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Endotherms regulate their core body temperature by adjusting metabolic heat production

and insulation. Endothermic body temperatures are therefore relatively stable compared

to external temperatures. The thermal sensitivity of biochemical reaction rates is thought

to have co-evolved with body temperature regulation so that optimal reaction rates

occur at the regulated body temperature. However, recent data show that core

body temperatures even of non-torpid endotherms fluctuate considerably. Additionally,

peripheral temperatures can be considerably lower and more variable than core

body temperatures. Here we discuss whether published data support the hypothesis

that thermal performance curves of physiological reaction rates are plastic so that

performance is maintained despite variable body temperatures within active (non-torpid)

endotherms, and we explore mechanisms that confer plasticity. There is evidence that

thermal performance curves in tissues that experience thermal fluctuations can be plastic,

although this question remains relatively unexplored for endotherms. Mechanisms that

alter thermal responses locally at the tissue level include transient potential receptor ion

channels (TRPV and TRPM) and the AMP-activated protein kinase (AMPK) both of which

can influence metabolism and energy expenditure. Additionally, the thermal sensitivity of

processes that cause post-transcriptional RNA degradation can promote the relative

expression of cold-responsive genes. Endotherms can respond to environmental

fluctuations similarly to ectotherms, and thermal plasticity complements core body

temperature regulation to increase whole-organism performance. Thermal plasticity is

ancestral to endothermic thermoregulation, but it has not lost its selective advantage

so that modern endotherms are a physiological composite of ancestral ectothermic and

derived endothermic traits.

Keywords: thermoregulation, body temperature, climate, metabolism, mitochondria, AMPK, thyroid hormone,

transient receptor potential ion channel

INTRODUCTION

The basic principles of thermodynamics dictate that the rates of physiological functions in both
endotherms and ecotherms are sensitive to changes in temperature (Landeira-Fernandez et al.,
2012; Tattersall et al., 2012; Arcus et al., 2016; Else, 2016). However, the relationship between
temperature and reaction rates is not constant (Huey and Kingsolver, 1989; Kingsolver, 2003).
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Thermal performance curves represent the change in a
physiological reaction rate across a range of acute temperatures
(Figure 1A). Thermal plasticity in response to a (non-acute)
chronic change in body temperature maymanifest as a horizontal
shift in the performance curve, so that maximal performance
(mode) occurs at the new temperature. Additionally, the range
of values around the mode within which performance remains
high (e.g., >80% of maximal) can increase or decrease, leading
to generalist and specialist phenotypes, respectively (Figure 1;
Huey and Kingsolver, 1989; Sinclair et al., 2016). The resultant
plasticity of reaction rates is advantageous because it permits
animals to maintain relatively constant physiological rates in
variable environments (Guderley, 1990; St-Pierre et al., 1998;
Piersma and Drent, 2003; Forsman, 2014). Ectothermic animals,
in particular, benefit from such phenotypic plasticity, because
body temperatures are largely determined by environmental
conditions (Porter and Gates, 1969).

In endotherms, the gradient between body temperature and
environmental temperature impacts metabolic rates and heat
production, which typically increase under cold conditions
(Rezende et al., 2004; Lovegrove, 2005; McKechnie et al., 2015).
Importantly, body temperatures of non-torpid endotherms
are not constant (Boyles et al., 2013; Hetem et al., 2016;
Levesque et al., 2016). By lowering body temperatures in
cooler environments, for example, even active (non-torpid and
non-hibernating) endotherms reduce the differential between

FIGURE 1 | Responses of animals to variable environments. Thermal performance curves (A; thick red line) have a maximum at the optimal temperature (mode), and

decreasing performance at either side of the maximum. The performance breadth, typically defined as the temperature range over which performance is greater than

80–90%, can change in response to temperature variation, producing specialist phenotypes (broken red line) with a narrower performance breadth but greater

maximum. Plastic responses to temperature variation as a result of developmental processes or reversible acclimation can shift the performance curve so that the

mode coincides with a different mean temperature (blue line), which may be advantageous for endotherms that experience lower body temperatures in colder

climates. Thermal performance curves of maximal mitochondrial respiration rates (state 3 rates) shifted between populations of bush rats (Rattus fuscipes) living in

different climates (B). Rats from cold climate populations had significantly lower body temperatures than those from warm climate populations (Glanville et al., 2012).

