
Research Article
A Swarm Optimization Genetic Algorithm Based on
Quantum-Behaved Particle Swarm Optimization

Tao Sun1,2 andMing-hai Xu1

1College of Pipeline and Civil Engineering, China University of Petroleum, Qingdao 266580, China
2Shengli College, China University of Petroleum, Dongying, Shandong 257000, China

Correspondence should be addressed to Ming-hai Xu; minghai@upc.edu.cn

Received 30 January 2017; Revised 10 April 2017; Accepted 20 April 2017; Published 25 May 2017

Academic Editor: Ezequiel López-Rubio

Copyright © 2017 Tao Sun and Ming-hai Xu. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Quantum-behaved particle swarm optimization (QPSO) algorithm is a variant of the traditional particle swarm optimization
(PSO). The QPSO that was originally developed for continuous search spaces outperforms the traditional PSO in search ability.
This paper analyzes the main factors that impact the search ability of QPSO and converts the particle movement formula to the
mutation condition by introducing the rejection region, thus proposing a new binary algorithm, named swarmoptimization genetic
algorithm (SOGA), because it is more like genetic algorithm (GA) than PSO in form. SOGAhas crossover andmutation operator as
GA but does not need to set the crossover and mutation probability, so it has fewer parameters to control. The proposed algorithm
was tested with several nonlinear high-dimension functions in the binary search space, and the results were compared with those
fromBPSO, BQPSO, andGA.The experimental results show that SOGA is distinctly superior to the other three algorithms in terms
of solution accuracy and convergence.

1. Introduction

Particle swarm optimization (PSO) algorithm is a popu-
lation-based optimization method, which was originally
introduced by Eberhart and Kennedy in 1995 [1]. In PSO,
the position of a particle is represented by a vector in search
space, and the movement of the particle is determined by
an assigned vector called the velocity vector. Each particle
updates the velocity based on its current velocity, the best
previous position of the particle, and the global best position
of the population. PSO is extensively used for the optimiza-
tion problems because it has simple structures and is easy to
implement. However, it has some disadvantages, such that
it easily falls into local optima when solving the complex
and high-dimension problems [2, 3]. Hence a number of
variant algorithms have been proposed to overcome the
disadvantages of PSO [4, 5].

The particle swarm algorithm based on the probability
convergence is one of the variant algorithms.This kind of par-
ticle swarm algorithm allows the particles to move according
to probability instead of using velocity-displacement particle

movement way. The Bare Bones PSO (BBPSO) family is
a typical class of probabilistic PSO algorithms [6–8]. The
Gaussian distribution was used in the original version of
BBPSO, which was proposed by Kennedy [6]. then several
new BBPSO variants used other distributions which seem to
generate better results [7–9].

Inspired by the quantum theory and the trajectory anal-
ysis of PSO [10], Sun et al. proposed a new probabilistic
algorithm, quantum-behaved particle swarm optimization
(QPSO) algorithm [11]. In QPSO, each particle has a tar-
get point, which is defined as a linear combination of
the best previous position of the particle and the global
best position. The particle appears around the target point
following a double exponential distribution. The QPSO
algorithm essentially belongs to the BBPSO family, and its
update equation uses an adaptive strategy and has fewer
parameters to be adjusted [12–14]. The QPSO has been
shown to perform well in finding the optimal solutions for
continuous optimization problems and successfully applied
to a wide range of areas such as multiobjective optimization
[15, 16], clustering [17–19], neural network training [20–22],

Hindawi
Computational Intelligence and Neuroscience
Volume 2017, Article ID 2782679, 15 pages
https://doi.org/10.1155/2017/2782679

https://doi.org/10.1155/2017/2782679

2 Computational Intelligence and Neuroscience

image processing [23, 24], engineering design [25], and dyna-
mic optimization [26].

PSO and QPSO have been effective tools for solving
global optimization problems, but they were originally devel-
oped for continuous search spaces. Kennedy and Eberhart
introduced a binary version of PSO for discrete problems
named binary PSO (BPSO) [27], where the trajectories are
defined as changes in the probability that each particle
changes its state to 1. Binary PSO has simple structure and
is easy to implement; hence, it is extensively employed in the
optimization problems [28–30]. But it also suffers from some
disadvantageswhen solving the complex andhigh-dimension
problems [28]. Sun et al. proposed binary QPSO (BQPSO),
in which the target point is obtained by using the crossover
operator at the best previous position of the particle and the
global best position. Experiment results show that BQPSO
can find better solution generally than BPSO [31].

In recent years, BQPSO has been used successfully in
many fields [32–34]. However, although BQPSO broadens
the application fields of QPSO, it did not show the same
advantage as in the continuous space. QPSO algorithm
should have better performance in solving the problems
based on discrete space. This paper analyzes the main factors
that impact the search ability of QPSO and converts the
particle movement formula to the mutation condition by
the introduction of rejection region. It then designed a new
binary coding QPSO, which has crossover and mutation
operator and is like genetic algorithm (GA) in form; that
is, the proposed algorithm is a new genetic algorithm but
incorporates the core idea of QPSO. So it was named swarm
optimization genetic algorithm (SOGA).

Compared with the GA, the SOGA has no selection
operator, and each individual participates in evolution based
on the information of the population and its own infor-
mation. At the same time, the mutation probability of the
SOGA is not fixed. In the early stage of the algorithm, the
probability of mutation is large and the population can keep
the diversity, with the iteration of the algorithm, themutation
probability tends to zero, and the algorithm can finally
converge.

The rest of this paper is organized as follows. Section 2
is a brief introduction of PSO and binary PSO; Section 3
summarizes QPSO and binary QPSO; Section 4 introduces
the mutation condition of binary coding converted from the
particle movement formula in QPSO; Section 5 proposes the
new binary QPSO algorithm, SOGA, and then discusses the
difference between this algorithm and QPSO, GA; Section 6
presents the experiment results from the benchmark func-
tions; finally, the paper is concluded in Section 7.

2. Particle Swarm Optimization

Particle swarm optimization (PSO) algorithm is a popula-
tion-based optimization technique used in continuous
spaces. It can be mathematically described as follows.

