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Abstract

Background: Faecal egg counts are a common indicator of nematode infection and since it is a heritable trait, it
provides a marker for selective breeding. However, since resistance to disease changes as the adaptive immune
system develops, quantifying temporal changes in heritability could help improve selective breeding programs. Faecal
egg counts can be extremely skewed and difficult to handle statistically. Therefore, previous heritability analyses have
log transformed faecal egg counts to estimate heritability on a latent scale. However, such transformations may not
always be appropriate. In addition, analyses of faecal egg counts have typically used univariate rather than
multivariate analyses such as random regression that are appropriate when traits are correlated. We present a method
for estimating the heritability of untransformed faecal egg counts over the grazing season using random regression.

Results: Replicating standard univariate analyses, we showed the dependence of heritability estimates on choice of
transformation. Then, using a multitrait model, we exposed temporal correlations, highlighting the need for a random
regression approach. Since random regression can sometimes involve the estimation of more parameters than
observations or result in computationally intractable problems, we chose to investigate reduced rank random
regression. Using standard software (WOMBAT), we discuss the estimation of variance components for log
transformed data using both full and reduced rank analyses. Then, we modelled the untransformed data assuming it
to be negative binomially distributed and used Metropolis Hastings to fit a generalized reduced rank random
regression model with an additive genetic, permanent environmental and maternal effect. These three variance
components explained more than 80 % of the total phenotypic variation, whereas the variance components for the
log transformed data accounted for considerably less. The heritability, on a link scale, increased from around 0.25 at
the beginning of the grazing season to around 0.4 at the end.

Conclusions: Random regressions are a useful tool for quantifying sources of variation across time. Our MCMC
(Markov chain Monte Carlo) algorithm provides a flexible approach to fitting random regression models to
non-normal data. Here we applied the algorithm to negative binomially distributed faecal egg count data, but this
method is readily applicable to other types of overdispersed data.
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Background
Faecal egg count is a commonly used indicator of suscepti-
bility to gastrointestinal nematode infection and provides
a marker for selective breeding programs. Infection has
traditionally been controlled with anthelmintic drugs, but
resistance to these drugs has directed attention towards
selective breeding as a sustainable and viable alternative
[1]. Selective breeding programs rely on estimates of the
animals’ breeding values, which represent the sum of the
additive effect of the genes received from both parents
[2]. Thus, designing an effective selective breeding scheme
requires accurate assessment of the heritability.
The analysis of faecal egg count data is challenging for

two reasons. First, the data are overdispersed, which has
led previous studies to use transformed faecal egg counts
[3, 4]. Transformations of faecal egg count data (com-
monly a log transformation) can result in bimodal data [5]
and therefore may not be appropriate [6, 7]. However, any
transformation can be avoided by modelling the raw fae-
cal egg counts as a negative binomial distribution [3]. The
second challenge is that, as the adaptive immune response
develops, the sources of variation and the heritability of
faecal egg counts are expected to change over time, which
suggests that a multivariate approach may be appropri-
ate. The goal of this paper was to estimate the change in
heritability of faecal egg count over the grazing season.
Random regression models are commonly used to

model changes in quantitative traits measured over a con-
tinuous scale such as time or age [8]. In particular, they can
be used to estimate changes in genetic and environmental
variance components as continuous functions over a time
frame by specifying time-dependent functions φ1, . . . ,φk
[9]. However, these models can involve the estimation of a
large number of parameters that may exceed the number
of observations and become computationally intractable,
which prompts the use of reduced rank random regression
[8]. By estimating each covariance matrix using relatively
few principal components, or eigenfunctions, the number
of parameters to be estimated can be significantly reduced
[8]. Then, the reduced rank random regression models
estimate continuous covariance functions using a small
number of the largest eigenvalues [10].
Random regression models have been widely used to

estimate genetic parameters of repeated measurements
over time [11] and, previously, Bayesian methods have
been used to capture the skewed distribution of faecal egg
count data [12, 13], but because of the methodological
challenges, to date, these two approaches have not been
combined.
Software is available to fit random regression models,

such as WOMBAT [14], ASReml [15] and RRGIBBS [16].
Each program can be used to estimate variance com-
ponents. WOMBAT fits linear mixed models, of full or
reduced rank, through restricted maximum likelihood

(REML). ASReml can be used to fit generalised lin-
ear mixed models and RRGIBBS fits random regression
models using a Gibbs sampler. However, none of these
packages can conduct random regression analyses of gen-
eralised mixed models that are also reduced rank. For
these reasons, we ultimately took a Bayesian approach
by fitting a multivariate negative binomial reduced rank
random regression model using a Metropolis Hastings
algorithm implemented in R [17].
This paper deals with heritability estimates on two

scales. Using faecal egg count data collected from five
consecutive cohorts of 200 Scottish Blackface lambs, our
overall goal was to provide an alternative method to esti-
mate the heritability of faecal egg count on the link scale
and identify the short-comings of estimating heritabil-
ity on a latent scale by giving specific attention to log
transformations [7, 18, 19].
The specific steps in this work were to: (1) demonstrate,

using our data, the short-comings of the approaches that
are commonly used to handle faecal egg count data, in
particular, the use of univariate analyses when the data
exhibit correlations that are significantly different from
zero between variance components over time, and the
use of a log transformation when the data follow a neg-
ative binomial distribution; (2) we used standard soft-
ware (WOMBAT) to demonstrate and compare full and
reduced rank analyses of the log transformed data; (3)
we applied a reduced rank random regression approach,
which assumes that the data are negative binomially dis-
tributed. Using residual diagnostics, we showed that the
random regression model using the untransformed data
provided a bettermodel than the random regression based
on the log transformed data. Heritability estimates from
the random regression model using the untransformed
data were similar to those from the univariate analyses
in the later months; however, in the early months, the
random regression model explained a much greater pro-
portion of the variance and resulted in substantially higher
values of the heritability.