Concomitantly to body temperature differences, state 3 respiration rate was highest at low temperatures in cold climate rats, but it increased with increasing

temperature in warm climate rats (climate*test temperature interaction), indicating that thermal performance curves shifted to compensate for the lower body

temperatures in cold climates. Residuals are shown here, and within each group of four bars within acute test temperatures the first (left) bar shows data from vastus

lateralis muscle, the second from heart ventricle, the third from liver, and the forth (right) bar shows data from brown adipose tissue. Means ± s.e.m. are shown, n =

10 rats from each population (averaged within climates), and data measured at different temperatures are separated by a thin dotted line to aid in visual clarity.

internal and external temperatures and can thereby reduce the
energy needed for thermoregulation (Crompton et al., 1978;
Glanville et al., 2012; Tattersall et al., 2016), resulting in increased
survival and fitness (Dammhahn et al., 2017). Any changes in
body temperature, however, will negatively affect cellular reaction
rates unless these are buffered by plastic responses similar to
those described above, which are common among ectotherms
(Huey and Kingsolver, 1989).

Similarly, body temperatures are not homogenous within
organisms, and even in non-dormant endotherms temperatures
in peripheral muscle are often several degrees lower than core
body temperature (Mutungi and Ranatunga, 1998; Yaicharoen
et al., 2012). Again, reduced peripheral body temperatures
lower the energetic costs of thermoregulation, but need to
be accompanied by shifts in thermal performance curves of
peripheral tissues to avoid a trade-off between thermoregulatory
cost and physiological function.

Here we suggest that plasticity of thermal performance curves
is an ancestral trait that has been maintained in endotherms
to buffer physiological reaction rates from variation in core
body or tissue temperatures. Note that there is an important
distinction between acclimation of metabolic rates to increase
heat production in response to cold environmental temperatures
(e.g., Boratyński et al., 2017; Noakes et al., 2017), and the
plasticity of performance curves we are suggesting (Figure 1A).
The former serves to maintain body temperatures in variable
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climates, and the latter optimizes reaction rates when tissue
temperatures change despite adjustments of metabolic heat
production. Here we review plasticity in performance curves in
response to core body temperature variation, and in response to
peripheral tissue temperature variation in non-torpid and non-
hibernating endotherms. Additionally, we review mechanisms
that can confer plasticity in thermal performance curves at the
tissue level, which are promising candidates for future research
aimed at understanding the consequences of heterothermy in
endotherms.

PLASTICITY OF PERFORMANCE CURVES
IN RESPONSE TO CORE BODY
TEMPERATURE VARIATION

Physiological rates in endotherms tend to be optimized around
the regulated core body temperature with relatively narrow
performance breadth (Shinoda et al., 1997; James, 2013).
However, there are exceptions to this pattern. Round-tailed
ground squirrels (Spermophilus terreticaudus), for example, let
their body temperature vary considerably with environmental
temperature (Wooden, 2004). At the same time, their muscle
force production and sprint speed was maintained over body
temperatures ranging from 30 to 41◦C. These data exemplify
an extreme generalist phenotype, where the benefits of variation
in body temperature are not traded off for a decrease in
performance.

