
ORIGINAL RESEARCH
published: 07 July 2022

doi: 10.3389/fmed.2022.878858

Frontiers in Medicine | www.frontiersin.org 1 July 2022 | Volume 9 | Article 878858

Edited by:

Claudia Lerma,

Instituto Nacional de Cardiologia

Ignacio Chavez, Mexico

Reviewed by:

Marisol Martinez Alanis,

Universidad Anahuac Mexico, Mexico

Jesus Arellano,

Hospital General “Dr. Miguel

Silva”, Mexico

Erik Bojorges,

Universidad Iberoamericana Ciudad

de México, Mexico

*Correspondence:

Beom Seok Kim

docbsk@yuhs.ac

Chung-Mo Nam

cmnam@yuhs.ac

†These authors have contributed

equally to this work

Specialty section:

This article was submitted to

Nephrology,

a section of the journal

Frontiers in Medicine

Received: 18 February 2022

Accepted: 20 June 2022

Published: 07 July 2022

Citation:

Kim HW, Heo S-J, Kim M, Lee J,

Park KH, Lee G, Baeg SI, Kwon YE,

Choi HM, Oh D-J, Nam C-M and

Kim BS (2022) Deep Learning Model

for Predicting Intradialytic Hypotension

Without Privacy Infringement: A

Retrospective Two-Center Study.

Front. Med. 9:878858.

doi: 10.3389/fmed.2022.878858

Deep Learning Model for Predicting
Intradialytic Hypotension Without
Privacy Infringement: A
Retrospective Two-Center Study
Hyung Woo Kim 1†, Seok-Jae Heo 2†, Minseok Kim 2, Jakyung Lee 2, Keun Hyung Park 1,

Gongmyung Lee 1, Song In Baeg 3, Young Eun Kwon 3, Hye Min Choi 3, Dong-Jin Oh 3,

Chung-Mo Nam 2,4* and Beom Seok Kim 1*

1Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea, 2Department of Biostatistics

and Computing, Yonsei University Graduate School, Seoul, South Korea, 3Department of Internal Medicine, Myongji

Hospital, Hanyang University College of Medicine, Goyang, South Korea, 4Division of Biostatistics, Department of Biomedical

Systems Informatics, Yonsei University College of Medicine, Seoul, South Korea

Objective: Previously developed Intradialytic hypotension (IDH) prediction models utilize

clinical variables with potential privacy protection issues. We developed an IDH prediction

model using minimal variables, without the risk of privacy infringement.

Methods: Unidentifiable data from 63,640 hemodialysis sessions (26,746 of 79 patients

for internal validation, 36,894 of 255 patients for external validation) from two Korean

hospital hemodialysis databases were finally analyzed, using three IDH definitions: (1)

systolic blood pressure (SBP) nadir <90 mmHg (Nadir90); (2) SBP decrease ≥20

mmHg from baseline (Fall20); and (3) SBP decrease ≥20 mmHg and/or mean arterial

pressure decrease ≥10 mmHg (Fall20/MAP10). The developed models use 30min

information to predict an IDH event in the following 10min window. Area under the

receiver operating characteristic curves (AUROCs) and precision-recall curves were used

to compare machine learning and deep learning models by logistic regression, XGBoost,

and convolutional neural networks.

Results: Among 344,714 segments, 9,154 (2.7%), 134,988 (39.2%), and 149,674

(43.4%) IDH events occurred according to three different IDH definitions (Nadir90, Fall20,

and Fall20/MAP10, respectively). Compared with models including logistic regression,

random forest, and XGBoost, the deep learning model achieved the best performance

in predicting IDH (AUROCs: Nadir90, 0.905; Fall20, 0.864; Fall20/MAP10, 0.863) only

using measurements from hemodialysis machine during dialysis session.

