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Abstract

Here we present a discrete-time-evolution model with one day interval to forecast the propa-

gation of Covid-19. The proposed model can be easily implemented with daily updated data

sets of the pandemic publicly available by distinct online sources. It has only two adjustable

parameters and it predicts the evolution of the total number of infected people in a country

for the next 14 days if parameters do not change during the analyzed period. The model

incorporates the main aspects of the disease such as the fact that there are asymptomatic

and symptomatic phases (both capable of propagating the virus), and that these phases

take almost two weeks before the infected person status evolves to the next (asymptomatic

becomes symptomatic or symptomatic becomes either recovered or dead). A striking

advantage of the model for its implementation by the health sector is that it gives directly the

number of total infected people in each day (in thousands, tens of thousands or hundred of

thousands). Here, the model is tested with data from Brazil, UK and South Korea, presenting

low error rates on the prediction of the evolution of the disease in all analyzed countries. We

hope this model may be a useful tool to estimate the propagation of the disease.

Introduction

A newly identified coronavirus capable of infecting humans was found in patients hospitalized

in Wuhan, China [1] (and, possibly, in Europe [2]) in December 2019. Named Severe Acute

Respiratory Syndrome Coronavirus-2, or SARS-CoV-2, and causing the respiratory syndrome

known as Covid-19, it joins a group coronaviruses which originated from animals and resulted

in human diseases, including Severe Acute Respiratory Syndrome (SARS) and Middle East

Respiratory Syndrome (MERS). However, while these diseases share to some extent similar

clinical symptoms, including fever, dry cough and dyspnoea [3], the Covid-19 outbreak

quickly spread worldwide and became a global public health crisis. In 30 January 2020 WHO

declared Covid-19 a Public Health Emergency of International Concern (PHEIC) [4], and

soon thereafter, on 11 March 2020 it was declared a global pandemic. Notably, while on 30

January 2020 there were 8.324 confirmed cases worldwide, on 28 May 2020 this number

increased to almost 6 million [5]. Economically, it is expected that the Covid-19 pandemic
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results in a recession at least as severe as the 2009 crisis [6]. As such, to reduce the social and

economic burden caused by the pandemic, the development of reliable models to forecast its

propagation is a promising strategy to assist public policies aiming at controlling further dis-

semination of the disease.

Previously published models of propagation of diseases include SIR [7], SEIR, SIS and oth-

ers [8–11]. These are powerful models, as they are relatively simple and perform well on dis-

tinct infectious diseases. However, these models are in general based on differential equations

and their implementation with available data are rather challenging, what makes them difficult

to be widely understood and implemented. Notably, for Covid-19 the accessible data set is

extensive and updated in a daily basis, including number of confirmed cases, deaths, and

recovered people per country. This increases the relevance of simple models that can be easily

implemented and fed with daily updated data from the pandemic, facilitating tracking of its

propagation and assessment of the efficacy of public policies aiming to control it in a daily

basis. Moreover, the recent history of infectious diseases have demonstrated that emergence of

outbreaks are relatively frequent, to a point that such events are being included in scientific

[12, 13] and political [14] discussions on preparedness for future outbreaks. Therefore, as cur-

rent (in case of Covid-19) and future, yet unknown, infectious diseases will continue to impact

us, the development of simple but efficient models to track pandemics evolution based on

daily updated data may be valuable not only for Covid-19 but also for potential future out-

breaks to come.

The data set of the Covid-19 pandemic can be found online by distinct sources, including

governmental, e.g., the European Centre for Disease Prevention and Control (ECDC) [15],

and non-governmental, private sources, e.g. the Johns Hopkins University [5] (JHU, from

USA), and the website Worldometer [16]. These sources commonly present small differences

in their data sets, but as common characteristics all present daily updated data and, among

other quantities, the total number of confirmed cases of infected people and the total number

of deaths per country. Here, we present a model that can easily incorporate these available data

sets and is based on discrete-time equations to forecast the number of confirmed cases by

Covid-19 in any given country for the next 14 days. Among its strengths, the presented model:

(i) presents low relative error rates, as tested in data from Brazil, South Korea and UK; (ii) pro-

vides easily interpretable results, specifically the predicted number of infected people in the

next 14 days; (iii) presents results that are directly comparable across countries; and (iv) incor-

porates the average time related to the disease incubation period (asymptomatic phase) and

the average time related to the symptomatic phase, both parameters adjustable according to

the pandemics’ characteristics.