Assume the size of the population is 𝑛 and the dimension
of the search space is 𝑞; then the 𝑖th particle of the swarm can
be represented by a position vector𝑋𝑖 = (𝑥𝑖1, 𝑥𝑖2, . . . , 𝑥𝑖𝑞); the

velocity of a particle 𝑖 is denoted by vector 𝑉𝑖 = (V𝑖1, V𝑖2, . . . ,
V𝑖𝑞); vector 𝑃𝑖 = (𝑝𝑖1, 𝑝𝑖2, . . . , 𝑝𝑖𝑞) is the best previous
position of particle 𝑖, called personal best position, and 𝑃𝑔 =(𝑝𝑔1, 𝑝𝑔2, . . . , 𝑝𝑔𝑞) is the best position of the population,
called global best position.

The velocity of particle 𝑖 is calculated accordingly:

V𝑘+1𝑖𝑗 = 𝜔V𝑘𝑖𝑗 + 𝑐1𝑟1 (𝑝𝑘𝑖𝑗 − 𝑥𝑘𝑖𝑗) + 𝑐2𝑟2 (𝑝𝑘𝑔𝑗 − 𝑥𝑘𝑖𝑗) , (1)

where 𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑞, 𝑛 is population size, 𝑘
is the number of iterations, 𝜔 is inertia weight, 𝑐1 and 𝑐2 are
acceleration coefficients, and 𝑟1 and 𝑟1 are random numbers
in the interval [0, 1].

Then the next position is updated as follows:

𝑥𝑘+1𝑖𝑗 = 𝑥𝑘𝑖𝑗 + V𝑘+1𝑖𝑗 . (2)

The PSO algorithm is applied to solve optimization problems
in the real search space, but many optimization problems
are set in discrete space. Kennedy and Eberhart proposed a
discrete binary version of PSO, named binary PSO (BPSO),
where the particle position has two possible values, “0” or “1.”
The velocity formula in BPSO remains unchanged, and the
particle position is updated as follows:

𝑥𝑘+1𝑖𝑗 = {{{
1 𝑆 (V𝑘+1𝑖𝑗) > rand0 otherwise, (3)

where rand is a random number in the interval [0, 1] and the
function 𝑆(V) is a Sigmoid function as

𝑆 (V) = 1(1 + 𝑒−V) . (4)

3. Quantum-Behaved Particle
Swarm Optimization

Inspired by trajectory analyses of PSO in [10], Sun et al.
proposed a novel variant of PSO, named quantum-behaved
particle swarm optimization (QPSO), which outperforms the
traditional PSO in search ability.

QPSO sets a target point for each particle; denote 𝐺𝑖 =(𝑔𝑖1, 𝑔𝑖2, . . . , 𝑔𝑖𝑞) as the target point for particle 𝑖, of which the
coordinates are

𝑔𝑖𝑗 = 𝜙𝑖𝑗𝑝𝑖𝑗 + (1 − 𝜙𝑖𝑗) 𝑝𝑔𝑗, (5)

where 𝜙𝑖𝑗 is a random number in the interval [0, 1]. the
trajectory analysis in [10] shows that 𝐺𝑖 is the local attractor
of particle 𝑖; that is, in PSO, particle 𝑖 converges to it.

The position of particle 𝑖 is updated as follows:

𝑥𝑘+1𝑖𝑗 = 𝑔𝑘𝑖𝑗 ± 𝐿𝑘𝑖𝑗2 ln(1𝑢) ,
𝐿𝑘𝑖𝑗 = 2𝛼 󵄨󵄨󵄨󵄨󵄨𝑐𝑗 − 𝑥𝑘𝑖𝑗󵄨󵄨󵄨󵄨󵄨 ,

(6)

where 𝑢 is a random number in the interval [0, 1] and 𝐶 =[𝑐1, 𝑐1, . . . , 𝑐𝑞] is known as the mean best position that is

Computational Intelligence and Neuroscience 3

0 y

Figure 1: Probability density function of double exponential distribution.

defined by the average of the personal best position of all
particles, accordingly,

𝑐𝑗 = 1𝑛
𝑛∑
𝑡=1

𝑝𝑡𝑗, 𝑗 = 1, 2, . . . , 𝑞, (7)

Parameter 𝛼 is called Contraction-Expansion Coefficient,
which can be tuned to control the convergence speed of the
algorithms.

Because the iterations of QPSO are different from those of
PSO, the methodology of BPSO cannot be applied to QPSO.
Sun et al. introduced the crossover operator of GA intoQPSO
and proposed binary QPSO (BQPSO). In BQPSO, 𝑋𝑖 =(𝑥𝑖1, 𝑥𝑖2, . . . , 𝑥𝑖𝑞) still represents the position of particle 𝑖, but
it is necessary to emphasize that 𝑋𝑖 is a binary string rather
than a vector, and 𝑥𝑖𝑗 is the 𝑗th substring of𝑋𝑖, not the 𝑗th bit
in the binary string. Assume the length of each substring is 𝑙;
then the length of𝑋𝑖 is 𝑙𝑞.

The target point 𝐺𝑖 for particle 𝑖 is generated through
crossover operator; that is, BQPSOexerts crossover operation
on the personal best position 𝑃𝑖 and the global best position𝑃𝑔 to generate two offspring binary strings, and 𝐺𝑖 is ran-
domly selected from them.

Define

𝑝𝑚 = 𝛼 ∗ 𝑑𝐻 (𝑐𝑗, 𝑥𝑘𝑖𝑗) ∗ ln(1𝑢) , 𝑢 ∼ 𝑈 [0, 1] , (8)

where 𝑘 is the number of iterations and 𝑑𝐻(𝑐𝑗, 𝑥𝑘𝑖𝑗) is the
Hamming distance between 𝑐𝑗 and 𝑥𝑘𝑖𝑗. Compared with the
two bit strings, the Hamming distance is the count of bit
difference in the two strings. 𝑐𝑗 is the 𝑗th substring of themean
best position, and the 𝑑th bit of 𝑐𝑗 is determined by the states
of the 𝑑th bit of all particles’ personal best positions. If more
particles take on 1 at the 𝑑th bit, the 𝑑th bit of 𝑐𝑗 is 1; otherwise
the bit will be 0.

For each bit of 𝑔𝑖𝑗, when 𝑝𝑚 > rand execute operations as
follows: if the state of the bit is 1, then set its state to 0; else set
its state to 0.

4. A Mutation Condition Using in
Binary Space

The reason why the QPSO algorithm has better global search
capability than the traditional PSO algorithm is that it
changes the velocity-displacement model of the traditional
PSO algorithm; in QPSO, the movement of particle to its
target point has no determined trajectory; it can appear at
any position in the whole feasible search space with a certain
distribution, which is the double exponential distribution
[13, 14]. Such a position can be far from the target point and
may be superior to the current global best position of the
population. This should also be reflected in the construction
of binary QPSO algorithm.