Methods
Data source
Data were collected over consecutive years from five
cohorts of 200 straight-bred Scottish Blackface lambs
between 1992 and 1996 [4]. Within each year, lambs
were born over a two-week period and monthly faecal
egg counts were estimated using standard procedures
between May and October with additional post-mortem
samples. As is common practice on this farm, immedi-
ately after collection of the faecal samples each month, the
lambs were given the recommended dose of anthelmintic.
Since eggs are counted in a 1

50 th of a gram of faeces, each
egg counted represents 50 eggs per gram [20]. Following
standard practice, we use the term faecal egg count (FEC)
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for eggs per gram of faeces, and subsequently use the term
raw egg count to refer to the distribution of counts per
1
50 th gram.
Seven categories of adult nematodes were detected with

variable prevalences across the five years. Teladorsagia
circumcincta was identified for nearly all the lambs anal-
ysed [21]. Across the five years, 36 rams and 485 dams
were examined.
The data are unbalanced with varying degrees of miss-

ingness between months and as much as two-thirds of the
data missing in May (Table 1). Post-mortem counts were
not measured in the last year of the study and most of the
data were collected from male lambs. Due to the unbal-
anced nature of the data and level of missingness, the first
and last time points were removed from all multivariate
analyses in this paper.

Modelling the data
Quantitative traits are often assumed to be normally dis-
tributed [22, 23]. Consequently, it has become common
practice to fit a normal distribution to log transformed
faecal egg counts (FEC) of the form log(FEC + c) for
some constant c [4, 24] or to Box-Cox transform faecal egg
counts [25]. However, such transformations can result in
bimodal data [5].
Transformation of faecal egg count data may not be

necessary [6, 7, 26] since such count data often follow a
negative binomial distribution [3]. The negative binomial
distribution is parameterised by the arithmetic mean μ

and a positive exponent r [27] and has also been shown
to be a good fit to the distribution of faecal egg counts
for a wide variety of parasites [5, 28]. In this parameter-
isation, the variance of the distribution is μ(1 + μ

r ) and
thus approaches a Poisson distribution as the dispersion
parameter r increases and so smaller values reflect more
dispersion.
We began our analyses of these data by fitting a series

of univariate nested half-sib design mixed models to log
transformed faecal egg counts and untransformed raw
faecal egg counts. We then used a multitrait animal model
to quantify temporal correlations, which prompted us to

Table 1 Number of records and percentage of missing records
for each month and post-mortem counts (PM)

Month Number of records % Missing

May 343 66 %

June 503 50 %

July 859 14 %

Aug 881 12 %

Sep 913 9 %

Oct 713 29 %

PM 503 50 %

use a random regression model. We used standard soft-
ware (WOMBAT) to implement full and reduced rank
analyses of the log transformed data and finally applied
our negative binomial reduced rank random regression
model.

Univariate analysis
In previous studies, heritabilities of log(FEC + 1) and
log(FEC + 25) transformations of these data were esti-
mated by treating each month independently [4, 24]. We
examined the use of log transformed faecal egg count
data by comparing univariate heritability estimates of
log(FEC + c) for a range of values of c over the seven-
month period. We assumed that the log transformed data
were normally distributed. For each model, we fitted year
of birth and sex as fixed effects. The nlme package in R
[29] was used to estimate heritabilities on the latent scale
using nested half-sib design mixed models. This model
takes the form:

Yijk = Xiθθθ + Sk + Djk + εijk ,

where Yijk is an observation from the i-th lamb, Sk is the
random effect of the k-th sire and Djk is the random effect
of the j-th dam within the k-th sire. Coefficients of fixed
effect are denoted by θθθ, Xi is the corresponding design
matrix and εijk is the residual variance.
We used similar univariate nested half-sib design mixed

models to estimate month by month heritabilities for the
raw egg count data. The residual variation in these models
was estimated using the method described by Tempelman
et al. [30]. The R package glmmadmb [31] was used to fit
negative binomial mixed effects models.
The MCMCglmm (MCMC generalised linear mixed

models) package [32] was used to fit transformed data
(log(FEC + 1)) to a multitrait animal model to esti-
mate correlations between June and October. Using this
method, we estimated pairwise phenotypic, maternal and
genetic correlations between the five months simultane-
ously. Due to the large number of parameters estimated,
we compared these results to those that were obtained
using a series of bivariate animal models as an informal
check of convergence [33]. Any major deviations between
the two sets of models would indicate that the chain had
not fully converged.
Eachmodel was run for 1 000 000 iterations with a burn-

in period of 50 000 iterations. Inverse-Wishart priors were
used for each covariance matrix. We constructed these
priors such that faecal egg counts accross months were
a priori independent with the total variance being spread
evenly across months [32].