A discrete-time model for the Covid-19 outbreak

The main points about the Covid-19 pandemic taken into account in our model are the

following:

• In a population, we can distinguish five types (classes or phases) of people. They are:

a) people immune to the virus.

b) people susceptible (S) to the virus but not infected.

c) people infected but still in the asymptomatic phase (A). They can contaminate other people

but present no symptoms. This phase takes roughly two weeks before clinical symptoms

become apparent.
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d) people already presenting the clinical symptoms of the infection (I). This phase takes

roughly two weeks before either recovery or death.

e) people recovered (R) from the disease or dead.

• The disease follows the sequence: S! A! I! R. The time interval, T, going from A! I
commonly vary from few days to two weeks (according to the Centers for Disease Control

and Prevention, USA [17]) and we will take, for simplicity, T = 14 days. The time interval

going from I! R can also vary from 10 to more than 20 days and again, for simplicity, we

will take the same value T = 14 days. Clearly, this is a crude simplification since these time

intervals can significantly vary per individual. For example, in patients where lungs are

severely affected the recovery period is expected to take considerably longer than for patients

presenting symptoms of a mild flu only. Therefore, putting an average value T = 14 for both

phases A and I is a simplification that can only be supported by fitting with the real data set:

if the fitting produces a reasonably accurate forecast, then this average value can be kept.

Otherwise, the value for T may be fine-tuned by more sophisticated generalizations of the

model. Nevertheless, in all cases we have studied, the average error rate of tested predicted

values were lower than 5%.

• Immune people are not included in the model as they are assumed to not be affected by the

virus, nor transmit it. Furthermore, it is assumed that a recovered person does not become

susceptible again, i.e., after phase I the person is assumed to not be vulnerable to be re-

infected by SARS-CoV-2.

We propose that the daily evolution of Covid-19 can be modelled by the following discrete-

time equations:

Sðt þ 1Þ ¼ SðtÞ � a SðtÞAðtÞ � b SðtÞ IðtÞ ð1Þ

Aðt þ 1Þ ¼ AðtÞ þ a SðtÞAðtÞ þ b SðtÞ IðtÞ � Aðt þ 1 � TÞ þ Aðt � TÞ ð2Þ

Iðt þ 1Þ ¼ IðtÞ þ Aðt þ 1 � TÞ � Aðt � TÞ � Iðt þ 1 � TÞ þ Iðt � TÞ ð3Þ

Rðt þ 1Þ ¼ RðtÞ þ Iðt þ 1 � TÞ � Iðt � TÞ ; ð4Þ

where t means the day, T means the duration of asymptomatic (incubation time) and symp-

tomatic infected phases, both herein assumed to be 14 days. The term aS(t)A(t) indicates that

a number of the susceptible people becomes asymptomatic if in contact with asymptomatic

people; the same with the term bS(t)I(t) where susceptible people becomes asymptomatic if in

contact with symptomatic infected people, from now on simply called infected people. The

parameters a and b are constants, measuring the intensity of contagion coming from asymp-

tomatic or infected people and having, in principle, different values. Finally, it is important to

note that the sum S(t) + A(t) + I(t) + R(t) is a constant value and does not depend on time. In

fact, it accounts for a fixed part of the studied population, in the order of tens of millions or

eventually more for countries with large populations. As such, for these countries, the model

may be described in a simplified manner if we consider that S is in practical terms a constant

(see next section).