The probability density function of particle 𝑖 in QPSO is

𝑓 (𝑋𝑖) = 1𝐿 𝑖 𝑒−2|𝑋𝑖−𝐺𝑖|/𝐿 𝑖 , (𝐿 𝑖 > 0) , 𝑖 = 1, 2, . . . , 𝑛. (9)

Set 𝜆𝑖 = 2/𝐿 𝑖, and 𝑦𝑖 = 𝑋𝑖 − 𝐺𝑖; then (9) can be rewritten as

𝑓 (𝑦𝑖) = 𝜆𝑖2 𝑒−𝜆𝑖|𝑦𝑖|, (𝜆𝑖 > 0) . (10)

That is,𝑦𝑖 obeys the double exponential distribution, of which
the mean and variance are 𝐸(𝑦𝑖) = 0 and 𝐷(𝑦𝑖) = 2/𝜆2𝑖 . The
graph of probability density function (10) is Figure 1. Since the
domain of𝑦𝑖 is (−∞, +∞), particle can appear in any position
of the search space, but the probability that a particle appears
in a position far away from its target point is small. When𝜆𝑖 → +∞, the variance 𝐷(𝑦𝑖) = 2/𝜆2𝑖 → 0 which means that𝑋𝑖 converge to 𝐺𝑖 with probability 1.

When the position of a particle uses binary encoding, it
is hard to describe the relative position of two points using
the measure of two binary strings. Similar to set a rejection
region, we set a threshold value V (V > 0). When the value
of 𝑦𝑖 falls into the rejection region, as shown in Figure 2, set𝑦𝑖 = 0; that is,𝑋𝑖 = 𝐺𝑖, else𝑋𝑖 = mutation(𝐺𝑖). mutation(𝐺𝑖)
means mutation operation on 𝐺𝑖.

4 Computational Intelligence and Neuroscience

−v 0 v

Figure 2: Refused domain of probability density function.

For any𝑢, which is a randomnumber in the interval [0, 1],
the condition that 𝑦𝑖 does not fall into the rejection region is

𝑃 (󵄨󵄨󵄨󵄨𝑦𝑖󵄨󵄨󵄨󵄨 > V) > 𝑢. (11)

The left side of Condition (11) can be written as

𝑃 (󵄨󵄨󵄨󵄨𝑦𝑖󵄨󵄨󵄨󵄨 > V) = ∫−V
−∞

𝜆𝑖2 𝑒𝜆𝑖𝑡𝑑𝑡 + ∫
+∞

V

𝜆𝑖2 𝑒−𝜆𝑖𝑡𝑑𝑡
= 2∫+∞

V

𝜆𝑖2 𝑒−𝜆𝑖𝑡𝑑𝑡 = 𝑒−𝜆𝑖V.
(12)

Thus Condition (11) means 𝑒−𝜆𝑖V > 𝑢, accordingly:
𝜆𝑖V < ln(1𝑢) . (13)

In order to ensure that the algorithm can converge, set

𝜆𝑖 = 1𝑑𝐻 (𝐶,𝑋𝑖) , (14)

where 𝐶 is the mean best position of the population.
Then Condition (13) is

V𝑑 (𝐶,𝑋𝑖) < ln(1𝑢) , (15)

where 𝑑(⋅) is used to measure the difference of two binary
strings. Hamming distance can be used here.

Assume 𝑦 = ln(1/𝑢); then
𝑢 = exp (−𝑦) , 𝑦 > 0. (16)

For (16), when the value of 𝑦 is small, the function has fast
rates of change as shown in Figure 3, so Condition (15) suffers
from the effect of the initial value of 𝑑(𝐶,𝑋𝑖). So Condition
(15) can be changed into its equivalent form:

𝜎𝑑 (𝐶,𝑋𝑖) > ln(1𝑢) , (17)

where parameter 𝜎 is a constant that is greater than zero.

0

0.1

0.2

0.3

0.4

u 0.5

0.6

0.7

0.8

0.9

1

2 4 6 8 100
y

Figure 3: Figure of equation (16).

5. Swarm Optimization Genetic Algorithm

Based on the mutation condition (17), mutation operator is
introduced into BQPSO. 𝑋𝑖 still represents the position of
particle 𝑖, 𝑃𝑖 is the personal best position of particle 𝑖, 𝑃𝑔 is the
global best position, and 𝐶 is the mean best position which is
defined the same as in BQPSO.

Different from BQPSO, crossover or mutation operation
process is applied to the whole binary string, instead of bits.
Because the procedure of the algorithm is similar to GA, it
is named as swarm optimization genetic algorithm (SOGA).
The process can be described as follows.

(1) Initialize a population of particles𝑋𝑖 in binary space;
(2) Set personal best position 𝑃𝑖 = 𝑋𝑖, and compute 𝐶;
(3) Evaluate the fitness of particles 𝑓(𝑋𝑖) and determine

the global best position 𝑃𝑔;
(4) while terminate condition is not reached do
(5) for each particle 𝑖 do

Computational Intelligence and Neuroscience 5

(6) Exert crossover operation on𝑃𝑖 and𝑃𝑔 to generate two
offspring binary strings,

(7) 𝐺𝑖 is randomly selected from them.

(8) if condition (17) is true,

(9) Exert mutation operation on 𝐺𝑖;
(10) end if

(11) Set𝑋𝑖 = 𝐺𝑖;
(12) Compute the fitness of particles 𝑓(𝑋𝑖), and update 𝑃𝑖,
(13) end for 𝑖
(14) Update 𝑃𝑔 and the mean best position 𝐶;
(15) end while

Compared to the GA with the same crossover and mutation
operator, SOGA has the following characteristics:

(1) SOGAdoes not have selection operator and crossover
probability and its crossover operator is exerted
directly on𝑃𝑖 and𝑃𝑔.Therefore, the formof the fitness
function𝑓(𝑋𝑖) has no effect on the algorithm, and the
target function of the maximization problem can be
set as the fitness function.