Conclusions: The deep learning model performed well only using monitoring

measurement of hemodialysis machine in predicting IDH without any personal

information that could risk privacy infringement.
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INTRODUCTION

Intradialytic hypotension (IDH) is one of the most frequent
complications in patients requiring maintenance hemodialysis.
IDH is associated with an increased risk of cardiovascular
and all-cause mortality (1–4). The definition of IDH varies
among studies, while the prevalence of IDH ranges up to
40% (5). Although the risk factors involved in IDH are well
known, including diabetes, cardiovascular disease, autonomic
dysfunction, nutrition status, old age, anemia, and high
interdialytic weight gain, most of these risk factors are difficult
to correct immediately at the hemodialysis center. Therefore,
treatments, such as temporarily stopping hemodialysis or
reducing the rate of ultrafiltration, are preferentially performed
when IDH occurs. In order to detect IDH early, it may be helpful
to measure blood pressure (BP) more frequently, however, it is
impossible to measure BP continuously due to the nature of the
non-invasive BPmeasurement method. Thus, other non-invasive
methods that can predict IDH in advance are needed.

However, it is difficult to predict IDH with a classical
statistical model, because there many different factors play a
role in IDH. Recently, some studies have reported prediction
of IDH in hemodialysis patients by using machine learning or
deep learning, approaches that can process multi-dimensional
data (6–8). However, these models require various types of
clinical information, some of which pose a risk of a breach of
privacy. Additionally, because each prediction model developed
in these studies used different variables, the models could not
be applied in all hemodialysis units for universal use. On the
other hand, various measurements, including blood flow rate,
ultrafiltration rate, dialysate flow rates, arterial line pressure,
venous line pressure, transmembrane pressure, temperature,
bicarbonate level, and sodium level, can be generated during
hemodialysis sessions. These values can be measured by any
hemodialysis machine, from different manufacturers, can be used
as variables in all hemodialysis units, and do not pose a high risk
of privacy infringement.

Therefore, in this two-center validation study, we aimed
to develop a real-time IDH prediction model using only
data generated from the hemodialysis machine, excluding
any personal information, to validate the performance of the
developed models.

MATERIALS AND METHODS

Study Population
Hemodialysis data were extracted from the databases of two
hospitals in Korea (Severance Hospital and Myongji Hospital),
which store information about each hemodialysis session. In
total, 29,324 sessions of 135 patients aged over 19 years, which
were automatically recorded in the Therapy Data Management
System from May 2015 to May 2021, in Severance Hospital,
and 37,380 sessions of 255 patients aged over 19 years, which
were automatically recorded in the same system from June 2019
to August 2021, in Myongji Hospital, were screened. Among
these 66,704 sessions, we excluded the following sessions: (1)
sessions without consecutive BP measurements; (2) sessions

without ultrafiltration; (3) sessions lasting less than 40min;
(4) no baseline BP measurement obtained within first 10min;
(5) sessions with missing variables; (6) sessions considered as
containing other input errors (Figure 1).

Finally, 63,640 sessions involving 387 patients were included
in this study. The study was performed following the Declaration
of Helsinki principles. The institutional review boards of
Severance Hospital (IRB No. 4-2021-0951) andMyongji Hospital
(2021-08-022) approved this study and waived the need for
obtaining informed patient consent, as only de-identified,
previously collected data were accessed.

Hemodialysis Sessions
Each hemodialysis session was automatically saved to the
database. Along with the initial hemodialysis settings, measured
values, including arterial line pressure (AP), venous line pressure
(VP), blood flow rate, dialysate flow rate, ultrafiltration rate, total
ultrafiltration volume, temperature, and dialysate sodium level
were collected from the hemodialysis machine every minute.
Vital signs, including systolic blood pressure (SBP), diastolic
blood pressure (DBP), mean arterial pressure (MAP), and pulse
rate, were recorded every 1 h by default, and all additional
measurements were also recorded at any time-point during
hemodialysis session. Blood pressure was additionally measured
when patient complained of any symptoms associated abnormal
blood pressure.

Outcomes and Additional Variables
IDH was defined as a nadir SBP < 90 mmHg (Nadir90) or as
a decrease in SBP ≥ 20 mmHg compared to the initial baseline
BP (Fall20) within 10min. In addition, it was also defined as a
decrease in systolic BP ≥ 20 mmHg and/or a decrease in MAP
of≥ 10 mmHg (Fall20/MAP10) within 10min. Age and sex were
the only demographics collected from sessions. No other clinical
information that could infringe privacy was collected.