The parameter T is a key component of the model as it indicates the influence of one class

into another. For example, the difference of the number of infected people from time t to time

t + 1, I(t + 1) − I(t), see Eq (14), is consequence of two factors. The first one is the change in

the number of asymptomatic people from time t − T to t + 1 − T, A(t + 1 − T) − A(t − T),
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because after a time T these asymptomatic people become infected people. The second one is

that we have to discount the number of people leaving the class of infected ones from t − T
to t + 1 − T, because they have more than 14 days since the symptoms of the disease mani-

fested, i.e., I(t + 1 − T) − I(t − T). Hence, those become part of the class of recovered (or dead)

people, R.

For simplicity, we have included in the same parameter, R, the healed and dead people. If

we want to study these two cases in more detail, we can replace the Eq (4) by two equations,

with the new variables H(t) (healed) and D(t) (dead) given by:

Hðt þ 1Þ ¼ HðtÞ þ ð1 � mÞ ½Iðt þ 1 � TÞ � Iðt � TÞ� ð5Þ

Dðt þ 1Þ ¼ DðtÞ þ m ½Iðt þ 1 � TÞ � Iðt � TÞ� ; ð6Þ

where R(t) = H(t) + D(t) and 0< μ< 1 is a parameter that indicates the percentage of infected

people dead by Covid-19 after T days in a given country. Importantly, this parameter may vary

between countries but for most countries this percentage is accessible by publicly available

sources [18]. With these equations, the total number of healed and dead people can be individ-

ually predicted by the model. Here we focus on parameters A(t) and I(t), but in future works

these two other variables will be analyzed.

A simplified discrete-time model

The model presented in the last section can still be simplified for countries with large popula-

tion. First, as remarked before, it should be noted that the number of susceptible people can

be a large number for countries with millions of inhabitants. The epidemic starts with a very

small number of infected people, that increases and can reach (as currently seen) hundreds of

thousands of people. For countries with large population, e.g., several tens (or even more than

a hundred) million habitants, we can further simplify the model described in Eqs (1)–(4)

assuming that the number of susceptible people is practically constant in time, S(t)’ S, where

S is a constant, so there is no time evolution for S. This can be assumed for countries with large

populations as the difference between infected (asymptomatic A + symptomatic I, which theo-

retically may reach up to few hundred thousand people in a given country) and susceptible

people S (depending on the country reaching over a hundred million people) is still so huge

that the decrease in the sample of susceptible people S may be negligible. As such, calling 1 +

aS� α and bS� β, where α and β are positive constants, the equations for Covid-19 for large-

population countries can be written as:

Aðt þ 1Þ ¼ aAðtÞ þ b IðtÞ � Aðt þ 1 � TÞ þ Aðt � TÞ ð7Þ

Iðt þ 1Þ ¼ IðtÞ þ Aðt þ 1 � TÞ � Aðt � TÞ � Iðt þ 1 � TÞ þ Iðt � TÞ ð8Þ

Rðt þ 1Þ ¼ RðtÞ þ Iðt þ 1 � TÞ � Iðt � TÞ ; ð9Þ

where A, I and R are counted by hundreds, thousands or hundred of thousands. Hence, here

the sum A + I + R is not a constant anymore, but an increasing function on time. The suscepti-

ble people are, in these cases, considered as a ‘thermostat’, practically not changing in time.

Notice that here the total number of inhabitants of a country is not an important parameter, as

it is in other disease models.

This simplified model can be used while the number of A + I + R is lower than a small per-

centage of the total number of susceptible people of that country. Conservatively, we recom-

mend to use it while this sum is lower than 5%. However, this threshold of 5% is not strict and
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may be modified to some extent, but if the number of A + I + R is larger than 10% of suscepti-

ble people, the accuracy of the simplified version of the model may be affected. In these cases,

the complete model represents a better alternative to forecast progress of Covid-19.

An analysis of these equations shows that Eqs (15) and (16) are the key equations of the

model, with the Eq (9) being a supportive equation. This system of equations has only two

parameters, α and β, that can be found phenomenologically for each country and roughly mea-

sures the capacity of contagion of asymptomatic and symptomatic people. This model could

have more parameters, but it seems that all other parameters can be condensed in these two,

with the only requirement of having positive values.