(2) Condition (17) can be turned into

𝑢 > exp (−𝜎𝑑 (𝐶,𝑋𝑖)) . (18)

Since 𝜎𝑑(𝐶,𝑋𝑖) ≥ 0, the range of exp(−𝜎𝑑(𝐶,𝑋𝑖))
is (0, 1), and 𝑢 is a random number in the interval[0, 1]; thus Condition (18) is equivalent to an adaptive
mutation probability:

𝑝𝑚 = 1 − exp (−𝜎𝑑 (𝐶,𝑋𝑖)) , (19)

where 𝜎 is a constant that is greater than zero and𝑑(𝐶,𝑋𝑖)decreaseswith the increase of iteration times.
Therefore, 𝑝𝑚 is shrunk, which causes the algorithm
to converge.

(3) 𝜎 is the only parameter of SOGA, which can be tuned
to control the convergence speed of the algorithms as
Contraction-Expansion Coefficient 𝛼 in BQPSO.

When the value of 𝜎 is 0.5, 1, and 2, the curves ofmutation
probability 𝑝𝑚 changing with 𝑑(⋅) are shown in Figure 4. The
figure demonstrates that the smaller the value of 𝜎, the faster
the convergence speed of the algorithm. It also can be seen
that the global searching ability of the algorithm is reduced
when 𝜎 is too small. So set 𝜎 = 1 in SOGA.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p
m

2 4 6 8 100
d

sigma = 2

sigma = 1

sigma = 0.5

Figure 4: Figures of mutation probability.

6. Experimental Results

The proposed SOGA is compared with BPSO, BQPSO, and
GA.They are tested on the following 10 benchmark problems
to be minimized [28, 35]:

(1) Sphere Function
𝐹1 (𝑋) = 𝑛∑

𝑖=1

𝑥2𝑖 , 󵄨󵄨󵄨󵄨𝑥𝑖󵄨󵄨󵄨󵄨 ≤ 100. (20)

(2) Schwefel’s Problem 2.22

𝐹2 (𝑋) = 𝑛∑
𝑖=1

󵄨󵄨󵄨󵄨𝑥𝑖󵄨󵄨󵄨󵄨 + 𝑛∏
𝑖=1

󵄨󵄨󵄨󵄨𝑥𝑖󵄨󵄨󵄨󵄨 , 󵄨󵄨󵄨󵄨𝑥𝑖󵄨󵄨󵄨󵄨 ≤ 10. (21)

(3) Schwefel’s Problem 1.2

𝐹3 (𝑋) = 𝑛∑
𝑖=1

(𝑖∑
𝑗=1

𝑥𝑗)
2 , 󵄨󵄨󵄨󵄨𝑥𝑖󵄨󵄨󵄨󵄨 ≤ 100. (22)

(4) Step Function

𝐹4 (𝑋) = 𝑛∑
𝑖=1

(⌊𝑥𝑖 + 0.5⌋)2 , 󵄨󵄨󵄨󵄨𝑥𝑖󵄨󵄨󵄨󵄨 ≤ 100. (23)

(5) Schwefel’s Problem 2.21

𝐹5 (𝑋) = max
𝑖
{󵄨󵄨󵄨󵄨𝑥𝑖󵄨󵄨󵄨󵄨} , 𝑖 = 1, 2, . . . , 𝑛, 󵄨󵄨󵄨󵄨𝑥𝑖󵄨󵄨󵄨󵄨 ≤ 100. (24)

(6) 2𝑛 Minima Function

𝐹6 (𝑋) = 1𝑛
𝑛∑
𝑖=1

(𝑥4𝑖 − 16𝑥2𝑖 + 5𝑥𝑖) , 󵄨󵄨󵄨󵄨𝑥𝑖󵄨󵄨󵄨󵄨 ≤ 5. (25)

6 Computational Intelligence and Neuroscience

Table 1: Parameters of algorithms applied in the experiments.

Algorithm Parameter settings
SOGA 𝜎 = 1
BPSO 𝜔 = 0.7, 𝑐1 = 𝑐2 = 2, 𝑉max = 6
BQPSO 𝛼 = 1.1∼1.4
GA 𝑝𝑐 = 0.90, 𝑝𝑚 = 0.10∼0.15

(7) Schwefel’s Problem 1.2

𝐹7 (𝑋) = 𝑛∑
𝑖=1

−𝑥𝑖 sin(√󵄨󵄨󵄨󵄨𝑥𝑖󵄨󵄨󵄨󵄨) , 󵄨󵄨󵄨󵄨𝑥𝑖󵄨󵄨󵄨󵄨 ≤ 500. (26)

(8) Ackley Function
𝐹8 (𝑋) = −20 exp(−0.2√ 𝑛∑

𝑖=1

𝑥2𝑖𝑛)
− exp(𝑛∑

𝑖=1

cos (2𝜋𝑥𝑖)𝑛) + 20 + 𝑒,
󵄨󵄨󵄨󵄨𝑥𝑖󵄨󵄨󵄨󵄨 ≤ 32.

(27)

(9) Generalized Penalized Function

𝐹9 (𝑋) = 𝜋𝑛 {10 sin (𝜋𝑦1) +
𝑛−1∑
𝑖=1

(𝑦𝑖 − 1)2 [1 + 10 sin2 (𝜋𝑦𝑖+1)] + (𝑦𝑛 − 1)2} + 𝑛∑
𝑖=1

𝑢 (𝑥𝑖, 10, 100, 4) ,

𝑦𝑖 = 1 + (𝑥𝑖 + 1)4 , 𝑢 (𝑥𝑖, 𝑎, 𝑘, 𝑚) =
{{{{{{{{{{{

𝑘 (𝑥𝑖 − 𝑎)𝑚 𝑥𝑖 > 𝑎,
0 −𝑎 ≤ 𝑥𝑖 ≤ 𝑎,
𝑘 (−𝑥𝑖 − 𝑎)𝑚 𝑥𝑖 < −𝑎.

󵄨󵄨󵄨󵄨𝑥𝑖󵄨󵄨󵄨󵄨 ≤ 50
(28)

(10) Griewank Function
𝐹10 (𝑋) = 14000

𝑛∑
𝑖=1

𝑥2𝑖 − 𝑛∏
𝑖=1

cos(𝑥𝑖√𝑖) + 1, 󵄨󵄨󵄨󵄨𝑥𝑖󵄨󵄨󵄨󵄨 ≤ 600.
(29)

In these functions,𝐹1∼𝐹5 are unimodal and 𝐹6∼𝐹10 aremulti-
modal. Their optimum values are all zeros except 𝐹6 and𝐹7. The minimum values of 𝐹6 and 𝐹7 are −78.3323 and−418.9829 ∗ 𝑛, respectively, where 𝑛 is the dimension of a
function.