Multivariate analysis
A log(FEC + 1) transformation was used for the multi-
variate analyses of the transformed faecal egg count. This
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transformation was chosen for consistency with previous
multivariate analyses of these data [4].
Random regression models are mixed effect models

with individual functions of continuous covariates fitted
as random effects and are commonly fitted by specify-
ing time-dependent basis functions φ1(t), . . . ,φK (t) [8]. In
this paper, we aimed at modelling individual changes in
additive genetic, maternal and permanent environmental
effects over time. Time refers to month and we assumed
that all fixed effects remained constant across months.
Sex and year of birth were included as fixed effects in all
models.
For lamb i with trait values Yi = {Yi1, . . . ,YiT } (where T

denotes the number of time points), a random regression
model takes the form:

Yi = Xiθθθ + ���α′
iα
′
iα
′
i + ���β′

iβ
′
iβ
′
i + ���γ′

iγ
′
iγ
′
i + εiεiεi.

The matrix ��� contains the set of basis functions evalu-
ated across the time frame. The vector θθθ contains fixed
effect regression coefficients and Xi is the correspond-
ing data matrix for lamb i. Vectors α′

iα
′
iα
′
i, β′

iβ
′
iβ
′
i and γ′

iγ
′
iγ
′
i are

individual regression coefficients relating to the additive
genetic, permanent environmental and maternal random
effects. Note that the number of basis functions can dif-
fer between random effects. Addition residual variance is
denoted by vector εiεiεi = {εi1, . . . , εiT }.
Since any covariance matrix ��� can be decomposed as

��� = EλETEλETEλET , where λλλ is a diagonal matrix of ordered eigen-
values and EEE an orthonormal matrix of eigenvectors, the
matrix can be approximated by setting the smallest eigen-
values (in the matrix λλλ) to zero. Using this decomposition,
the random regression model can be written as:

Yi = Xiθθθ + ���(EαEαEαEαEαEα
T )α′

iα
′
iα
′
i + ���(EβEβEβEβEβEβ

T )β′
iβ
′
iβ
′
i

+���(Eγ EγEγ EγEγ Eγ
T )γ′

iγ
′
iγ
′
i + εiεiεi

= Xiθθθ + �Eα�Eα�Eααiαiαi + �Eβ�Eβ�Eββiβiβi + �Eγ�Eγ�Eγγiγiγi + εiεiεi,

with αiαiαi = EαEαEαTα′
iα
′
iα
′
i, γiγiγi = EγEγEγTγ′

iγ
′
iγ
′
i and βiβiβi = EβEβEβTβ′

iβ
′
iβ
′
i. This

transformation forms the basis of a reduced random ran-
dom regression model, however a full description is in
Meyer and Kirkpartick [8].

Random regression usingWOMBAT
The implications of a reduced rank analysis of these data
were assessed using full and reduced rank random regres-
sion models in WOMBAT [14]. This program assumes
normally distributed traits and, thus, we used transformed
faecal egg count data (log(FEC + 1)).
The number of time-dependent basis functions and the

number of eigenfunctions are specified by the user. We
used K to denote the number of basis functions andM to
denote the number of eigenfunctions used in any reduced
rank analyses [8]. Legendre polynomials were used as

basis functions. The first three Legendre polynomials are
[34]:

φ1(t) = 1√
2
,

φ2(t) =
√
3
2
t,

φ3(t) =
√
45
8
t2 +

√
5
8
.

We began with a second order analysis, using two Legen-
dre polynomials (K = 2) for each variance component.
A first order analysis was not considered since includ-
ing only the first Legendre polynomial would not allow
variance components to be functions of time. In total,
we considered two, three and four Legendre polynomi-
als (K = 2, 3 or 4) in full rank analyses (M = K) and
then considered the same range of Legendre polynomials
in reduced rank analyses, each with two eigenfunctions
(M = 2). The results with K = 2 and M = 1 are also
presented.

Negative binomial random regressionmodel
We describe a method to estimate heritability using raw
faecal egg count data multivariately using a negative bino-
mial random regression model.
Let Yi = (Yi1, . . . ,YiT ) represent the vector of raw fae-

cal egg counts for lamb i (i = 1, . . . , L) measured at time
points 1, . . . ,T . T denotes the number of observed time
points and L the number of lambs. Here, T = 5 and L =
901. To aid readability, we set T = 5 in the subsequent
formulae.
For lamb i at time t, the negative binomial model with

mean μit and dispersion rt can be parameterised as:

Yit ∼ NegBin(pit , rt)

pit = rt
rt + μit

,

[35]. The dispersion of this negative binomial distribution
is controlled by the value of rt with smaller values produc-
ing a higher variance [36]. Using a log link function, we
set:

log(μiμiμi) = Xiθθθ + �EαMαi�EαMαi�EαMαi + �EβMβi�EβMβi�EβMβi + �EγMγi�EγMγi�EγMγi,

with μiμiμi = {μi1, . . . ,μi5}. The vector θθθ contains the fixed
effect regression coefficients corresponding to the over-
all mean, the sex of the lamb and the year the lamb was
born. ThematrixXi is the corresponding data matrix. The
matrix��� is of dimension 5×K , where K is the number of
Legendre polynomials functions used and 5 is the number
of time points in this study. The tk-th entry of the matrix
� is φk(t).
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Three variance components are included: an additive
genetic, permanent environmental and a maternal effect.
For lamb i, αiαiαi = {αi1 , . . . ,αiM } are regression coeffi-
cients relating to the additive genetic component, γiγiγi =
{γi1 , . . . , γiM } relate to the permanent environmental com-
ponent and βdamiβdamiβdami = {βdami1