In addition to generalist responses, the mode of thermal
performance curves may shift in response to body temperature
changes. Heart rate represents a physiological rate that is closely
related to performance (Eliason et al., 2011; Hillman and
Hedrick, 2015), and thermal performance curves of heart rate
can shift in response to chronic changes in body temperature.
For example, mean rectal temperature of humans significantly
decreased following cool acclimation, but was elevated to 39◦C
following acclimation to hot conditions (Racinais et al., 2017).
Initially, heart rates were higher in hot conditions but decreased
following acclimation to hot temperatures, indicating a shift in
thermal sensitivity of heart rates (Racinais et al., 2017). On the
other hand, red deer (Cervus elaphus) and Przewalski’s horse
(Equus ferus przewalskii) lowered peripheral temperatures in
winter, with concomitant decreases in heart rates during activity
and rest (Arnold et al., 2004, 2006). However, there was no
indication that heart rates were compensated for the lower winter
temperatures.

In a rodent (the Australian bush rat, Rattus fuscipes),
physiological reaction rates shifted with seasonal and altitudinal
changes in climate. R. fuscipes from two populations living in cold
high altitude climates had significantly lower body temperatures
compared to those from two warm coastal populations (Glanville
et al., 2012). Paralleling differences in body temperatures, the
thermal sensitivity of mitochondrial respiration rates differed
significantly between populations from different climates. We
published mitochondrial substrate oxidation rates (state 3
rates) and uncoupled (state 4) oxygen consumption rates
measured at 37◦C test temperatures previously (Glanville et al.,

2012). However, at the same time (and using the same
techniques as in Glanville et al., 2012) we also measured
mitochondrial respiration at 33◦ and 41◦C, and these previously
unpublished data provide an opportunity to compare thermal
sensitivities between populations experiencing different body
temperatures naturally. Hence, here we used a permutational
analysis (Wheeler and Torchiano, 2016) to analyse state 3
mitochondrial substrate oxidation rates (data for state 4 rates
available from the corresponding author) with climate and
test temperature as independent factors, and population nested
within climate. We calculated residuals for each population to
analyse thermal sensitivity without the effects of differences
in absolute rates between populations (see Glanville et al.,
2012).

In rats from warm climates, residuals of state 3 rates were
lowest at 33◦C and increased with temperature. In contrast,
state 3 rates of cold-climate rats were highest at 33◦C and
decreased with increasing temperature (Figure 1B; climate∗test
temperature interaction, p < 0.0001 for muscle, p = 0.04 for
heart, p = 0.008 for liver, and p < 0.0001 for brown adipose
tissue; there was no effect of population on any residuals, all p
> 0.12). These data indicate that adaptation or developmental
processes lower the mode of thermal performance curves in cold
climates, which would be beneficial for rats experiencing lower
body temperatures.

Similarly, rats had significantly lower body temperatures in
winter compared to summer (Glanville and Seebacher, 2010a,b).
There were interactions between season and test temperature
in determining metabolic enzyme activities, which indicate
that the mode of performance curves shifted in response
to seasonally changing temperatures as well (Glanville and
Seebacher, 2010b).

PLASTICITY OF PERFORMANCE CURVES
IN RESPONSE TO TISSUE TEMPERATURE
VARIATION

Even when core body temperature remains stable within
organisms, there can be considerable temperature variation in
peripheral tissues (Ponganis et al., 2003). Muscle temperatures
in humans may be several degrees Celsius below rectal or core
body temperatures at rest, even in large muscle groups (Sargeant,
1987; Ducharme et al., 1991; Bishop, 2003). These decreases
in temperature constrain muscle performance (James, 2013),
leading to increased sporting performance following warm-ups
(Bishop, 2003; Yaicharoen et al., 2012; Cunniffe et al., 2017).

It would be advantageous therefore if the thermal sensitivity
of performance curves differed between core and peripheral
tissues. Muscle at the core should show greater thermal
sensitivity with a narrow performance breadth around core body
temperature, while peripheral muscle should be less sensitive
to temperature changes and perform better than core muscle
at low temperatures. Such a division between generalist and
specialist phenotypes was found in isolated mouse muscle
(James et al., 2015). Core diaphragm muscle had greater power
output at core body temperature and was more sensitive to
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changes in temperature than peripheral soleus muscle, which
would experience much greater temperature fluctuations in vivo
(James et al., 2015).These patterns of regional specialization
were similar in an endothermic shark that maintains elevated
core body temperatures (Bernal et al., 2005). Endotherms
can therefore show regional specialization correlated with
temperature variation.