How to use available data on this model

The data set provided by the above-mentioned sources are updated in a daily basis and have at

least two useful information for the proposed model: the number of deaths and the total num-

ber of confirmed cases (total symptomatic infected) people, Itot(t) per country and globally.

The main variables in our model are the number of infected (i.e., asymptomatic A(t) + symp-

tomatic I(t)) people at time t, i.e. people that at time t can infect susceptible people. There are

many definitions of symptomatic people in these sources, and they are not completely equiva-

lent. For our model, we will define the class of symptomatic people by means of the total num-

ber of confirmed cases by country, as the definition of confirmed cases is the same on all

sources.

With our hypothesis we can simply define:

IðtÞ ¼ ItotðtÞ � Itotðt � TÞ ; ð10Þ

that is, the number of infected people at time t, defined as I(t), is the total number of infected

people at time t minus the total number of infected people at time t − T. In turn, the total num-

ber of infected people at time t − T represents people who either recovered or died after the

infection, since their symptoms manifested in more than T days. Hence, by defining t0 as the

first day when someone is identified with the symptoms of the infection in a given country,

I(t0) as the “first infected people”, i.e., the number of people infected at day t0, and t = tN as the

last day when data is collected, we can construct the corresponding data set of the variable I(t)
from t = t0 until t = tN. Here, we are assuming that Itot(t0 − τ), where τ is a positive integer, is

equal to zero since we are considering t0 as the day of the first infected people (with symp-

toms). This ensues that I(t) = 0 for 1� t< t0. In fact, in our model, we always have t0 = T
+ 1 = 15. Our day one for a specific country is always t0 − T, the day of the first asymptomatic

people.

Now, we can construct, from the recent built I(t) time series, the time series of the other var-

iable, A(t). For that we use Eq (16) rewritten as,

Aðt þ 1Þ � AðtÞ ¼ Iðt þ T þ 1Þ � Iðt þ TÞ þ Iðt þ 1Þ � IðtÞ : ð11Þ

With this equation we can construct the time series of A(t) from t = t0 − T = 1 until t = tN − T.

As t0 − T = 1, i.e., the first day when people got contaminated (but still asymptomatic), we can

define the initial condition in order to solve Eq (11),

Aðt0 � TÞ ¼ Að1Þ ¼ Iðt0Þ ¼ Itotðt0Þ : ð12Þ

After T days these people will lead to the first infected people, at time t = t0 = T + 1. So, from

the real data set of total infected people we can construct the time series of I(t) from t = 1, � � �,

tN and, from Eqs (11) and (12), the time series of A(t) from t = 1, � � �, tN − T.
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In the next step we use Eqs (15) and (16) to generate the theoretical time series for A(t),
from t = tN − T + 1, and for I(t) from tN + 1. For that we need the values of α and β.

Obtaining adequate values for α and β
We need the series of A(t) and I(t) to forecast the next T days for the total number of infected

people starting on day tN. One way to try to get good values for the parameters α and β is to

make the prediction using Eqs (15) and (16) not from tN but, say, from tN − 5 until tN, that is,

we consider the real data until the day tN − 5 for I(t) and the real data until tN − T − 5 for A(t).
This way it is possible to check the theoretical values of A(t), from tN − T − 5 until tN − T, I(t)
and Itot(t) from tN − 5 until tN with the real ones, obtained from the real data set until tN.

Adjusting α and β to best fit these, say, five values, the forecast of the values of A(t), I(t) and

Itot(t) from tN until tN + T + 1 ensue. In fact, the prediction for A(t) and I(t) has no upper

bound for the chosen values of α and β, only the prediction for Itot(t) is limited to the next T
days due to Eq (10) if we want to keep using real data. Other ways to obtain good values for the

parameters α and β can be conceived, but we propose this simple way as it worked well in the

tested cases.