, . . . ,βdamiM
} relate to the

maternal component. The suffix dami is used to denote
the dam corresponding to lamb i and nd is the total num-
ber of dams. M is the number of eigenfunctions included
in the reduced rank model. Here, we included the same
number of polynomial functions and eigenvalues for each
of the three variance components. However, the model
can easily be extended to include polynomials of different
degrees and values ofM.
Estimated maternal effects can depend on the number

of progeny per dam, the number of dams with recorded
egg counts and the number of generations of recorded
data [37]. In this dataset, there were rarely more than two
progeny per dam and for each lamb, only the sire and dam
are known. The structure of this dataset is a source of diffi-
culty in distinguishing between maternal additive genetic
and maternal environmental effects [4, 37]. Therefore, the
maternal effect modelled here may include both genetic
and environmental effects. However, the model is easily
adapted to specifically model genetic and environment
effects [38].
Coefficients ααα = {α1α1α1, . . . ,αLαLαL} are not indepen-

dent between lambs due to the pedigree structure. We
assumed:

ααα ∼ MVN(000,AAA ⊗ diag(λα1 , . . . , λαM )),

with AAA the additive genetic relationship matrix [10, 39].
Coefficients γγγ = {γ1γ1γ1, . . . ,γLγLγL} are assumed independent

between lambs:

γγγ ∼ MVN(000, ILILIL ⊗ diag(λγ1 , . . . , λγM )),

and βββ = {β1β1β1, . . . ,βndβndβnd } are assumed to be independent
between dams:

βββ ∼ MVN(000, IndIndInd ⊗ diag(λβ1 , . . . , λβM )).

Matrices ILILIL and IndIndInd are identity matrices of dimension
L × L and nd × nd respectively.
The values λα1 , . . . , λαM are the M largest eigenval-

ues of the additive genetic covariance matrix, and the
matrixEαMEαMEαM contains the corresponding eigenvectors. Sim-
ilarly, the values λγ1 , . . . , λγM and λβ1 , . . . , λβM are the
M largest eigenvalues of the permanent environmental
and maternal covariance matrices respectively, with the
corresponding eigenvectors stored in EγMEγMEγM and EβMEβMEβM .

Legendre polynomials are orthogonal [40] and subse-
quently the matrices EαMEαMEαM , EγMEγMEγM andEβMEβMEβM and corresponding
eigenfunctions are constrained to be orthogonal [41].
All estimates presented in this paper are based on pos-

terior median values from the last 20 000 samples based
on 1 000 000 iterations.

Specifying prior distributions
Inference was based on Markov chain Monte Carlo
simulation and the parameters were updated with
a Metropolis-Hastings algorithm. Prior distributions
were specified for θθθ, rrr = {r1, . . . , r5}, {λγ1 , . . . , λγM },
{λβ1 , . . . , λβM }, {λα1 , . . . , λαM }, EαMEαMEαM , EγMEγMEγM and EβMEβMEβM .
We chose to use non-informative priors for regres-

sion coefficients relating to fixed effects and incorpo-
rated shrinkage priors for variance components [42–44].
Although other priors could naturally be incorporated
into this type of model, results presented in this paper are
based on the priors described in this section.
Normal priors were used for each element of θθθ, that is:

θi ∼ N(0, 104) for i = 1, 2, 3.

Using a large variance ensures that the prior distribution
is flat over a wide range of values and is centered around
zero.
The likelihood function can be penalized to improve

estimation of covariance matrices and variance compo-
nents by shrinking sample eigenvalues towards a given
value [42], a property that can be enforced through the
prior distribution. We used normal priors for log(λ̂αm)

[43, 45]:

log(λ̂αm) ∼ N(μλ, σ 2
λ ).

Similar prior distributions were used for log(λ̂γm) and
log(β̂αm). In this case, we chose to shrink our eigenval-
ues towards zero with little variation, setting μλ = 0
and σλ=5. Similarly, variance components can be shrunk
towards a value by setting flat gamma priors on cor-
responding precision parameters [44]. We used gamma
priors for each of the five dispersion parameters:

r1, . . . , r5 ∼ �(0.01, 0.01).

Martinez et al. [45] provided a convenient re-
parametrisation of a matrix of eigenvectors, EEE.
They defined a matrix 


 = (
1
1
1, . . . ,
M
M
M) with

m
m
m = (
m1 , . . . ,
mT ) such that 0 ≤ 
11 ≤ π

2 and all
other entries in [−π

2 ,
π
2 ]. The values in the matrix are

used to form a matrix of polar coordinates and then
transformed to form an orthogonal matrix, EEE, using a
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Gram-Schmidt transformation. Following Martinez et al.
[45], we set

p(


) =
{

π−4M, if −π/2 ≤ 
 ≤ π/2 ;
0, otherwise.

