsychiatric symptoms.

IL-6

Interleukin-6 (IL-6) is thought to have the strongest positive association with NPSLE [60].
The elevated intrathecal levels of IL-6 have been found in patients with diffuse NPSLE,
such as those experiencing an acute confusional state or psychosis [61]. In addition, the
positive correlation between IL-6 levels and the levels of the neuronal degradation product
denominated neurofilament light chains (NFL), which indicates that IL-6 exerts destructive
effect on nerve cells [62]. Nevertheless, research on the correlation between serum IL-6
and psychiatric NPSLE provided inconclusive results [63]. This difference needs to be
further explored.

IFN-α

An animal models have demonstrated a significant association between IFN-α in the
CSF and NPSLE, identifying a novel IFN-α-dependent mechanism for NPSLE. IFN-α has
been proposed to cause damage by activating microglia in the CSF and stimulating the
microglial engulfment of neuronal cells [64]. IFN-α may also impair brain function by
altering the levels of neurotransmitters and generating damage by the secondary release
of cytokines and chemokines, such as IL-6- and interferon-gamma-inducible protein-10
(IP-10) [65].

Additionally, neuropsychiatric manifestations observed in lupus-prone animal models
were reversible with IFN-α inhibition, indicating that IFN-α is imperative in the pathogen-
esis of NPSLE [64].

BAFF and APRIL

The TNF family ligands B-cell activating factor of the TNF family (BAFF) and APRIL
are crucial in the survival, differentiation, and isotype switching of B lymphocytes [66].

One study found a close relationship between APRIL in the CSF and NPSLE but not
between BAFF in the CSF and NPSLE [67]. To date, there have been few studies regarding
their exact role in the pathogenesis of NPSLE.

2.2.4. Brain-Resident and Infiltrating Cells

Apart from structural changes, autoantibodies and cytokines, alterations in brain-
resident cells in the CNS may be instrumental in the development of NPSLE.

Microglia, the resident macrophage cells of the brain, are the main antigen-presenting
cells (APCs) in the CNS. They play a fundamental role in regulating BBB function and shap-
ing the brain circuits. They could also secrete various cytokines, chemokines, prostaglandins,
and reactive oxygen species [68].

Increasing evidence supports an active role for microglial cells in the pathogene-
sis of NPSLE. Activated microglia are a feature of several models of the lupus-prone
mouse [69,70]. MLR/lpr mice lacking estrogen receptor alpha experienced a significant
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neuropsychiatric disorder, which correlated with a decreased number of activated mi-
croglial cells and an accompanying reduction in CNS inflammation [71].

The intrathecal synthesis of cytokines as a potential mechanism of damage, and neural
damage may develop in NPSLE without the involvement of factors derived from blood [72].
Although the cellular origin of these cytokines production in the brain remains unknown,
macrophages and endothelial cells (ECs), as well as brain-derived microglia and astrocytes,
are probable sources of these cytokines. Microglial depletion by colony-stimulating factor-1
receptor (CSF1R) inhibitors resulted in preserved neuronal integrity in an inducible mouse
model (NMDAR peptide immunized BALB/c mice). Interestingly, another study showed
that the administration of captopril (an angiotensin-converting enzyme (ACE)) inhibitor
significantly reversed the activation of microglia and improved the cognitive function of
mice [73].

Large clusters of leukocytes infiltrate the choroid plexus in vitro. The analysis of
the choroid plexus indicated a tertiary lymphoid structure formation, with evidence of
APC-lymphocyte interactions, cytokine production, and in situ somatic hypermutation [74].

3. Current Management of NPSLE

The management of NPSLE can be challenging, because of the complexity of its
pathogenesis, difficulty in its accurate diagnosis, and a lack of clinical trials in NPSLE.
Current treatment options for NPSLE are usually derived from observational studies and
refer to the experience of treatment of other SLE subtypes, such as lupus nephritis and
similar neuropsychiatric disorders [8,75].

Initially, it is crucial to develop pragmatic therapeutic strategies to determine the
attribution of nervous system disease to SLE, non-SLE causes, or both. Confounders and
mimics should be ruled out and the symptoms should be initially attributable to SLE at
the beginning. The goal of management of NPSLE is to meet two criteria. First, symp-
tomatic therapy is necessary: anti-epileptics for seizures, and anxiolytics, antidepressants,
mood-stabilizers, or antipsychotics should be administered as appropriate. Neurotrophic
and neuroleptic agents were generally adopted in case with peripheral nervous system
involvement [4]. The treatment of the underlying SLE process should be undertaken based
on whether the pathogenesis is primarily related to an inflammatory or ischemic disease
pathway (Figure 2).
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3.1. Inflammatory Pathway Therapies

Glucocorticoids have been a cornerstone in the treatment of various manifestations of
NPSLE, especially in those associated with an immune-inflammatory pathogenesis [76,77].
High-dose glucocorticoids, alone or in combination with cyclophosphamide, azathioprine,
and mycophenolate mofetil, are reported to be effective, but their use is mainly based
on patient’s clinical experience of disease severity and their clinician’s preference. Given
the evidence linking glucocorticoids use to cumulative organ damage in SLE [78] and its
associated psychiatric symptoms [79,80], alternative therapeutic strategies are essential.