In the experiments, the dimension of each function is 8,
and the binary code length of each continuous variable is 15,
so the length of particle is 120 for each function. The size of
population is 50 and the total number of iterations is set to
500.The parameters of algorithms are listed in Table 1, where𝑝𝑐 is crossover probability and 𝑝𝑚 is mutation probability in
GA.

Four algorithms ran independently 30 times on the
benchmark functions, and the best target function value was
recorded at each run. To compare the four algorithms, 30 data
sets were analyzed using the following statistic parameters:
the mean, the standard deviation (STD), the best, the worst,
and the median; these results are reported in Tables 2 and 3.

Moreover, the statistical test is conducted in order to
determine whether the average best results are different with
a statistical significance. The confidence level is fixed at 0.95,
and the tests return 𝑝 value which are shown in Tables 4
and 5. We use the SAS for statistical testing; in the SAS
system, if the 𝑝 value is less than 0.0001, the system displays< 0.0001. The value of ℎ in Tables 4 and 5 shows the

result of pairwise comparison; ℎ = 1 indicates the previous
comparison algorithm is significantly better than the latter;ℎ = 0 represents no significant difference between the two
compared algorithms; ℎ = −1 indicates the previous com-
parison algorithm is significantly worse than the latter.

The results of SOGA compared with BPSO and BQPSO
are listed in Tables 2 and 4. The results show that SOGA
surpasses BPSO and BQPSO in minimizing the ten bench-
mark functions except𝐹3. Figure 5 illustrates the convergence
process of the best target function value of population in one
running. As shown in Figure 5, the SOGA converges faster
than BPSO and BQPSO.

Since SOGA has almost the same form as GA, the same
crossover and mutation operator, single-point crossover and
single-point mutation, are used in both algorithms. In GA,
the elitist strategy is applied to improve the convergence and
optimization results. It should be noted that the GA can not
converge after 500 iterations for most of the functions; for
better comparison, the number of iterations of the GA is
set to 2000 in Table 3 to ensure that the algorithm is fully
convergent.

For high-dimension functions, assume𝑋𝑖 = (𝑥𝑖1, 𝑥𝑖2, . . . ,𝑥𝑖𝑞) is the binary string of the particle (or individual) 𝑖, where𝑞 is the number of dimensions and 𝑥𝑖𝑗 is the 𝑗th substring
of 𝑋𝑖. It is easy for GA or SOGA to exert crossover and
mutation operation on each substring 𝑥𝑖𝑗 in turn, instead of
on the whole 𝑋𝑖. For instance, in SOGA, Condition (17) can
be written as

𝜎𝑑 (𝑐𝑗, 𝑥𝑖𝑗) > ln(1𝑢) , (30)

Computational Intelligence and Neuroscience 7

BPSO
BQPSO

SOGA

0

2000

4000

6000

8000

10000

12000

14000
Ta

rg
et

 fu
nc

tio
n

100 150 200 250 300 350 400 450 50050
Iteration

(a) 𝐹1

BPSO
BQPSO

SOGA

0

5

10

15

20

25

30

35

Ta
rg

et
 fu

nc
tio

n

100 150 200 250 300 350 400 450 50050
Iteration

(b) 𝐹2

100 150 200 250 300 350 400 450 50050
Iteration

0

1000

2000

3000

4000

5000

6000

7000

Ta
rg

et
 fu

nc
tio

n

BPSO
BQPSO

SOGA

(c) 𝐹3

100 150 200 250 300 350 400 450 50050
Iteration

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000
Ta

rg
et

 fu
nc

tio
n

BPSO
BQPSO

SOGA

(d) 𝐹4

100 150 200 250 300 350 400 450 50050
Iteration

0

10

20

30

40

50

60

70

Ta
rg

et
 fu

nc
tio

n

BPSO
BQPSO

SOGA

(e) 𝐹5

100 150 200 250 300 350 400 450 50050
Iteration

−80

−75

−70

−65

−60

−55

−50

−45

−40

Ta
rg

et
 fu

nc
tio

n

BPSO
BQPSO

SOGA

(f) 𝐹6

Figure 5: Continued.

8 Computational Intelligence and Neuroscience

50 100 150 200 250 300 350 400 450 500
−3500

−3000

−2500

−2000

−1500

−1000

Iteration

Ta
rg

et
 fu

nc
tio

n

BPSO
BQPSO

SOGA

(g) 𝐹7

50 100 150 200 250 300 350 400 450 500
Iteration

0

2

4

6

8

10

12

14

16

18

20

Ta
rg

et
 fu

nc
tio

n

BPSO
BQPSO

SOGA

(h) 𝐹8

40 60 80 100 12020
Iteration

×106

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Ta
rg

et
 fu

nc
tio

n

BPSO
BQPSO

SOGA

(i) 𝐹9

100 150 200 250 300 350 400 450 50050
Iteration

BPSO
BQPSO

SOGA

0

20

40

60

80

100

120

140
Ta

rg
et

 fu
nc

tio
n

(j) 𝐹10

Figure 5: Figures of the convergence processes of BPSO, BQPSO, and SOGA.

for each substring𝑥𝑖𝑗 of𝑋𝑖, where 𝑐𝑗 are the 𝑗th substring of𝐶.
Then the process of SOGA when the crossover and mutation
operation act on substring can be described as follows: the
same operation can also be used in GA.

(1) Initialize a population of particles𝑋𝑖 in binary space;
(2) Set personal best position 𝑃𝑖 = 𝑋𝑖, and compute 𝐶;
(3) Evaluate the fitness of particles 𝑓(𝑋𝑖) and determine

the global best position 𝑃𝑔;
(4) while terminate condition is not reached do
(5) for each particle 𝑖 do
(6) for each substring of particle 𝑗 do

(7) Exert crossover operation on 𝑃𝑖𝑗 and 𝑃𝑔𝑗 to generate
two offspring binary strings,

(8) 𝐺𝑖𝑗 is randomly selected from them.
(9) if condition (30) is true,
(10) Exert mutation operation on 𝐺𝑖𝑗;
(11) end if
(12) Set𝑋𝑖𝑗 = 𝐺𝑖𝑗;
(13) end for 𝑗
(14) Compute the fitness of particles 𝑓(𝑋𝑖), and update 𝑃𝑖,
(15) end for 𝑖