These transformations were used for EαMEαMEαM , EγMEγMEγM and EβMEβMEβM .

Estimating variance components
To estimate variance components as functions of time, we
followed the model of Meyer and Kirkpartick [8] and set:

Ĝ(t1, t2) =
M∑

m=1
λ̂αmÊαmÊαmÊαm

T�t1�t1�t1
T�t2�t2�t2ÊαmÊαmÊαm ,

P̂(t1, t2) =
M∑

m=1
λ̂γmÊγmÊγmÊγm

T�t1�t1�t1
T�t2�t2�t2ÊγmÊγmÊγm and,

M̂(t1, t2) =
M∑

m=1
λ̂βmÊβmÊβmÊβm

T�t1�t1�t1
T�t2�t2�t2ÊβmÊβmÊβm ,

for times t1 and t2. The function Ĝ is the additive genetic
covariance function, P̂ is the permanent environmen-
tal covariance function and M̂ the maternal covariance
function.
Given these functions, the heritability of raw faecal

egg counts can be estimated on a continuous time scale.
Specifically, at time t, the heritability of raw faecal egg
counts can be estimated [25] as:

ĥ2t = Ĝ(t, t)
Ĝ(t, t) + P̂(t, t) + M̂(t, t) + �̂2

et
,

where �̂2
et is the estimated residual variance at time t on

a continuous scale. The residual variance in a negative
binomial regression can be estimated using the methods
described by Tempelman et al. [30]. The negative bino-
mial model is an extension to a Poisson model and there
are two sources of residual variance. There is variation in
the Poisson sampling and some additional variation due
to the overdispersion that is not captured in the Poisson
model [7, 19]. Following these methods, at observation
time t, we approximated the residual variation from the
Poisson sampling by λ̄t

−1 and estimated the additional
variance as:

φ(1)(rt) = ∂2�(rt)
∂2rt

.

We assumed the residual covariance matrix �2�2�2 to be a
5 × 5 diagonal matrix with the t-th diagonal entry equal
to σ̂ 2

et = φ(1)(rt) + ˆ̄λ−1
t . Given the estimated covariance

matrix, a continuous residual variance function �̂2
et was

estimated by the methods described by Kirkpatrick et al.

[34]. For consistency, we used the same number of Leg-
endre polynomials and eigenfunctions to estimate �̂2

et as
that used to estimate Ĝ, P̂ and M̂.
The R codes that were used to analyse these data are

available on request to the corresponding author.

Application to other distributions
It should be noted that this model can be applied to other
distributions. In the case of a normally distributed trait,
we would assume:

Yit ∼ N(μit , σ 2
μt ),

μiμiμi = Xiθθθ + �EαMαiEαMαiEαMαi + �EγMγiEγMγiEγMγi + �EβMβiEβMβiEβMβi

σ 2
μt ∼ �−1(1, 0.001).

The prior distribution specified for σ 2
μt corresponds to a

flat prior that shrinks the residual variances towards zero
[44]. Heritability in this case is estimated as:

ĥ2t = Ĝ(t, t)
Ĝ(t, t) + P̂(t, t) + M̂(t, t) + σ̂ 2

μt

.

Model selection
By fixing the value of M (number of eigenfunctions) and
increasing the value of K (number of Legendre polyno-
mials), we increased the number of polynomials used
but fixed the number of components used to estimate
each covariance matrix. Therefore, there was little change
in the number of parameters estimated between mod-
els. However, since a large number of parameters was
estimated compared to the number of observations, we
compared these models using a bias corrected Akaike
information criterion (AICc) [46]:

AICc = −2L(y) + 2p
(

n
n − p − 1

)
,

where L(y) is the log likelihood of the data given the
estimated parameters, p is the number of parameters
estimated and n the total number of observations.
We used this model selection criterion because a large

number of parameters were estimated with respect to the
sample size and because, in such a complex model, AICc
enforces a higher penalty than AIC, BIC (Bayesian infor-
mation criterion) or DIC (deviance information criterion).

Results
Faecal egg counts (FEC) were quite dispersed (Fig. 1, black
bars). Exposing the lower 95th percentile of each distribu-
tion (shaded grey area) shows that as the grazing season
progresses, the data are more variable and higher lev-
els of dispersion are observed in May, August, September
and in the post-mortem counts (Fig. 1, black bars). In
particular, raw faecal egg counts are not normally dis-
tributed (Fig. 2a) and performing a log transformation i.e.
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Fig. 1 Faecal egg count distributions over time. Faecal egg counts
between May and October and at post-mortem counts (PM), black
bars. The grey shaded area shows the lower 95 % of the distribution
of faecal egg counts over each month. Maximum likelihood estimates
of dispersion parameters for the raw faecal egg count data for each
month separately and estimated standard errors are given above
each bar. Smaller values indicate more dispersed data

log(FEC + 1) produced a mass around zero in our data
(Fig. 2b).
Figure 2a shows that the raw faecal egg counts are con-

sistent with a negative binomial distribution (χ2 goodness
of fit test p-value = 0.7276). The log transformed FEC data
(Fig. 2b) are significantly different from a normal distribu-
tion (Shapiro-Wilk test p-value < 0.001). In addition, log
transformed FECwere not normally distributed for c = 25
or 0.2 (Shapiro-Wilk test p-value < 0.001, in both cases).