The values of α and β can change over time following changes on social behaviour, e.g. due

to measures of confinement by local governments or increasing consciousness of the popula-

tion, which in turn affect the interactions of susceptible people with asymptomatic and symp-

tomatic infected people. Therefore, it is recommendable to test the adequacy of the parameters

α and β along the progression of the disease. In the next section we will see examples of the

application of the model in some countries.

Case studies

If we regard the graphs of total infected people for several countries, we can notice three stan-

dard patterns. The first one shows a curve increasing faster than a linear one. These are the

cases of Brazil, Russia, India, among others. The second pattern shows an almost linear

increasing curve, e.g., UK and US. Finally, the third one presents a strong increasing in the

beginning and then the curve tends to saturate, e.g., South Korea, Germany and China. We

will discuss examples of each one of these three patterns. In all cases we are considering the

data until May 28th. Then, we use the days from May 23th or 24th until May 28th to adjust

good values for α and β. These values can then be used for prediction from May 28th until

June 11th.

Brazil

The first infected person in Brazil was identified on February 26th, defined here as day t0.

Using T = 14, the first infected person according to our model was identified on February 12th

(i.e., 14 days before), defined here as day t = 1. The time series of the total infected people from

the day 01, February 12th, until May 28th (107 days in total), can be obtained from the sources

[5, 15, 16]. We are using herein, in this case, the data set from [5]. Based on this data set we

can construct the time series of IBR(t) from t = 1, � � �, tN = 107 and ABR(t) from t = 1, � � �, tN
− 14 = 93 (Fig 1). Here, we can implement our proposed model to predict 14 days after day

107.

With the intention to test the method and find good values for the parameters α and β, we

considered our fictitious tfN ¼ 102-th day, so it is possible to compare the total number of

infected people as provided by the original source (JHU) with the predicted data generated by

the model. For this comparison we will focus on days 103 to 107 and we consider only the real
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data of IBR(t) up to day 102 and data of ABR(t) up to day 88. Adjusting the predicted data gener-

ated by the method with the real data values, we found that for α = 1.01 and β = 0.17 the rela-

tive error from days 103 to 107 is lower than 2%. The relative error in this period of five days is

less than 2%.

These values can then be applied to estimate the total number of infected people T = 14

days following day 107 (Fig 2). The empty triangles (red) are the real data obtained from [5]

until day 121, June 11th. The full circles (red) are the numbers predicted by the model starting

from day 108 and based on the real data until day 107. The maximal relative error, defined as

Fig 1. Symptomatic and asymptomatic cases of Covid-19 in Brazil. Number of symptomatic infected people in

Brazil from day 01, February 12th, until day 107, May 28th. Notice that the curve for symptomatic infected people

presents an increasing monotonic behavior. In the inset we show the curve of asymptomatic (but infected) people until

day 93, that also presents a strong monotonically increasing behavior.

https://doi.org/10.1371/journal.pone.0241472.g001

Fig 2. Modelling of Covid-19 dissemination in Brazil. Total number of people infected by Covid-19 in Brazil, ItotBR, as

function of the number of days, starting from February 12th, indicated as number 1. Empty triangles (red) are real data

and full circles (red) are the forecast from day 107, May 28th, until day 121, June 11th. α = 1.01 and β = 0.17. Notice

that the curve increases faster than a linear one. In the inset we show a shorter interval, from day 100 up to day 121.

https://doi.org/10.1371/journal.pone.0241472.g002
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errorðtÞ ¼ ðItotðtÞ � ItotmodelðtÞÞ=ðI
totðtÞÞ registered on the last day of the forecast, was 5.27%.

Itot(t) is the total registered number of infected people in a specific country and ItotmodelðtÞ is

the total number of infected people given by the numerical simulation of the model, at day t.
The inset shows a shorter scale, from day 100 until day 121.

It should be noted that in the case of Brazil the values for parameters α and β are practically

constant from April to early May, but from May to June it is possible to notice a slight decrease

on these values. This does not happen with the other countries here presented, where the val-

ues of the parameters decrease faster with time. Accordingly, the parameters α and β should be

updated for each change on the monotony of the curve of infected people, since these changes

may reflect new social behaviours affecting the contagion parameters α and β, with conse-

quences on the time evolution of the disease. Clearly, these changes are unpredictable because

they depend on public health polices and population awareness.