Computational Intelligence and Neuroscience 9

SOGA
GA

0

2000

4000

6000

8000

10000

12000
Ta

rg
et

 fu
nc

tio
n

100 150 200 250 300 350 400 450 50050
Iteration

(a) 𝐹1

SOGA
GA

0

5

10

15

20

25

30

35

40

Ta
rg

et
 fu

nc
tio

n

100 150 200 250 300 350 400 450 50050
Iteration

(b) 𝐹2

Iteration

SOGA
GA

50 100 150 200 250 300 350 400 450 500
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Ta
rg

et
 fu

nc
tio

n

(c) 𝐹3

SOGA
GA

Iteration
50 100 150 200 250 300 350 400 450 500

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000
Ta

rg
et

 fu
nc

tio
n

(d) 𝐹4

SOGA
GA

0

10

20

30

40

50

60

Ta
rg

et
 fu

nc
tio

n

100 150 200 250 300 350 400 450 50050
Iteration

(e) 𝐹5

SOGA
GA

−80

−75

−70

−65

−60

−55

−50

−45

Ta
rg

et
 fu

nc
tio

n

100 150 200 250 300 350 400 450 50050
Iteration

(f) 𝐹6

Figure 6: Continued.

10 Computational Intelligence and Neuroscience

SOGA
GA

−3500

−3000

−2500

−2000

−1500

−1000

−500

Ta
rg

et
 fu

nc
tio

n

100 150 200 250 300 350 400 450 50050
Iteration

(g) 𝐹7

SOGA
GA

0

2

4

6

8

10

12

14

16

18

20

Ta
rg

et
 fu

nc
tio

n

100 150 200 250 300 350 400 450 50050
Iteration

(h) 𝐹8

0

2

4

6

8

10

12

14

Ta
rg

et
 fu

nc
tio

n

SOGA
GA

20 30 40 50 60 70 80 90 10010
Iteration

×106

(i) 𝐹9

0

10

20

30

40

50

60

70

80

90

100

Ta
rg

et
 fu

nc
tio

n

SOGA
GA

100 150 200 250 300 350 400 450 50050
Iteration

(j) 𝐹10

Figure 6: Figures of the convergence processes of SOGA and GA when the crossover and mutation operation act on substring.

(16) Update 𝑃𝑔 and the mean best position 𝐶;
(17) end while

The convergence processes of SOGA and GA, when
crossover and mutation operation act on substrings of par-
ticles (or individual), are shown in Figure 6; the results
of SOGA and GA are listed in Tables 3, 4, and 5. The
experimental results show that SOGA is obviously superior
to the GA on the solution accuracy and the convergence.
For high-dimension functions, it is effective to improve
the convergence speed and optimization ability, exerting

crossover and mutation operation on substrings; as shown in
Tables 3 and 4, it significantly improves the convergence rate
ofGA. But its influence is not significant for SOGA; according
to Table 5, it has better performance in minimizing functions𝐹3, 𝐹7, 𝐹8, and 𝐹9, especially for function 𝐹3.
7. Conclusions

In this study, SOGA, a binary swarm intelligence algorithm,
which is based on QPSO and binary QPSO, is introduced.

Computational Intelligence and Neuroscience 11

Table 2: Minimization results for BPSO, BQPSO, and SOGA.

Function Algorithm The best Mean SD The worst Median

𝐹1
BPSO 65.1674 278.1128 160.0441 702.2221 244.4259
BQPSO 1.4096 3.3647 1.4272 6.5327 3.1107
SOGA 7.4510𝑒 − 05 1.6641𝑒 − 04 4.8945𝑒 − 04 0.0028 7.4510𝑒 − 05

𝐹2
BPSO 1.5918 3.0268 0.9300 5.3401 2.9463
BQPSO 0.2155 0.4080 0.1226 0.7025 0.4025
SOGA 0.0024 0.0026 0.0005 0.0049 0.0024

𝐹3
BPSO 121.8395 1171.3480 911.2165 3261.0044 860.7055
BQPSO 8.2112 30.8752 25.8621 120.6034 21.4084
SOGA 263.9170 1919.6076 1078.9650 3782.1623 2175.0068

𝐹4
BPSO 56 312.7667 248.9619 1154 250.5
BQPSO 1 4.8667 2.4174 11 5
SOGA 0 0.1000 0.4026 2 0

𝐹5
BPSO 9.0243 16.3089 5.5677 27.5491 14.3406
BQPSO 0.9430 1.8437 0.5141 3.3296 1.8342
SOGA 0.0031 0.2228 0.6241 3.1281 0.0275

𝐹6
BPSO −77.5179 −74.5146 1.8144 −70.6644 −74.5941
BQPSO −72.7114 −69.3385 1.7327 −66.4601 −68.9703
SOGA −77.7357 −76.2789 0.6355 −75.1676 −76.2048

𝐹7
BPSO −3136.9403 −2724.3377 194.8185 −2263.5189 −2752.3562
BQPSO −1810.3356 −1498.0555 157.2211 −1272.7048 −1454.7974
SOGA −3248.4725 −2913.3245 218.1944 −2467.9053 −2952.6730

𝐹8
BPSO 4.5456 7.6315 2.0230 15.5215 7.8838
BQPSO 0.9446 1.9230 0.3842 2.5818 1.9273
SOGA 0.0040 1.3614 1.1703 3.1276 1.8407

𝐹9
BPSO 2.6925 12.6817 7.3535 31.3502 10.9785
BQPSO 0.7294 1.7635 0.5748 2.9455 1.7687
SOGA 0.0742 1.4639 1.4386 5.2594 0.9397

𝐹10
BPSO 1.5798 3.6606 1.5582 7.7680 3.4519
BQPSO 0.3552 0.8360 0.2063 1.1561 0.8923
SOGA 0.0546 0.3702 0.1933 0.6738 0.4183

It converts the movement formula of QPSO to mutation
conditions, thus introducing the mutation operator of GA.
SOGA has the similar form to GA but does not need
to set the crossover and mutation probability, so it has
fewer parameters to control. SOGA integrates strongpoint
of GA and PSO. The experimental results show that SOGA

is distinctly superior to BPSO, BQPSO, and GA in terms
of solution accuracy and convergence. Furthermore, since
SOGA has the same crossover and mutation operator as
GA, many improvements on the GA can be applied to it;
therefore, this algorithm has better applications and research
prospects.

12 Computational Intelligence and Neuroscience

Table 3: Minimization results for SOGA and GA.