In mouse muscle, the capacity to shift performance curves
in response to temperature is independent from central
neuroendocrine input and can occur in isolated cells (Little and
Seebacher, 2016). Cool (32◦C) growth temperature of muscle
precursor cells (myoblasts) lowered the mode of the thermal
performance curve for metabolic rate compared to control
(37◦C) conditions, where increased metabolic rate at 32◦C
compensated for the negative thermodynamic effects. Similarly,
decreased differentiation temperature (32◦C) of myoblasts
into functional myotubes lowered the mode of the thermal
performance curve for metabolic rate, again compensating for
cool temperatures. Interestingly, myoblast growth temperature
influenced myotube thermal performance independently from
differentiation temperature (Little and Seebacher, 2016). These
thermal responses of mouse myocytes are comparable to the
interaction between developmental and reversible plasticity in
ectotherms (Scott and Johnston, 2012; Little et al., 2013; Beaman
et al., 2016).

MECHANISMS MEDIATING PLASTICITY

Plasticity of thermal performance curves may be regulated
centrally via sympathetic output from the hypothalamus
(Nakamura and Morrison, 2007; Seebacher, 2009), and
peripherally by circulating levels of thyroid hormone (Little and
Seebacher, 2013, 2014; Little et al., 2013). However, the capacity
to adjust thermal sensitivity in response to local changes in
temperature can also occur independently from neuroendocrine
input (Al-Fageeh et al., 2006; Underhill and Smales, 2007; Ye
et al., 2013; Little and Seebacher, 2016). For example, changes in
membrane fluidity resulting from temperature-sensitive shifts in
fatty acid profiles can maintain cellular, organelle, and protein
function in variable thermal environments (Cossins and Prosser,
1978). Changes in membrane composition occur at the cellular
level in ectotherms and endotherms (Dymond, 2016; Ballweg
and Ernst, 2017).

There has been considerable medical interest in cell-
autonomous pathways regulating thermal responses in
mammalian tissues (Ye et al., 2013; Borowiec et al., 2016;
Quesada-López et al., 2016; Bastide et al., 2017). Additionally,
thermal responses have been used as a biotechnology strategy
to enhance recombinant protein production in mammalian
cell lines (Al-Fageeh et al., 2006). Together these studies point
toward a local “thermal switch” in peripheral tissues, where
thermosensory information is integrated with compensatory
response(s) entirely at the level of the cell. The “thermal switch”
may comprise pathways that sense temperature changes directly,
and those that sense subsequent imbalances in important cellular
metabolites following thermal change (Figure 2).

FIGURE 2 | A summary of the potential mechanisms underlying

cell-autonomous thermal plasticity. Transient receptor potential channels

vanilloid 4 (TRPV4) and melastatin 8 (TRPM8) upregulate expression of

peroxisome proliferator-activated receptor γ coactivator 1α (PGC1α) and

uncoupling protein 1 (UCP1), respectively, in response to local hypothermia

(blue arrows; normothermic conditions depicted by red arrows). Cold-inducible

RNA binding protein (CIRBP) expression is enhanced in response to cold

exposure through a temperature-sensitive change in RNA splicing that

determines the proportion pre-mRNA processed into mature mRNA. Relative

translation rates for RNA binding motif protein 3 (RBM3) is enhanced during

cold exposure via a 5’ internal ribosome entry site (IRES), while global protein

synthesis declines. AMP-activated protein kinase (AMPK) is activated by

increasing ratio of AMP:ATP with cold exposure, thereby enhancing PGC1α

activity.