Data Processing
In this study, to predict IDH within 10min, a series of
hemodialysis-related measurements obtained during the
previous 30min were collected in real time. Therefore, each
segment was defined as 30min from 40min to 10min before any
time point at which SBP wasmeasured (Figure 2). A segment had
30 time-points because variables from hemodialysis machines
were measured every minute. We used 10min of data from the
start of hemodialysis as baseline data to adjust the volatility of
AP and VP for each session and calculated the mean values of
the AP and VP from baseline data for each session. Then, the
calculated mean values were subtracted from the original AP and
VP values.

In addition, we created variables to obtain better performance
for predicting IDH. To consider the possibility that the passage
of time may influence the occurrence of IDH events, we used
two additional variables related to the passage of time in each
hemodialysis session: (1) the time elapsed from the initiation
of the hemodialysis session to the beginning of each segment;
(2) the time elapsed from the previous SBP measurement to the
beginning of each segment. For analyses using logistic regression,
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FIGURE 1 | Flowchart of this study. BP, blood pressure.

random forest (9), and Extreme Gradient Boosting (XGBoost)
methods (10), we extracted the mean and standard deviation
(SD) of time-varying variables for each segment.

Model Development and Validation
We developed a deep learning model to predict IDH using
a convolutional neural network (CNN). CNNs have generally
been used to analyze image data, such as classification,
segmentation, and object detection (11–14). They can also be
used to detect abnormal events in time-series data (15–18).
We processed 10 time-invariant variables as a one-dimension
(1-D) array with a fixed value. Then, the time-varying and
time-invariant variables were concatenated as a 1-D array with
30 time-points and channels corresponding to the number of
variables. Then, we can extract new features that considers the
relationship between various variables, including the relationship
between time-invariant and time-variant variables through 1-D
convolutional layer.

Our deep learning model used several features extracted
through the CNN, which consisted of four blocks and one 1-D
adaptive average pooling layer in a row. The block was composed
of one 1-D convolutional layer, one batch normalization, one
Scaled Exponential Linear Unit (SELU) activation function, and
one 1-D average pooling layer in order. Then, the concatenated
1D layer was connected to an output layer via two fully connected
layers, with 128 nodes, three SELU activation functions, and
one dropout layer, with a 0.3 dropout rate. Since three IDH
events could occur at the same time, we set output layer to
return three predicted probabilities of IDH through the sigmoid
activation function. Therefore, our deep learningmodel estimates
probabilities for three different IDH events simultaneously. The
detailed architecture of our deep learning model is illustrated in
Figure 3.

To train the deep learningmodel, we used the Adam optimizer
(19), binary cross entropy loss, and a batch size of 64. We also
used the one-cycle scheduler to reduce training time (20). In
the random forest model, nodes were expanded until all leaves

are pure or until all leaves contain less than the minimum
number of samples required to split, and the Gini index was
used to measurement of the quality of a split. The maximum
tree depth in XGBoost model was set to 6, and the number of
boosting rounds was set to 100. Detailed hyperparameter settings
for the random forest and XGBoost model are summarized
Supplementary Table S1. We trained the machine learning
and deep learning models using the data from the Severance
Hospital hemodialysis database only (internal validation) and
used the data from the Myongji Hospital hemodialysis database
for external validation. The internal validation was performed
through the 5-fold cross-validation.

Model Interpretation
We used the SHapley Additive exPlanation (SHAP) analysis to
assess variable importance and the effect of variables on IDH for
our deep learning model (21). The SHAP value is based on the
Shapley value, which is a solution concept in cooperative game
theory. The SHAP value can be interpreted as howmuch a certain
value of a variable affects the predicted value. Unlike standard
variable importance, SHAP values are calculated for the subject-
specific contributions of each variable. Therefore, it is possible
to determine the effects of variables that may differ from subject
to subject, as well as overall impact of variable. In this study, we
accessed the effect of variables on IDH prediction over time as
well as the overall variable importance.