Treating each month as a separate trait, we estimated
the additive genetic (ĜGGcorr), maternal (M̂MMcorr) and pheno-
typic (̂TotalTotalTotalcorr) correlation matrices as:

ĜGGcorr =

⎛
⎜⎜⎜⎜⎝

1
−0.53∗ 1
−0.52∗ 0.56∗ 1
−0.42∗ 0.46∗ 0.55∗ 1
−0.17 0.32 0.49∗ 0.51∗ 1

⎞
⎟⎟⎟⎟⎠

M̂MMcorr =

⎛
⎜⎜⎜⎜⎝

1
−0.10 1
−0.23 0.14 1
−0.08 0.03 0.20 1
0.01 0.06 0.33 0.17 1

⎞
⎟⎟⎟⎟⎠ ,

̂TotalTotalTotalcorr =

⎛
⎜⎜⎜⎜⎝

1
−0.13∗ 1
−0.15∗ 0.22∗ 1
−0.14∗ 0.18∗ 0.27∗ 1
−0.07 0.27∗ 0.25∗ 0.31∗ 1

⎞
⎟⎟⎟⎟⎠ .

An asterisk highlights correlations that differ signifi-
cantly from zero. We also computed a series of bivariate
animal models to estimate pairwise phenotypic, maternal
and genetic correlations and found no significant dif-
ferences between correlations computed in the bivariate
models and in the full multitrait model. In addition to run-
ning multiple chains, this provided confidence that the
chain had converged.

ba

Fig. 2 Transformed and raw faecal egg counts. (a) Distribution of combined raw faecal egg count data (i.e. the number of eggs counted) over the
seven months. The black curve shows the maximum likelihood negative binomial distribution. (b) Distribution of log transformed faecal egg count
data over the seven months. The transformation used was log(FEC + 1). The solid black line shows the maximum likelihood normal distribution
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ba

Fig. 3 Effects of sex and year of birth. (a) Median faecal egg counts for male and female lambs from May to October with additional post-mortem
counts (PM). The black asterisk shows significant p-values (< 0.05) and the grey asterisk shows a p-value of 0.07. (b) Median faecal egg counts
between years 1992 to 1996. A black asterisk indicates significantly different counts between the five years

Maternal correlations were not significant. Genetic cor-
relations between July, August, September and Octo-
ber were strong and positive and between June and
the remaining four months were strong and negative.
Genetic correlations between June and October and July
and October were not significant. Phenotypic correla-
tions increased as the season progressed with a strong
phenotypic correlation between September and October.

Fixed effects
In all analyses, sex and year were significant fixed effects.
Considering each month separately, female lambs consis-
tently had lower faecal egg counts than male lambs with
the exception of the post-mortem counts. These differ-
ences were significant for the last three months (Fig. 3a).
Differences in faecal egg counts across the five years

during June to October and in the post-mortem counts
were significant (Fig. 3b). Generally, lower faecal egg
counts were recorded for years 1992 and 1994 and
higher egg counts were recorded for years 1995 and
1996.

Univariate analysis
Heritabilities estimated on the latent scale depended on
the additional constant used in the log transformation
(Fig. 4a). Therefore, heritability on this transformed scale
depended on the particular transformation used and thus,
did not provide robust heritability estimates. Heritability
on the link scale, using a log link function in the neg-
ative binomial model of the untransformed raw count
data, showed that the heritability of raw faecal egg counts
increased univariately from 0 to 0.4 with a dip in August
(Fig. 4b).

Random regression usingWOMBAT
We compared the full rank analyses withK =M = 2,K =M
= 3 and K =M = 4, and also compared each reduced rank
analysis (with M = 1 and K = 2 or M = 2 and K = 3 and
4) with the corresponding full rank analysis. The reduced
rank analysis model using four Legendre polynomials (K
= 4) and two eigenfunctions (M = 2) minimised the AICc
marginally (Table 2).
In general, including more Legendre polynomials gave

less smooth curves but smaller values of AICc (Table 2).
We found little difference in variance components
between setting M = 2 and M = 1 with K = 2 (Fig. 5a)
and small discrepancies between setting M = 2 and M =
3 with K = 3 (Fig. 5b). However, differences were greater
between setting M = 2 and M = 4 with K = 4 (Fig. 5c).
Therefore, a reduced rank analysis with higher degree
polynomials had a greater effect on variance component
estimates.