Transient receptor potential ion channels (TRPs) represent
the best studied mechanism that allows cells to detect changes
in their environment directly (Nilius and Voets, 2005; Ahern,
2013). Many of these receptors are temperature-gated, and
different receptors are activated at specific temperature ranges
(Baez et al., 2014). TRPs are expressed ubiquitously, and
are best known for their afferent role in thermoregulation
(Caterina, 2006), where peripheral changes in temperature are
relayed to the preoptic area of the hypothalamus for central
regulation (Morrison et al., 2014). Interestingly, certain TRPs
can also regulate local responses in a cell-autonomous manner
(Ahern, 2013; Ye et al., 2013). In mammals, TRP vanilloid 4
(TRPV4) is activated at physiological temperatures (Shibasaki
et al., 2015). TRPV4 knockout mice showed increased energy
expenditure in white adipocytes (Ye et al., 2012), mediated
by the cell-autonomous release of TRPV4-induced repression
of the metabolic co-regulator PGC1α, and uncoupling protein
1 (UCP1) (Ye et al., 2012). TRP melastatin 8 (TRPM8),
which detects cool temperatures (<26◦C) (Bautista et al.,
2007), can regulate cell-autonomous responses to hypothermia
in brown adipose tissue (BAT) and germ cells of mice (Ma
et al., 2012; Borowiec et al., 2016). In cold-exposed BAT,
for instance, TRPM8 enhanced Ca2+-influx and increased the
expression of UCP1 independently from the canonical β-
adrenergic pathway (Ma et al., 2012). Our results, showing
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that mild hypothermia (32◦C) altered metabolic phenotypes of
myoblasts and subsequentmyotubes (Little and Seebacher, 2016),
are especially interesting because brown adipocytes and skeletal
myocytes both share a myf-5 positive mesenchymal stem cell
origin (Seale et al., 2008), which means that TRPM8 activation
may also underlie metabolic programming to compensate for
mild hypothermia in skeletal muscle development, repair, and
maintenance.

Temperature can also have direct effects on post-
transcriptional processes, such as mRNA degradation, splicing,
and translation efficiency. For example, temperature-dependent
expression patterns of cold-inducible proteins are determined
by the thermal sensitivity of post-transcriptional mechanisms
(Sonna et al., 2002; Potla et al., 2015; Gotic et al., 2016;
Bastide et al., 2017). The expression of the cold-inducible cold
shock RNA-binding protein (CIRBP) increased in response
to mild hypothermia (Sonna et al., 2002), UV irradiation
(Yang and Carrier, 2001), and hypoxia (Wellmann, 2004) in
mammals. CIRBP was also upregulated during cold exposure
in ectothermic vertebrates, including common carp (Cyprinus
carpio; Gracey et al., 2004) and Japanese treefrogs (Hyla japonica;
Sugimoto and Jiang, 2008). CIRBP regulated cell growth at
low temperature by protecting target mRNA from degradation
in mammalian cell culture (Phadtare et al., 1999). Increases
in cellular CIRBP content in response to body temperature
variation occurred through a temperature-sensitive change
in RNA splicing efficiency that determined the proportion of
CIRBP pre-mRNA processed into mature mRNAs (Gotic et al.,
2016). Pre-mRNA contain secondary structures that regulate
splice site recognition and splicesome binding. These secondary
structures are dynamic and highly sensitive to changes in
temperature, so that they can destabilize and unfold in ways that
determine ultimate levels of CIRBP mRNA expression (Gotic
et al., 2016).