UK

Here, we consider the real data of the total number of infected people by Covid-19 in UK. The

first people identified in UK presenting symptoms of Covid-19 were registered on January

31th, which we define here as day t0. Using T = 14, the date of contagion for those people was

on January 17th, defined here as day t = 1. The data set of the total infected people from the

day 01, January 17th, until May 28th (133 days in total), can be obtained from the sites [5, 15,

16]. Here we are using the data set from the Johns Hopkins University [5]. From this data set

we can build the time series of symptomatic infected people fIUKðtÞg
133

t¼1
, and asymptomatic

infected people fAUKðtÞg
119

t¼1
(Fig 3). In UK, the curves for symptomatic infected people and

asymptomatic people suggest that the peak of the contagion ended roughly 100 days after the

first registered case of infection. Besides that, some oscillations can be found following the

peak and prior to the pronounced decline in contagion. This is in contrast with the curve pro-

files from Brazil, as there they are monotonically increasing over time. Here, in order to cap-

ture the oscillatory profile from UK into the model and estimate good values for parameters α
and β, it is better to consider a small interval of time for the test, with all data points belonging

to the slope of the new tendency.

Fig 3. Symptomatic and asymptomatic cases of Covid-19 in UK. Number of infected, symptomatic people in UK,

IUK, from January 17th until May 28th, day 133. In the inset, the asymptomatic (but infected) people, AUK, in

thousands and until day 119, is shown.

https://doi.org/10.1371/journal.pone.0241472.g003
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Therefore, to test the method in UK, we will consider our fictitious tN = 129-th day, four

days less the true tN = 133. As a consequence, it will be possible to test the days from 129 until

133, generated by the method (for this test we are considering only the real data of IUK(t) up to

the day 129 and of AUK(t) up to day 115). The agreement among the real data and the points

predicted by the method from day 129 until day 133 is quite good for α = 0.94 and β = 0.001.

Using these values for the parameters we can predict the evolution of the total number of

infected people in UK from day 133 until day 147 (June 11th). Fig 4 shows the real data, with

empty triangles (blue), and the numbers predicted by the method, with full circles (red), for

α = 0.94 and β = 0.001. The inset shows a window from day 128 until day 147. The agreement

is quite good for 14 days and the maximum error in these period is always smaller than 4%.

South Korea

The first infected person with symptoms in South Korea was identified on January 20th, our

day t0. In our model this means that the first asymptomatic person was infected on January

6th, here defined as day 1. The data set from January 06 (day 1) until May 28th (day 144), the

last day where data was considered for forecast, was obtained from the ECDC site [15] (i.e.

demonstrating the implementation of the model based on data set from a distinct source).

Based on the data of total infected people, we can build the time series for the (symptomatic)

infected people, fIKorðtÞg
144

1
, see Eq (10). From the time series of {IKor(t)}, and using Eqs (11)

and (12), we can build the time series for the asymptomatic people, fAKorðtÞg
130

1
. Fig 5 shows

the graph of infected and asymptomatic (inset) people in South Korea in each day. In Fig 6 it is

shown the real total number of infected people in South Korea until day 158, June 11th, with

(blue) empty triangles. The full circles (in red) are the prediction of the model, keeping α =

1.04 and β = 0.02 constants, until day 158, June 11th. The error in the whole period is smaller

than 0.85%, demonstrating remarkable accuracy.