Unfortunately, high-level clinical evidence regarding the optimization of NPSLE
treatment is lacking. Only two of these agents (oral prednisone and intravenous cyclophos-
phamide) have been subjected to clinical trials for NPSLE [76], and both had positive
outcomes. In addition, a regimen of oral cyclophosphamide for 6 months followed by
azathioprine maintenance therapy was effective for the treatment of lupus psychosis [81].

The examination of biological agents in NPSLE is limited to uncontrolled studies.
Open studies on B-lymphocyte depletion with rituximab used alone or in combination with
conventional immunosuppressive agents, including cyclophosphamide, have reported
favorable results in children [82] and adults [83] with NPSLE; however, this requires further
study. Perhaps of relevance is the observation that rituximab can be beneficial in other
inflammatory neurological conditions, such as neuromyelitis optica, anti-NMDAR en-
cephalitis, and opsoclonus–myoclonus syndrome [84,85]. Studies of belimumab suggested
a beneficial response to belimumab in SLE, but patients with severe NPSLE were excluded
from these clinical trials [86].

3.2. Ischemic Pathway Therapies

Cerebral ischemia attributed to NPSLE, such as transient ischemic attacks and stroke
attributed to NPSLE events and is thought to be correlated with aPL antibodies. Thus, the pri-
mary prevention of cerebral ischemia in NPSLE is linked to a reduction in prothrombotic risk.

Low-dose aspirin is recommended for patients with cardiovascular risk factors [87].
However, a previous review of primary prevention in antiphospholipid syndrome (APS)
concluded that the current evidence does not support either the use of low-dose aspirin
or warfarin [88]. The optimal target international normalized ratio (INR) in such cases
is inconsistent [87] and the recommended INR target in patients with APS is 2.5–3.0. In
patients with recurrent thrombosis despite optimal warfarin therapy, the INR should be
kept at 3.0–4.0. Nevertheless, there is no obvious difference between low-intensity (target
INR 2.0–3.0] and high-intensity (target INR > 3.0) warfarin in the prevention of recurrent
thrombosis in controlled trials with APS patients [89,90]. Therefore, well-designed clinical
trials are needed to address this issue. Currently, the data are insufficient to recommend the
use of direct novel oral anti-coagulants to prevent aPL antibody-mediated thromboembolic
events [91].

Potential adjunctive therapies, especially in patients with arterial thrombosis and
recurrent venous thrombosis, include antimalarials and statins [87]. Statins can prevent
endothelial cell activation secondary to aPL antibodies [92], while antimalarial agents are
protective against thrombosis in patients with SLE [93].

4. Promising Targeted Therapies

Due to the lack of understanding of the exact pathogenic mechanisms behind this
condition as well as its diverse neuropsychiatric manifestations, we have limited experience
in targeted therapies for patients with NPSLE. The attenuation of neuropsychiatric diseases
in related animal models demonstrates the potential for targeted therapies, which are based
on a current understanding of the pathogenesis of NPSLE (Table 1).
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Table 1. Promising targeted therapies in NPSLE.

Promising Targeted Therapies Underlying Mechanisms and
Clinical Findings Experimental Arrangement Potential Drugs

Complement inhibitors

Complement signaling promotes the loss
of BBB integrity. Blocking the complement
cascades relieved the symptoms of NPSLE.

Complement deposits were present in
most of patients with NPSLE.

Human brain autopsies Eculizumab

BBB-targeted therapy

BBB disruption is essential in the neuronal
damage process. Restoration of normal

BBB function may reduce the development
of neuropsychiatric manifestations

Human and mouse cells;
C57 BL/6J mice, respectively

GW0742, a peroxisome
proliferator-activated
receptor β/δ agonist;

KD025, a rho
kinase inhibitor.

MMPs inhibitors

There is an association between
CSF/serum levels of MMP-9, psychiatric

NPSLE, and markers for
neuronal/astrocytic damage. MMP-9 may

contribute to the pathogenesis of
psychiatric NPSLE by stimulating

T-cell migration

- -

IFN-α/β receptor antagonists

IFN receptor inhibition decreased
microglia-related synaptic loss and

attenuated anxiety-like behavior and
cognitive deficits in animal models.