Statistical Analyses
We used descriptive statistics to describe covariates. Categorical
variables are expressed as number of patients with percentage,
while continuous variables are presented as mean with SD.
Standard deviation was previously defined in the Data processing
section. For performance evaluation, we use the AUROC and the
area under the precision-recall curve (AUPRC) as performance
measurements. We calculated these performance measures
through 5-fold cross-validation. We performed a sensitivity
analysis to determine which variables had the most impact
on IDH prediction. We divided variables into several groups:
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FIGURE 2 | Example of hemodialysis session and segmentation recognition. AP, arterial pressure; VP, venous pressure; SBP, systolic blood pressure; MAP, mean

arterial pressure. Segments contain hemodialysis-related measurement data obtained for 30min, 10min before each time-point of SBP measurement. Bottom panel:

10min of data from the start of hemodialysis were used to adjust the volatility of the AP and VP for each session.

monitored pressure (AP, VP), setting measures (blood flow
rate, dialysate flow rate, ultrafiltration rate, total ultrafiltration
volume, temperature, and sodium), vital signs (SBP, DBP, MAP,
and pulse rate), and time information. We trained models
by excluding each group and evaluated these trained models.
In addition, we also included demographic variables, such as
age and sex, in building the models, to assess whether other
clinical variables affected the performance of IDH prediction.
Furthermore, since the ultrafiltration rate may have a different
effect on the IDH events depending on the pre-dialysis weight,
we conducted additional analysis using normalized ultrafiltration
rate and average ultrafiltration rate by pre-dialysis weight.

All analyses were performed using R software (version 4.1.2;
www.r-project.org; R Foundation for Statistical Computing,
Vienna) and Python software (version 3.8; www.python.org;
Python Software Foundation, Wilmington) with the PyTorch
library. A computer with Xeon processor (24 core, Intel, Santa

Clara, CA, USA) andQuadro RTX 6000 (Nvidia, Santa Clara, CA,
USA) was used for all analyses.

RESULTS

Characteristics of Hemodialysis Sessions
Of all hemodialysis sessions stored in the databases of two
Korean hospitals (Severance Hospital and Myongji Hospital),
63,640 hemodialysis sessions were included (26,746 for internal
validation, 36,894 for external validation) in our study. The
baseline characteristics of the hemodialysis sessions are shown
in Table 1. The mean dialysis time was 3.97 ± 0.18 h and
3.87 ± 0.30 h in Severance Hospital and Myongji Hospital,
respectively. Total ultrafiltration was more likely lower in
hemodialysis sessions performed at Severance Hospital than
those performed at Myongji Hospital (2,287.36 ± 825.48mL vs.
2,427.10 ± 880.45mL). Pre-dialysis SBP was similar between
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FIGURE 3 | Architecture of the deep learning model. CNN, convolutional neural network; FNN, feedforward neural network; BN, batch normalization; DO, dropout;

AAP, adaptive average pooling; SELU, scaled exponential linear unit; FC, fully connected. DO (dropout rate), Conv1D (kernel size, number of filters), AvgPooling1D

(kernel size).

TABLE 1 | Characteristics of the study population.

Variables Severance hospital (n = 26,746) Myongji hospital (n = 36,894)

Total dialysis time, mean (SD), h 3.97 (0.18) 3.87 (0.30)

Arterial pressure, mean (SD), mmHg −124.91 (29.66) −139.11 (30.51)

Venous pressure, mean (SD), mmHg 118.25 (27.93) 123.34 (30.52)

Blood flow rate, mean (SD), mL/min 266.74 (30.86) 252.98 (25.17)

Average blood flow rate, mean (SD), mL/min 267.47 (30.92) 253.99 (24.56)

Dialysate flow rate, mean (SD), mL/min 573.90 (91.45) 552.64 (116.23)

Total ultrafiltration volume, mean (SD), mL 2,287.36 (825.48) 2,427.10 (880.45)

Ultrafiltration rate, mean (SD), mL/h 597.79 (215.32) 649.37 (228.27)

Average ultrafiltration rate, mean (SD), mL/h 597.94 (222.08) 653.12 (241.62)

Dialysate temperature, mean (SD), ◦C 36.05 (0.32) 36.21 (0.35)

Dialysate sodium level, mean (SD), mmol/L 139.20 (1.43) 140.35 (1.03)

Pre-dialytic SBP, mean (SD), mmHg 137.53 (21.84) 137.89 (17.77)

Pre-dialytic DBP, mean (SD), mmHg 64.61 (13.22) 65.80 (11.10)

Pre-dialytic MAP, mean (SD), mmHg 88.92 (13.79) 89.83 (11.27)

Pulse rate, mean (SD), beats per minute 69.91 (10.84) 71.62 (11.64)