Fig 4. Modelling of Covid-19 dissemination in UK. Total number of Covid-19 infected people in UK as function of

the number of days, starting from January 17th, marked as number 1. Empty triangles (blue) are real data up to day

147 (June 11th), and full circles (red) are the prediction of the model starting on day 134 (May 29th) until day 147

(June 11th). α = 0.94 and β = 0.001. The inset shows a short scale, from day 128 up to day 147. The forecast (full circles,

red) was made based on day 133 and previous days.

https://doi.org/10.1371/journal.pone.0241472.g004
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Discussion

In the present study we build and present a discrete-time model to study the time evolution of

the Covid-19 pandemic based mainly on the numbers of asymptomatic and symptomatic

infected people. The model has only two parameters, α and β, what facilitates its implementa-

tion by health sector personnel and interested people in general. It is possible to use the daily

updated data set of total confirmed cases of infected people to choose values for these parame-

ters and predict how this number of infected people changes in the next 14 days if the parame-

ters are kept constant. The model gives the effective numbers of total infected people, in tens

Fig 5. Symptomatic and asymptomatic cases of Covid-19 in South Korea. Infected (symptomatic) (IKor) people until

day 144 (May 28th) in South Korea. Inset: asymptomatic (but infected) (AKor) people until day 130 (May 14th). The

propagation of the disease is controlled but some oscillations still remain.

https://doi.org/10.1371/journal.pone.0241472.g005

Fig 6. Modelling of Covid-19 dissemination in South Korea. Total infected people in South Korea, (ItotKorðtÞ), until day

158 (June 11th). Empty triangles (blue) are real data from [15]. Full circles are the forecast, using the values α = 1.04

and β = 0.02, from day 144 until day 158 (June 11th). In the inset the window from day 140 until day 158 is shown, in

thousands.

https://doi.org/10.1371/journal.pone.0241472.g006

PLOS ONE A discrete-time-evolution model to forecast progress of Covid-19 outbreak

PLOS ONE | https://doi.org/10.1371/journal.pone.0241472 October 29, 2020 10 / 14

https://doi.org/10.1371/journal.pone.0241472.g005
https://doi.org/10.1371/journal.pone.0241472.g006
https://doi.org/10.1371/journal.pone.0241472


or hundreds of thousands, that can be directly compared with the data set available from dis-

tinct sources, including Johns Hopkins University, ECDC, Worldometer and others. Also, the

model incorporates the average time-delay asymptomatic people take to become symptomatic

(incubation period) and the average time-delay the symptomatic infected people take to

recover or, eventually, die. Here, the model has been implemented in three countries (Brazil,

UK and South Korea), and the predicted values generated by the model from May 29th until

June 11th, based on the real data set until day May 28th, agrees very well with the real numbers

of total infected people during this period. The maximum daily error for these three cases,

each one with a period of 14 days, is around 5%. As such, we have found that the model is able

to provide a reliable estimate of the status of the disease at least two weeks ahead of analysis

time. Remarkably, this is achieved with a rather simple algorithm, based only on fitting two

parameters and on publicly available data [5, 15, 16]. Altogether, we believe these characteris-

tics facilitate its implementation by public sector, and may be a useful tool to track disease

propagation and efficacy of public policies aiming to control it.

It may be argued that the model is over-simplistic and do not account for complexities

from the pandemic evolution. For instance, it has been reported that the coronavirus can still

be detected in throat swabs from recovered patients up to 13 days after they present no symp-

toms of the disease (as evaluated by clinical assessments), indicating that even people consid-

ered to be recovered from Covid-19 may still potentially infect others [19]. Furthermore, it has

been speculated the possibility of reinfection for patients who recovered from Covid-19 (in

this regard, preliminary data from primates support the hypothesis of immunization and pro-

tection against reinfection [20]). In fact, we are aware that the model does not cover extensively

the possible complexities related to disease propagation, but it focuses on the main course of

propagation instead. As the model indicates a small error rate in its prediction, we considered

it to fulfil its purpose adequately, exchanging complexity for simplicity in its comprehension

and implementation while maintaining satisfactory predictive power (accuracy). These, in our

understanding, are core principles for its assimilation by public health sector.