The cold-shock RNA-binding protein RBM3 binds mRNAs to
maintain translational efficiency (Peretti et al., 2015; Zhu et al.,
2016; Bastide et al., 2017). Cooling reduces protein synthesis
globally, except for specific proteins such as RBM3 (Bastide
et al., 2017). The translation of RBM3 is enhanced during cold
exposure by internal ribosome entry site (IRES) regions in its
mRNA 5′ untranslated regions (5-UTR) (Bastide et al., 2017).
Under cold exposure, the typical cap-dependent initiation of
translation is impaired (Jackson et al., 2015; Bastide et al., 2017).
However, IRES regions recruit the translational machinery,
thereby facilitating initiation of translation in a cap-independent
manner (Chappell et al., 2001; Pan and van Breukelen, 2011). As
a result, RBM3 expression is maintained, or even enhanced with
cold exposure. In addition to facilitating translational efficiency
of mRNA in the cold, RBM3 can also regulate microRNAs by
facilitating their processing by Dicer (Zhu et al., 2016). Cold
exposure increased transcript levels for five microRNAs involved
in cell cycle progression in primary cultured human small airway
epithelial cells (Potla et al., 2015). ThesemicroRNAs are regulated
post-transcriptionally, but it is not known whether their changes
in expression rely on stabilization by RBM3, or temperature-
sensitive splicing mechanisms similar to CIRBP (Potla et al.,
2015).

Peripheral cells and tissues may also mount autonomous
responses to local changes in temperature by indirect
thermosensory pathways, where temperature-induced
imbalances in cellular metabolites trigger compensatory
responses. In skeletal muscle, decreasing temperatures cause an
energy deficit, resulting in an increase in the AMP:ATP ratio
(Towler and Hardie, 2007). Increased concentrations of AMP
activate the cellular energy-sensor AMP-stimulated protein
kinase (AMPK) to increase mitochondrial density and ATP
production (Jäger et al., 2007; Lira et al., 2010; Hardie et al.,
2016). Increases in AMPK activity shifted mouse muscle to a
more oxidative metabolic phenotype (Ljubicic et al., 2011), and
altered the expression of thyroid receptors in adipose tissue
(Wang et al., 2014). The AMPK-mediated response can thereby
alter how cells and tissues respond to central inputs via changes
in receptor profiles, as well as acting on the metabolic machinery
at the cellular level directly. As a result, metabolic capacity is
increased in response to cold. AMPK may thereby represent
a thermal switch by integrating temperature-induced energy
deficit with compensatory cellular responses.

CONCLUSIONS

The concept that endotherms have high and stable body
temperatures despite environmental temperature fluctuations
(Scholander et al., 1950; Rezende and Bacigalupe, 2015)
has been challenged by the increasing evidence that body
and tissue temperatures of non-torpid and non-hibernating
endotherms can fluctuate substantially (e.g., Hetem et al., 2016;
Levesque et al., 2016). Consequently, the notion that optimal
physiological reaction rates of endotherms have evolved to be
fixed within a narrow range of regulated body temperatures
is also questionable. Instead, body and tissue temperature
fluctuations in endotherms would favor selection for thermal
plasticity. Endothermic thermoregulation is distinct from that of
ectotherms, but thermal plasticity of physiological reaction rates
can be as advantageous in endotherms as in ectotherms.

The mechanisms that mediate thermal plasticity are highly
conserved among animals, and their broad range of functions
is likely to preclude negative selection. For example, thyroid
hormone action is essential for a broad range of physiological
responses in animals, and is highly conserved across taxa
(Heyland and Moroz, 2005; Darras and Van Herck, 2012). It
is likely that thyroid hormone has retained its early functions
as well as assuming additional roles in endotherms (Cannon
and Nedergaard, 2010; Little, 2016). Similarly, AMPK-mediated
signaling evolved in early eukaryotes as an energy sensing
mechanism (Towler and Hardie, 2007; Hardie et al., 2016;
Ross et al., 2016). Hence, the role of AMPK in conferring
thermal plasticity evolved in ectothermic organisms and has
been retained by endotherms. In a final example, transient
receptor potential ion channels (TRP) act in thermoregulation
in both ectotherms and endotherms (Caterina, 2006; Seebacher
and Murray, 2007; Laursen et al., 2016). Like thyroid hormone
and AMKP, TRPs are highly conserved among animals (Peng
et al., 2015). These three mechanisms, and possibly others, such
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as micro RNAs and post-transcriptional modifications, therefore
represent evolutionarily conserved regulatory systems that adjust
cellular responses to the environment.
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