Total number of segments 101,655 243,059

SBP, systolic blood pressure; DBP, diastolic blood pressure; MAP, mean arterial pressure.

the two hospitals (137.53 ± 21.84 mmHg vs. 137.89 ± 17.77
mmHg). Among 101,655 segments in the internal validation
set, 3,755 (3.7%), 35,144 (34.6%), and 39,656 (39.0%) IDH
events occurred according to three different IDH definitions
(Nadir90, Fall20, and Fall20/MAP10, respectively). Similarly,
5,399 (2.2%), 99,844 (41.1%), and 110,018 (45.3%) IDH
events occurred in the external validation set based on the
Nadir90, Fall20, and Fall20/MAP10, respectively) (Table 2).
The baseline characteristics of the patients are shown in

Supplementary Table S2. In addition, we summarized the
descriptive statistics of the variables according to the occurrence
of IDH events (Supplementary Tables S3–S5).

Model Performance
The model performance for internal and external validation is
summarized in Table 3. First, we evaluated model performance
for the dataset from Severance Hospital, using 5-fold cross-
validation. In internal validation, our proposed deep learning
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TABLE 2 | Number of events among segments according to the definitions of

intradialytic hypotension.

IDH Severance hospital

(n = 101,655)

Myongji hospital

(n = 243,059)

Nadir90, n (%) 3,755 (3.7) 5,399 (2.2)

Fall20, n (%) 35,144 (34.6) 99,844 (41.1)

Fall20/MAP10, n (%) 39,656 (39.0) 110,018 (45.3)

IDH, intradialytic hypotension; MAP, mean arterial pressure; n, number of segments.

model performed better than other models in terms of the
AUROCs (Nadir90: 0.905, Fall20: 0.864, Fall20/MAP10: 0.863)
and the AUPRC (Nadir90: 0.287, Fall20: 0.794, Fall20/MAP10:
0.812) in most cases. The logistic regression model showed
the highest AUROC for Fall20 (0.868) and AUPRC for
Nadir90 (0.298) for internal validation. Second, we conducted
external validation using the Myongji Hospital dataset. In this
validation, our proposed deep learning model showed the
best performance by AUROC (Nadir90: 0.853, Fall20: 0.872,
Fall20/MAP10: 0.853) and by AUPRC (Nadir90: 0.118, Fall20:
0.831, Fall20/MAP10: 0.841).

Variable Importance
We calculated overall variable importance using SHAP values
for each definition of IDH to investigate which covariate most
affected IDH (Supplementary Figures S1–S3). For all definitions
of IDH, most vital signs were in the top ranks for variable
importance. The blood flow rate, dialysate sodium, and AP were
identified as the next most important variables, after SBP and
MAP, for the Fall20 and Fall20/MAP10 IDH definitions. Also,
the SHAP values can be used to determine whether variables
decrease or increase the risks of IDH after 10min in real time.

The case-specific SHAP values over time were illustrated in
Supplementary Figures S4–S6. The positive SHAP value was
related to the decreased risk of IDH after 10min, and vice versa
if negative.

Sensitivity Analyses
Sensitivity analyses were performed to determine which
variables had more impact on IDH prediction for our deep
learning model, using the external validation dataset (Table 4).
The model including vital sign variables (SBP, DBP, MAP,
and pulse rate) was defined as a reference model. For the
Nadir90 definition, setting measure variables (blood flow
rate, dialysate flow rate, ultrafiltration rate, total ultrafiltration
volume, dialysate temperature, and dialysate sodium level)
improved model performance more than other variable
groups (AUROC: 0.819 to 0.839, AUPRC: 0.106 to 0.112).
The variables of monitored pressure (AP, VP) increased
model performance the most for the Fall20 (AUROC: 0.858 to
0.862, AUPRC: 0.823 to 0.829) and Fall20/MAP10 (AUROC:
0.848 to 0.853, AUPRC: 0.835 to 0.841) IDH definitions.
Sensitivity analyses for the internal validation dataset showed
similar results to those for the external validation dataset
(Supplementary Table S6). In addition, demographic variables,
including age and sex, did not have a significant influence
on IDH prediction (Supplementary Table S7). There was
no significant difference in the results according to the
normalized method for ultrafiltration rate (Table 3 and
Supplementary Table S8).