Moreover, the assessment of some complexities related to the pandemic may be heavily

influenced by regional factors, what makes them challenging to reliably model, interpret or

compare results between countries. For instance, some patients may develop from asymptom-

atic phase A to recovered phase R without undergoing the symptomatic phase I, a situation not

included in the model. Here, a challenge for modelling those cases is that not only the number

of Covid-19 testing varies dramatically between countries but also the infectious status of the

tested population may vary significantly between countries. For example, it is expected that

countries testing the population more extensively are detecting more asymptomatic subjects

(including those in the above-mentioned scenario), while countries with less testing are priori-

tizing diagnosing symptomatic patients, what risks biasing the model towards countries with

more data available. Still, having discussed the challenges related to reliably assessing these

cases, one could evaluate their effects in our model by adding a new parameter γ in Eqs (2) and

(3), and modifying them into the equations:

Aðt þ 1Þ ¼ AðtÞ þ a SðtÞAðtÞ þ b SðtÞ IðtÞ � g ½Aðt þ 1 � TÞ � Aðt � TÞ� ð13Þ

Iðt þ 1Þ ¼ IðtÞ þ g ½Aðt þ 1 � TÞ � Aðt � TÞ� � Iðt þ 1 � TÞ þ Iðt � TÞ ; ð14Þ

implying the changes in Eqs (5) and (6):

Aðt þ 1Þ ¼ aAðtÞ þ b IðtÞ � g ½Aðt þ 1 � TÞ � Aðt � TÞ� ð15Þ

Iðt þ 1Þ ¼ IðtÞ þ g ½Aðt þ 1 � TÞ � Aðt � TÞ� � Iðt þ 1 � TÞ þ Iðt � TÞ ; ð16Þ
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where 0< γ< 1. This means that not all asymptomatic people between days t − T and t + 1 − T
will become infected people T days after. It should be emphasized, though, that to explicitly

include these cases into the model comes at the cost of (a) increasing the complexity of the

model by introducing another parameter, γ, (b) risking accuracy, as this information is chal-

lenging to reliably assess in any country (unless massive testing is implemented in the popula-

tion in a narrow time window), and (c) potentially impacting the comparability across

countries, as the assessment of this population may be largely different between countries, as

discussed above. In the simplified model (i.e., without parameter γ), we assume that this param-

eter is integrated in the parameter α, decreasing its value, and consequently reducing the num-

ber of infected people without increasing the number of parameters. Considering the good

predictive power presented by the simplified model, we believe that its simplistic approach

based on the main course of the pandemic has the advantages of being easier to implement,

and providing more standardized, interpretable and comparable results across countries.

We would like to remark that the prediction for the total number of infected people is

restricted to 14 days because of the definition given in Eq (10), where we want to use the real

data for the total number of infected people. If we relax this requirement to use real data, we

can get points for the whole future, keeping the parameters constant. Certainly, this is not

expected and this prediction for a long time is likely not reliable. It only gives an estimate of

how will the disease propagate in the future if a given country does not change the value of the

parameters. In fact, in practically all tested cases the parameters α and β decreased on time,

likely reflecting measures against the propagation of the disease. For this reason, predictions

provided by the model here presented are expected to decrease its accuracy for longer periods.

The people from phase R incorporates those who recovered as well as those who died fol-

lowing the infection. Thus, it is also possible to estimate separately the number of recovered

and the number of dead people in two weeks, by simply applying in the R estimate the percent-

age of recovered and dead people from the studied country. As this is straightforward, we did

not analyze this aspect in this study, but it is planned to be done in future works.

A last word about the model: it is noteworthy, the model may also be used in other similar

diseases—having both asymptomatic and symptomatic phases and both being contagious—as

long as these other diseases have a daily (or some periodic) update of the data set. Clearly, the

parameter T has to be adapted to the life cycle of the studied pathogen and it also is plausible

to require two distinct T0’s, one for the asymptomatic and other for the symptomatic phase.

This, however, needs to be fitted to the specific characteristics of the studied disease.

Finally, a more extensive work is being prepared, with the analysis of many other countries

and a study of the parameter space. We hope the present model can contribute to global efforts

made to understand and control the Covid-19 pandemic.
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