564Igi lupus-prone mice Anifrolumab

BTK inhibitors

Use of BI-BTK-1 (an inhibitor of BTK) in
MRL/lpr mice, decreased the infiltration
of macrophages, T cells, and B cells in the

choroid plexus, and improved
cognitive function.

MRL/lpr mice Ibrutinib; Evobrutinib

S1P receptor modulator

S1P receptor modulators decreased
proinflammatory cytokine secretion by
microglia and significantly improved
spatial memory and depression-like

behavior. Fingolimod (a S1P receptor
modulator) treatment attenuated

neuropsychiatric manifestations, reversed
the entry of immune components, and

decreased BBB leakage.
Fingolimod-treated microglia revealed

down- regulated of multiple
immune-mediated pathways, including
NF-kB signaling and the IFN response
with the negative regulation of type I

IFN-mediated signaling.

MRL/lpr mice Fingolimod

ACE inhibitors
ACE inhibitors treatment suppressed
microglial activation and promoted

cognitive status.
BALB/c mice Captopril; Perindopril

CSF1R inhibitors

CSF1R is essential in both macrophage
and microglia function.

Inhibition of CSF1R signaling in MRL/lpr
mice reduced the brain expression of

proinflammatory cytokines and
attenuated depression performance.

MRL/lpr mice
GW2580, a small CSF-1R

kinase inhibitor;
depletion of microglia

Nogo-a/NgR1 antagonists

Nogo-a/NgR1 in the CSF is significantly
increased in NPSLE.

Nogo-a/NgR1 antagonists improved
cognitive function, decreased the
expression of pro-inflammatory

components, and reduced axonal
degeneration and demyelination.

MRL/lpr mice Nogo-66

JAK inhibitors
JAK inhibitors penetrate the BBB and

reduce the production of several cytokines,
including type I IFNs.

- Tofacitinib
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4.1. Complement Inhibitors

A study devoted to the role of the complement protein C5a in the brain vasculature
indicated that the C5a/C5aR signaling plays a key role in disrupting the BBB integrity [94].
C5aR was blocked the complement cascades and retained their protective functions, which
relieved the symptoms of NPSLE. Thus, C5aR may be a potentially important therapeutic
target for NPSLE [95]. In addition, the presence of C5b-9 deposits in most patients with
NPSLE is important in the interaction between circulating autoantibodies and thrombo-
ischemic lesions observed in NPSLE. Therefore, the complement inhibitor eculizumab may
have novel therapeutic potential for NPSLE [68,96]. However, the efficacy of such treatment
in NPSLE remains to be further investigated.

4.2. BBB-Targeted Therapies

BBB dysfunction exposes the brain to components of the blood that are normally
excluded. Decreasing the permeability of the BBB could be advantageous for a patient
with NPSLE. This could prevent autoantibodies, cytokines, and non-immune proteins from
causing inflammation, neuronal hyperexcitability, and degeneration [97].

The restoration of normal BBB function is a potential therapeutic strategy. Two com-
pounds that reduce BBB permeability (GW0742, a peroxisome proliferator-activated re-
ceptor β/δ agonist [98], and KD025, a Rho kinase inhibitor [99]) have been studied in
experimental systems and may be considered as therapies.

4.3. MMPs Inhibitors

Matrix metalloproteinases (MMPs) are proteolytic enzymes that could degrade base-
ment membranes, disrupt inter-endothelial tight junctions, and activate membrane-bound
proinflammatory molecules. Among those, MMP-9 induces the production of cytokines
and leukocyte adhesion molecules by endothelial cells, facilitating the entry of leukocytes
and proteins into the CSF [100,101].

Studies have demonstrated an association between CSF/serum levels of MMP-9,
psychiatric NPSLE, and the markers of neuronal/astrocytic damage [102]. MMP-9 may
contribute to the pathogenesis of psychiatric NPSLE by stimulating T-cell migration. There-
fore, the inhibition of MMPs, especially MMP-9 [103], could introduce a novel biological
agent and may be beneficial in NPSLE.

4.4. IFN-α/β Receptor Antagonists

Anifrolumab, a type I interferon receptor antagonist that binds to the IFN-α/β receptor,
has been successfully used in phase III clinical trials for SLE treatment [104]. The adoption
of anifrolumab leads to a substantial reduction in moderate-to-severe active SLE; however,
patients with severe NPSLE were not involved in these trials [105]. Therefore, the results
may not support the efficacy of this drug in the treatment of NPSLE. However, as mentioned
before, the type I interferon receptor inhibition decreases microglia related synaptic loss
and attenuates anxiety-like behavior and cognitive deficits in lupus-prone mice [38]. This
implies that type I interferon inhibition may be an option for the treatment of NPSLE in the
future [106], especially in patients with a strong type I interferon signature.