DISCUSSION

In this retrospective two-center study, we built a concise
model to predict IDH 10min ahead, using only data generated
continuously during hemodialysis, without any risk of a breach

TABLE 3 | Model performance for predicting intradialytic hypotension.

IDH Model Internal validation External validation

AUROC (min-max) AUPRC (min-max) AUROC (p-value) AUPRC (p-value)

Nadir90 DLM 0.905 (0.892–0.913) 0.287 (0.192–0.494) 0.853 (reference) 0.118 (reference)

LR 0.900 (0.879–0.926) 0.298 (0.193–0.572) 0.833 (<0.001) 0.110 (0.056)

RF 0.889 (0.847–0.903) 0.292 (0.192–0.566) 0.837 (<0.001) 0.115 (0.444)

XGB 0.891 (0.855–0.906) 0.270 (0.140–0.582) 0.809 (<0.001) 0.089 (<0.001)

Fall20 DLM 0.864 (0.836–0.888) 0.794 (0.698–0.847) 0.872 (reference) 0.831 (reference)

LR 0.868 (0.840–0.888) 0.788 (0.700–0.844) 0.855 (<0.001) 0.817 (<0.001)

RF 0.844 (0.812–0.869) 0.750 (0.688–0.834) 0.850 (<0.001) 0.813 (<0.001)

XGB 0.860 (0.820–0.873) 0.777 (0.701–0.812) 0.860 (<0.001) 0.815 (<0.001)

Fall20/MAP10 DLM 0.863 (0.827–0.878) 0.812 (0.729–0.858) 0.853 (reference) 0.841 (reference)

LR 0.857 (0.825–0.873) 0.804 (0.726–0.854) 0.842 (<0.001) 0.827 (<0.001)

RF 0.838 (0.801–0.859) 0.773 (0.720–0.827) 0.843 (<0.001) 0.827 (<0.001)

XGB 0.851 (0.812–0.856) 0.795 (0.735–0.824) 0.843 (<0.001) 0.829 (<0.001)

The performance measures of internal validation were calculated using 5-folds cross-validation; The min and max are the minimum and maximum values for 5 performance measures

obtained through 5-folds cross-validation. P-values were calculated compared to the DLM. The Delong test was used to calculated p-values for comparison of AUROC. The bootstrap

method was used to calculated p-values for comparison of AUPRC. IDH, intradialytic hypotension; MAP, mean arterial pressure; AUROC, area under the receiver operating characteristic

curve; AUPRC, area under the precision-recall curve; LR, logistic regression; RF, random forest; XGB, extreme gradient boosting; DLM, deep learning model.
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of personal information. Because there was no significant
difference in model performance improvement even in models
with information on age and sex, our study suggests that
the use of personal clinical data could be minimized when
building a deep learning model, without significant loss of
accuracy. In addition, no additional effort is needed to
collect clinical data, other than the data extracted from the
hemodialysis machine, for predicting IDH by this model.
The variables used in this model are available from dialysis
machines from any manufacturer. Furthermore, our model can
predict IDH events as defined by three different definitions
simultaneously and will be beneficial for individualized IDH
prediction. Therefore, our model is cost-effective for predicting
IDH in terms of privacy protection, individualized medicine,
and generalizability.

IDH is associated with an increased risk of cardiovascular
and all-cause mortality in end-stage kidney disease patients
(1–4, 22). IDH is typically defined as a decrease in SBP
≥ 20 mmHg (23, 24) or a nadir in SBP < 90 mmHg
(4). In a recent meta-analysis, the prevalence of IDH in
hemodialysis sessions was about 10% (5). Known causes of IDH
include excessive ultrafiltration, decreased cardiac output, and
failure to increase vascular resistance. Several methods have
been suggested to prevent or treat IDH, such as decreasing
the ultrafiltration rate, avoiding marked interdialytic weight
gain, increasing weekly treatment time, increasing the sodium
concentration of the dialysate, lowering dialysate temperature,
avoiding food intake during hemodialysis, using high-flux
convection, and using midodrine (25). Patients with end-stage
kidney disease have many risk factors for IDH that are difficult
to correct. Therefore, it is more effective to prevent IDH
early than to cope with IDH after IDH occurred. Moreover,
particularly in patients with congestive heart failure, there
is a risk a vicious cycle if interdialytic weight gain is not
removed properly due to IDH. Consequently, early prediction
or detection is important. However, as described earlier, it is
difficult to predict IDH with the traditional statistical method,
because the development of IDH is related to numerous
factors, patients are diverse, and complex variables must
be considered.