Function Algorithm The best Mean SD The worst Median

𝐹1
SOGA 7.4510𝑒 − 05 1.6641𝑒 − 04 4.8945𝑒 − 04 0.0028 7.4510𝑒 − 05
GA 0.0013 76.0248 166.2636 664.4937 2.5246

SOGA∗ 7.4510𝑒 − 05 0.0074 0.0189 0.0773 0.0007
GA∗ 0.0016 1.1302 2.3717 11.0953 0.2626

𝐹2
SOGA 0.0024 0.0026 0.0005 0.0049 0.0024
GA 0.0031 0.3220 0.4294 1.3587 0.1172

SOGA∗ 0.0031 0.0069 0.0076 0.0433 0.1059
GA∗ 0.0220 0.1423 0.1452 0.7703 2.5471

𝐹3
SOGA 263.9170 1919.6076 1078.9650 3782.1623 2175.0068
GA 823.0982 3805.95462 1587.4665 8753.2186 3602.7854

SOGA∗ 0.0238 27.5765 95.7945 434.9900 0.5557
GA∗ 482.1519 4922.3981 2417.1198 10470.9239 4705.2068

𝐹4
SOGA 0 0.1000 0.4026 2 0
GA 0 94.3667 457.2142 2509 1

SOGA∗ 0 0 0 0 0
GA∗ 0 3.6333 7.5177 36 2

𝐹5
SOGA 0.0031 0.2228 0.6241 3.1281 0.0275
GA 9.3783 27.0193 11.2953 53.1297 27.1523

SOGA∗ 0.0458 0.1908 0.0952 0.4913 0.1831
GA∗ 6.4913 20.0783 10.5937 49.6017 18.9795

𝐹6
SOGA −77.7357 −76.2789 0.6355 −75.1676 −76.2048
GA −77.9857 −75.2636 1.8587 −69.1535 −75.5698

SOGA∗ −78.3316 −77.2289 0.6240 −75.8823 −77.1074
GA∗ −77.5952 −74.8886 1.902 −70.5101 −75.457

𝐹7
SOGA −3248.4725 −2642.8652 256.1202 −2001.7012 −2952.6730
GA −3113.4015 −2088.3848 342.5752 −1355.6609 −2692.5141

SOGA∗ −3351.7352 −3111.4602 154.6330 −2736.5711 −3114.6197
GA∗ −3150.5510 −2733.6038 180.6351 −2424.3367 −2726.4449

𝐹8
SOGA 0.0040 1.3614 1.1703 3.1276 1.8407
GA 1.8409 3.3475 1.8626 10.2185 2.6024

SOGA∗ 0.0040 0.0223 0.0216 0.0911 0.0141
GA∗ 0.3384 2.7764 0.9262 4.3458 2.7676

𝐹9
SOGA 0.0742 1.4639 1.4386 5.2594 0.9397
GA 1.5468 10.2883 7.6703 34.3495 8.7194

SOGA∗ 0.0348 0.6195 0.5317 1.9344 0.4575
GA∗ 0.6679 6.0007 4.0074 13.6647 5.7359

𝐹10
SOGA 0.0546 0.3702 0.1933 0.6738 0.4183
GA 0.1600 0.9633 1.3811 7.9350 0.6882

SOGA∗ 0.2550 0.4715 0.1208 0.7548 0.4758
GA∗ 0.1805 0.7492 0.2431 1.2999 0.7741

∗The crossover and mutation operation act on substring.

Computational Intelligence and Neuroscience 13

Table 4: Comparison of SOGA with other algorithms and GA∗ with GA.

Function Test SOGA GA∗

BPSO BQPSO GA GA∗ GA

𝐹1 𝑝 value <0.0001 <0.0001 0.0151 0.0115 0.0166ℎ 1 1 1 1 1

𝐹2 𝑝 value <0.0001 <0.0001 0.0001 <0.0001 0.0340ℎ 1 1 1 1 1

𝐹3 𝑝 value 0.0724 <0.0001 <0.0001 <0.0001 0.4280ℎ −1 −1 1 1 0

𝐹4 𝑝 value <0.0001 <0.0001 0.2633 0.0119 0.2816ℎ 1 1 0 1 0

𝐹5 𝑝 value <0.0001 <0.0001 <0.0001 <0.0001 0.0171ℎ 1 1 1 1 1

𝐹6 𝑝 value <0.0001 <0.0001 0.0006 <0.0001 0.4430ℎ 1 1 1 1 0

𝐹7 𝑝 value 0.0081 <0.0001 0.0004 0.0080 0.2582ℎ 1 1 1 1 0

𝐹8 𝑝 value <0.0001 0.0002 <0.0001 <0.0001 0.2063ℎ 1 1 1 1 0

𝐹9 𝑝 value <0.0001 0.3884 <0.0001 <0.0001 0.0043ℎ 1 0 1 1 1

𝐹10 𝑝 value <0.0001 <0.0001 0.0291 <0.0001 0.4065ℎ 1 1 1 1 0
∗The crossover and mutation operation act on substring.

Table 5: Comparison of SOGA∗ with other algorithms.

Function Test SOGA∗

BPSO BQPSO GA GA∗ SOGA

𝐹1 𝑝 value <0.0001 <0.0001 0.0151 0.0120 0.0409ℎ 1 1 1 1 −1
𝐹2 𝑝 value <0.0001 <0.0001 0.0002 <0.0001 0.0308ℎ 1 1 1 1 −1
𝐹3 𝑝 value <0.0001 0.8561 <0.0001 <0.0001 <0.0001ℎ 1 0 1 1 1
𝐹4 𝑝 value <0.0001 <0.0001 0.2629 0.0104 0.1555ℎ 1 1 0 1 0
𝐹5 𝑝 value <0.0001 <0.0001 <0.0001 <0.0001 0.2768ℎ 1 1 1 1 0
𝐹6 𝑝 value <0.0001 <0.0001 0.0002 <0.0001 0.3923ℎ 1 1 1 1 0
𝐹7 𝑝 value <0.0001 <0.0001 <0.0001 <0.0001 <0.0001ℎ 1 1 1 1 1
𝐹8 𝑝 value <0.0001 <0.0001 <0.0001 <0.0001 <0.0001ℎ 1 1 1 1 1
𝐹9 𝑝 value <0.0001 <0.0001 <0.0001 <0.0001 0.0044ℎ 1 1 1 1 1
𝐹10 𝑝 value <0.0001 <0.0001 0.0435 <0.0001 0.1231ℎ 1 1 1 1 0
∗The crossover and mutation operation act on substring.

14 Computational Intelligence and Neuroscience

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

The work was supported by the National Natural Science
Foundation of China (551276199).