4.5. BTK Inhibitors

Bruton’s tyrosine kinase (BTK) is essential for B cell function, including B cell devel-
opment and survival; for crystallizable fragment (Fc) receptor and toll-like receptor (TLR)
signaling in macrophages; and for macrophage polarization [107–109].

The inhibition of this pathway using of a specific inhibitor (BI-BTK-1) in MRL/lpr
mice resulted in the decreased infiltration of macrophages, T cells, and B cells in the choroid
plexus and improved cognitive function [110].

Ibrutinib, a selective BTK inhibitor, could potentially prove useful in the treatment of
neuropsychiatric disease, such as SLE [111]. This inhibitor has already have already been
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approved for clinical use in hematological indications [112] and results from ongoing early
phase clinical trials of BTK inhibitors in patients with SLE are eagerly awaited.

4.6. S1P Receptor Modulator

Fingolimod, a sphingosine-1-phosphate (S1P) receptor modulator, was shown to
decrease macrophage infiltration and proinflammatory cytokine secretion by microglia,
resulting in improved spatial memory and reduced depression-like behavior in MRL/lpr
mice [113]. Fingolimod administration attenuated neuropsychiatric manifestations, re-
versed the entry of immune components, and decreased BBB leakage in the above
studies [114].

In addition to the possible mechanisms mentioned above, fingolimod-treated microglia
revealed the downregulation of multiple immune-mediated pathways, including NF-kB
signaling and the IFN response, with the negative regulation of type I IFN-mediated
signaling [113].

In line with the approved use of fingolimod in relapsing–remitting multiple sclerosis,
these studies may support the potential use of fingolimod as a therapeutic strategy for
NPSLE patients.

4.7. ACE Inhibitors

ACE inhibitors, such as captopril and perindopril, improve cognitive status and
neuronal functions in lupus-prone mice [73].

Additionally, ACE inhibitors treatment in a lupus-prone model suppressed microglial
activation, which in turn preserved dendritic complexity in hippocampal neurons. Further
analysis is needed to explore the specific pathogenesis, but this therapeutic regimen may
also be considered in the future to treat cognitive impairment in NPSLE patients.

4.8. CSF1R Inhibitors

Macrophage colony stimulating factor 1 receptor (CSF1R) is an important regulator
of both macrophage and microglial functions. It plays a pivotal role in macrophage and
microglia development, survival, and activation [115].

In a mouse model, the inhibition of CSF1R signaling reduced the brain expression of
pro-inflammatory cytokines and attenuated depression performance [116], indicating that
CSF1R is a potential target for treating NPSLE in the future.

4.9. Nogo-a/NgR1 Antagonists

Neurite outgrowth inhibitor-A (Nogo-a) with its respective receptor, NgR1, forms a
signaling pathway that mediates the inhibition of neuron generation. Patients with NPSLE
have significantly increased levels of Nogo-a/NgR1 in the CSF, compared to other neuro-
logical diseases. It has also been demonstrated in MLR/lpr mice that the administration
of Nogo-66 [117], an antagonist of Nogo-a, improved cognitive function, decreased the
expression of pro-inflammatory components, and reduced axonal degeneration and de-
myelination, implying that Nogo-a is a potential therapeutic target for cognitive impairment
in NPSLE.

4.10. JAK Inhibitors

JAK inhibitors, which interfere with the JAK-STAT signaling pathway, are small
molecules that penetrate the BBB [118] and reduce the production of several cytokines,
including type I IFNs. Tofacitinib, a JAK1/JAK3 inhibitor is currently in phase II studies
for SLE treatment and is worthy of consideration in this regard [119]. However, whether it
is effective for NPSLE still requires further research.

5. Conclusions

Neuropsychiatric events in SLE patients are common and tend to be heterogeneous,
and many knowledge gaps remain in our basic understanding of NPSLE and its clini-
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cal management. Current available therapies are largely empirical, and most evidence
is derived from studies in animal models, which do not manifest the full spectrum of
human NPSLE.

Advances remain to be made in enhancing the understanding of the pathogenesis, and
optimizing our ability to diagnose, prognosticate, and treat NPSLE. Innovative strategies
targeting the brain structural barrier, specifically autoantibodies, cytokines, and brain-
resident cells, are worthy of exploration and further study.

We anticipate that some of these pathways could serve as targets for the development
of a new therapeutic strategies. Promising research efforts into novel targeted therapies
and improved diagnostic tools are ongoing; however, much work remains to be done to
optimize our ability to diagnose, prognosticate, and treat NPSLE.
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