Recently, many studies developed models for predicting
hypotension events during hemodialysis using machine learning
or deep learning (6–8, 26). Prediction models developed in
those studies require different types of clinical information
to predict IDH. Depending on the hemodialysis center, these
clinical data could be impossible to collect, or could be
difficult to use due to privacy issues. Since there are no
established guidelines about how the data collected are used
and shared with others, protection of privacy is an important
issue in the development and use of machine learning or
deep learning algorithms (27). In this respect, our model
differs from other prediction models, because it does not
use any personal information other than the monitoring data
obtained from the hemodialysis machine. In addition, our
model has the advantage that it needs a minimal number of
variables, without accessing electronic medical records, and
there is no additional cost for data merging from different T
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platforms, allowing it to be applied in hemodialysis centers of
various sizes. Furthermore, our model was designed to predict
IDH after 10min, so that medical staff in the hemodialysis
center can effectively conduct acute management, including use
of the Trendelenburg position, isotonic fluid administration,
and reducing ultrafiltration rate, in advance. Although deep
learning models need more computing power than other
models including linear regression, XGBoost, and random forest,
researchers might expect to monitor in real-time how variables
affect IDH in deep learning models through SHAP value. It
would be necessary to conduct further studies in order to
investigate that our models could reduce the risk of IDH in
real world. Moreover, real-time data at 1-min intervals were
used to detect IDH events in this study. In some studies, time-
varying variables were used to improve the efficacy of the
prediction model, but real-time data continuously generated
from the dialysis machine were not used, as in our study (8).
Similarly, a previous study showed the feasibility of using data
continuously measured by the hemodialysis machine to predict
outcomes (28).

There were some limitations to our study. First, this
study was a small retrospective study, using a hemodialysis
database. Although it was a multicenter study, the number
of participants was relatively small. Second, our model may
not be suitable for predicting IDH in inpatients, since our
study was conducted based on outpatient clinic data. In
this reason, the number of blood pressure measurements is
inevitably limited because unnecessary measurements of blood
pressure could make the patients feel uncomfortable during
hemodialysis. More frequent blood pressure measurements
would be needed to build a more accurate model especially
for inpatients. However, most of the patients with chronic
hemodialysis undergo hemodialysis at outpatient clinics and
preventing adverse events in these patients is more cost-
effective. Third, due to the nature of the database platform
used in this study, our model was based on data generated
at 1-min intervals, rather than in real-time. In addition, a
hardware interface that collects data from a hemodialysis
machine is needed to implement our model. However, our
model does not use any sensitive personal information, it may
not be difficult to develop a platform for data collection and
utilization. Fourth, the real-time monitoring data collected from
hemodialysis machine in this study was anonymized and could
not be merged with electronic medical record. Only limited
clinical information including gender, and age can be merged.
Although our models showed relatively good performance, the
comparison with the models including clinical information
was not possible in this study in this reason. Fifth, IDH
event defined as decrease in blood pressure associated with
symptoms and/or interventions were not considered due to
the limitation of database. Further well-designed studies would
be needed to consider symptoms associated with hypotension
event. Finally, some of our models had low AUPRC as
compared with other models. The frequency of Nadir90 events
were reported as 9.7–11.3% among hemodialysis sessions in

another large hemodialysis cohort (22). In contrast, only
2.2–3.7% of Nadir90 events were observed in our study.
The relatively low AUPRC value for a certain outcome is
thought to be due to the low incidence of these events.
Despite the low AUPRC in one outcome, it might be
helpful for clinicians to apply an individualized treatment,
because our model allows prediction of IDH by various
definitions simultaneously.

In conclusion, our study showed that IDH is
sufficiently and accurately predictable using a deep
learning model, without including any sensitive personal
information. In addition, the variables used in our
model can be obtained at any hemodialysis center
globally, making it more generalizable than existing
models. We expect that our model can be prospectively
validated and used in various situations for the safety of
hemodialysis patients.
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