Negative binomial random regressionmodel
The full rank scenarios were computationally infeasible
due to the length of time required for convergence. There-
fore, we considered reduced rank scenarios that were
similar to those presented in the previous section. We
used two eigenfunctions (M = 2) with two, three and four
Legendre polynomials (K = 2, 3 and 4). Themodel usingK
= 3 minimised AICc and thus, gave a better fit compared
to K = 2 or K = 4 (Table 3).
We expected our variance curves to behave similarly

to the WOMBAT curves with possible inflated variance
estimates at the boundaries of the dataset (Fig. 5). The
phenotypic variance increased between July and Octo-
ber (Fig. 6a, black lines). Likewise, the additive genetic
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a b

Fig. 4 Univariate heritability estimates. (a) Heritability estimates of log transformed data. The transformations were of the form log(FEC + c) for a
range of c values (c = 25 black line, c = 1 red line, c = 0.2 blue line). (b) Heritability estimates of raw faecal egg counts

component and maternal component showed a grad-
ual rise across months (Fig. 6a, brown and pink lines,
respectively). The permanent environmental variance also
increased slightly between July and October (Fig. 6, green
lines).
A heritability of 0.25 was estimated for June (Fig. 6b),

but it may be influenced by inflated boundary estimates.
It rose from 0.25 between June and July to 0.4 in October
with a dip in August. This dip coincided with a similar
pattern found in the univariate analysis (Fig. 4b).

Residual diagnostics
By plotting residuals against the fitted values (Fig. 7),
we visually assessed the validity of two key assump-
tions of the normal log(FEC+1) and the negative binomial
linear regression models: linearity and homoscedastic-
ity (constant residual variance). In the negative binomial
model, the assumption of homoscedasticity applies only
to Pearson residuals, which adjust for the expected mean-
variance relationship.
The residuals from the best fittingmodel of log(FEC+1)

(setting K = 4 andM = 2 inWOMBAT) showed a strong

Table 2 AICc for a range of random regression models with K
basis functions andM eigenfunctions using WOMBAT

K M AICc

2 1 7973.300

2 2 7978.478

3 2 7816.062

3 3 7819.068

4 2 7703.478

4 4 7703.922

nonlinear relationship with the fitted values (Fig. 7a, red
line) whereas only a very weak trend was observed in the
Pearson residuals from the best fitting model of raw fae-
cal egg counts (setting K = 3 and M = 2 in the negative
binomial random regression model; Fig. 7b, red line).
Homoscedasticity was difficult to assess in the normal

model due to the distinct stripe of points on the lower
left corner of the plot. Pearson residuals from the negative
binomial model appeared to vary more for low fitted val-
ues, apparently violating the assumption of homoscedas-
ticity. However, interpretation was also difficult due to
the much higher density of points at low fitted values.
To informally assess homoscedasticity, we separated the
ordered fitted values into ten equally sized groups and
calculated the standard deviation of the corresponding
residuals within each group. Variation in the standard
deviations along the fitted values was substantial for the
normal model and was twice as large for mid-level fitted
values compared to low and high fitted values (Fig. 7c).
By contrast, Pearson residuals from the negative binomial
model showed little variation in standard deviation along
the fitted values (Fig. 7d).
These observations indicate that the negative binomial

random regression model provides a considerably better
fit to raw faecal egg count data than the normal random
regression of log transformed data.

Discussion
The overall goal of this work was to present some of the
challenges that are inherent in the estimation of heri-
tabilities from faecal egg count data and to demonstrate
the use of random regression models to estimate heri-
tability over time on a link scale using untransformed
data.
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Fig. 5 Variance components estimated from log transformed faecal egg counts using WOMBAT. (a) Additive genetic (AG, brown), permanent
environmental (PE, green) and maternal (MAT, pink) variance components for a full rank analysis with two Legendre polynomials and two
eigenfunctions (K = M = 2, solid curves) and for a reduced rank analysis with one eigenfunction (K = 2,M = 1 dotted curves). (b) Additive genetic
(AG, brown), permanent environmental (PE, green) and maternal (MAT, pink) variance components for a full rank analysis with three Legendre
polynomials and three eigenfunctions (K = M = 3 solid curves) and for a reduced rank analysis with two eigenfunctions (K = 3,M = 2 dotted
curves). (c) Additive genetic (AG, brown), permanent environmental (PE, green) and maternal (MAT, pink) variance components for a full rank
analysis with four Legendre polynomials and four eigenfunctions (K = M = 4 solid curves) and a reduced rank analysis with two eigenfunctions
(K = 4,M = 2 dotted curves). The transformation used was log(FEC + 1). The model with four Legendre polynomials and two eigenfunctions (C,
dotted lines) provided the best fit to the data under model selection based on AICc

Faecal egg count data are typically overdispersed. Con-
sequently, these data have previously been modelled both
univariately and multivariately by transforming faecal egg
count data and assuming that they are normally dis-
tributed. Our univariate analysis showed that heritabil-
ity estimates depend on the additional constant used in
the log transformation, as was demonstrated in previous
studies [47]. The effectiveness of log and Box-Cox trans-
formations decreases as the number of animals with zero
egg counts increases [47]. We found that by increasing
the additional constant in the log transformation, the her-
itabilities on the latent scale approached heritabilities on
the link scale (Fig. 4). In a separate analysis, we estimated
significant phenotypic and genetic correlations between
faecal egg counts taken at different times during the sea-
son. This suggested that a multivariate analysis such as
random regression was more appropriate for these data.
Our paper presents a method to fit a random regres-

sion that is based on MCMC. This may be viewed as

Table 3 AICc for a range of models with K basis functions andM
eigenfunctions using the negative binomial random regression
model developed in this paper

K M AICc

2 2 -13144.65

3 2 -14453.43

4 2 -14069.68

computationally inefficient compared to REML estimates
(for example, as implemented in WOMBAT [14]); how-
ever, Bayesian MCMC methods are appealing since they
allow for more flexible fitting to complex models which is
advantageous in the genetic analysis of non-normal data
[18]. Here, we modelled untransformed raw faecal egg
counts assuming that they were negative binomially dis-
tributed although this method can be easily adapted for
fitting longitudinal data following other distributions.
Various studies have compared heritability estimates

from sire or animal models based on REML and MCMC
methods using real and simulated data [44, 48–50]. Stud-
ies on real data have reported that REML estimates are
more conservative than the corresponding MCMC esti-
mates [48, 49]. Previous studies showed the importance
of prior specification of variance components and ade-
quate mixing in Bayesian analysis [44]. Incorporating
more informative priors, for example shrinkage priors,
can produce more precise and accurate variance com-
ponent estimates. However, imposing strict penalties in
shrinkage priors inevitably affects parameter estimates.
Generally, using more informative priors is beneficial in
this type of analysis given the large number of parame-
ters to be estimated. We chose non-informative priors for
fixed effect regression coefficients and shrinkage priors
for variance components. It is possible to impose stricter
penalties [43] and a range of other prior distributions,
however, this type of sensitivity analysis was outside the
scope of this paper.
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a b

Fig. 6 Variance components estimated for raw faecal egg count data using the MCMC method. (a) Estimated variance components for the best
fitting model which has three Legendre polynomials and two eigenfunctions (K = 3 andM = 2). The 95 % credible regions (dotted lines) and
median value (solid lines). Black, brown, green and pink curves show total phenotypic variation, additive genetic, permanent environmental and
maternal components. (b) Estimated heritability

d

a b

Fig. 7 Residual plots. (a) Residuals against standardized fitted values from the best fitting normal random regression model in WOMBAT (K = 4 and
K = 2). (b) Pearson’s residuals against fitted values from the best fitting negative binomial random regression model (K = 3 andM = 2). In both
plots, LOESS lines are indicated by red solid lines. (c) Standard deviation of residuals (divided into ten groups) from the best fitting normal random
regression model in WOMBAT. (d) Standard deviation of residuals (divided into ten groups) from the best fitting negative binomial random
regression model
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Random regressions require fitting polynomial func-
tions, but larger amounts of well-distributed data are
required to fit high order polynomials [51]. Consequently,
these methods are typically used in systems in which it is
straightforward to generate much larger datasets than the
one used here [52–54]. To address this issue, and reduce
the number of parameters to be estimated, we conducted
reduced rank analyses that estimated variance functions
by eigen-decomposition of the corresponding covariance
matrices of the random regression coefficients.
The reduced rank approach fits a number of polynomial

functions (K) over time and estimates covariance func-
tions using the largest few eigenfunctions. Analyses of
the log transformed faecal egg counts, using the software
WOMBAT, showed that decreasing the number of eigen-
functions (M) producedmore differences compared to the
full range analysis (Fig. 5) [55]. For all WOMBAT models
considered here, we found possible inflated estimates of
variance components at the boundaries of our dataset and
consequently, we believe that there are inaccuracies in our
reduced rank curves at the boundaries of the data (Figs. 5
and 6). However, this could also be the result of insuffi-
cient data to adequately estimate each of the covariance
matrices.
Our analyses confirm findings that were obtained with

other systems i.e., that heritabilities are not necessarily
constant [23] and our results showed that the heritability
of faecal egg counts increased as lambs got older, which
is expected since exposure of grazing lambs to nema-
todes helps build immunity to infection. Heritabilities
estimated with the MCMC random regression developed
here ranged from 0.2 to 0.4 (Fig. 6) and were consistent
with those on the latent scale from previous studies [4, 24].
Faecal egg count is a commonly used marker in selec-

tive breeding programs for resistance to gastrointestinal
nematodes and the heritability of such resistance mark-
ers predicts the effectiveness of breeding programs. Our
negative binomial model provides estimates of heritability
of raw faecal egg counts on a different scale to that used
in previous analyses of log transformed data, however,
breeding values on different scales tend to be highly cor-
related [56] and therefore can be interpreted in a similar
way to those obtained using the normal animal model.
There is no correct scale on which to measure heri-

tability. Statistical convenience and correspondence with
the infinitesimal model in quantitative genetics has often
led to calculate heritabilities for faecal egg counts on
the latent scale (i.e. following log transformation). How-
ever, overdispersed count data such as that obtained here
may also arise from multiplicative processes, providing
a biological justification for the log link function [18].
We found that the negative binomial random regression
model to provided a good fit to raw faecal egg counts
whereas residual assumptions of the normal random

regression model using log transformed faecal egg counts
were not satisfied, which provided evidence in favour of
the negative binomial model. Overall, our results agree
with previous analyses and demonstrate that raw faecal
egg count is a highly heritable trait.
In summary, random regression is a useful tool to anal-

yse variance components from multivariate traits or, in
this instance, multiple records of a trait per animal spread
over a trajectory. To our knowledge, this is the first time
random regression analyses have been used to handle
non-normal data on the link scale. We have demonstrated
the use of a Bayesian MCMC approach to apply random
regression models to negative binomially distributed data.
However, the approach taken here can be easily adapted
to model data that are consistent with other non-normal
distributions.
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