References

[1] R. C. Eberhart and J. Kennedy, “A new optimizer using particle
swarm theory,” in Proceedings of the 6th International Sympo-
sium on Micromachine and Human Science, pp. 39–43, Nagoya,
Japan, October 1995.

[2] F. Van den Bergh and A. P. Engelbrecht, “A new locally
convergent particle swarm optimiser,” in Proceedings of the
International Conference on Systems, Man and Cybernetics, pp.
94–99, October 2002.

[3] F. van denBergh andA. P. Engelbrecht, “A convergence proof for
the particle swarm optimiser,” Fundamenta Informaticae, vol.
105, no. 4, pp. 341–374, 2010.

[4] R. Poli, J. Kennedy, and T. Blackwell, “Particle swarm optimiza-
tion: an overview,” Swarm Intelligence, vol. 1, no. 1, pp. 33–57,
2007.

[5] A. A. A. Esmin, R. A. Coelho, and S. Matwin, “A review
on particle swarm optimization algorithm and its variants to
clustering high-dimensional data,”Artificial Intelligence Review,
vol. 44, no. 1, pp. 23–45, 2015.

[6] J. Kennedy, “Bare bones particle swarms,” in Proceedings of
the IEEE Swarm Intelligence Symposium (SIS ’03), pp. 80–87,
Indianapolis, Ind, USA, 2003.

[7] J. Kennedy, “Probability and dynamics in the particle swarm,” in
Proceedings of the Congress on Evolutionary Computation, CEC
’04, pp. 340–347, June 2004.

[8] T. J. Richer and T. M. Blackwell, “The Lévy particle swarm,” in
Proceedings of the IEEE Congress on Evolutionary Computation
(CEC ’06), pp. 808–815, July 2006.

[9] R. Vafashoar andM. R.Meybodi, “Multi swarm bare bones par-
ticle swarm optimization with distribution adaption,” Applied
Soft Computing Journal, vol. 47, pp. 534–552, 2016.

[10] M. Clerc and J. Kennedy, “The particle swarm-explosion, sta-
bility, and convergence in a multidimensional complex space,”
IEEE Transactions on Evolutionary Computation, vol. 6, no. 1,
pp. 58–73, 2002.

[11] J. Sun, B. Feng, and W. Xu, “Particle swarm optimization with
particles having quantum behavior,” Congress on Evolutionary
Computation, vol. 70, no. 3, pp. 1571–1580, 2004.

[12] J. Sun, W. Xu, and B. Feng, “Adaptive parameter control for
quantum-behaved particle swarm optimization on individual
level,” in Proceedings of IEEE International Conference on Sys-
tems, Man and Cybernetics, pp. 3049–3054, October 2005.

[13] J. Sun,W.Xu, andB. Feng, “A global search strategy of quantum-
behaved particle swarm optimization,” in Proceedings of the
Conference on Cybernetics Intelligent Systems, vol. 1, pp. 111–116,
2005.

[14] J. Sun, W. Fang, X. Wu, V. Palade, and W. Xu, “Quantum-
behaved particle swarm optimization: analysis of individual
particle behavior and parameter selection,” Evolutionary Com-
putation, vol. 20, no. 3, pp. 349–393, 2012.

[15] S. N. Omkar, R. Khandelwal, T. V. S. Ananth, G. Narayana Naik,
and S. Gopalakrishnan, “Quantum behaved Particle Swarm
Optimization (QPSO) for multi-objective design optimization
of composite structures,” Expert Systems with Applications, vol.
36, no. 8, pp. 11312–11322, 2009.

[16] T. Zhang, T. Hu, J. W. Chen, Z. Wan, and X. Guo, “Solving
bilevel multiobjective programming problem by elite quantum
behaved particle swarm optimization,” Abstract and Applied
Analysis, vol. 2012, no. 5, Article ID 102482, pp. 97–112, 2012.

[17] J. Sun, W. Xu, and B. Ye, “Quantum-Behaved particle swarm
optimization clustering algorithm,” in Proceedings of the Inter-
national Conference on AdvancedDataMining andApplications,
vol. 4093, pp. 340–347, 2006.

[18] K. Lu, K. Fang, and G. Xie, “A hybrid quantum-behaved
particle swarm optimization algorithm for clustering analysis,”
in Proceedings of the 5th International Conference on Fuzzy
Systems and Knowledge Discovery, FSKD, vol. 1, pp. 21–25,
China, October 2008.

[19] C. Zhang and W. Chen, “Quantum-behaved particle swarm
optimization dynamic clustering algorithm,” Advanced Materi-
als Research, vol. 694-697, pp. 2757–2760, 2013.

[20] S. Li, R.Wang,W.Hu, and J. Sun, “A newQPSO based bp neural
network for face detection,” in Proceedings of the International
Conference of Fuzzy Information and Engineering, pp. 355–363,
2007.

[21] G. Y. Lian, K. L. Huang, J. H. Chen, and F. Q. Gao, “Training
algorithm for radial basis function neural network based on
quantum-behaved particle swarm optimization,” International
Journal of Computer Mathematics, vol. 87, no. 1–3, pp. 629–641,
2010.

[22] C.-T. Cheng, W.-J. Niu, Z.-K. Feng, J.-J. Shen, and K.-W. Chau,
“Daily reservoir runoff forecasting method using artificial
neural network based on quantum-behaved particle swarm
optimization,”Water, vol. 7, no. 8, pp. 4232–4246, 2015.

[23] X. Lei and A. Fu, “Two-dimensional maximum entropy image
segmentation method based on quantum-behaved particle
swarm optimization algorithm,” in Proceedings of the 4th Inter-
national Conference on Natural Computation, ICNC ’08, vol. 3,
pp. 692–696, October 2008.

[24] X. Su, W. Fang, Q. Shen, and X. Hao, “An image enhancement
method using the quantum-behaved particle swarm optimiza-
tion with an adaptive strategy,” Mathematical Problems in
Engineering, vol. 2013, no. 3, Article ID 824787, pp. 211–244, 2013.

[25] L. D. S. Coelho, “Gaussian quantum-behaved particle swarm
optimization approaches for constrained engineering design
problems,” Expert Systems with Applications, vol. 37, no. 2, pp.
1676–1683, 2010.

[26] W. Fang, M. Wang, and C. Li, “Solving dynamic optimization
problems based on an improved clustering quantum-behaved
particle swarm optimizer,” Journal of ComputationalTheoretical
Nanoscience, vol. 13, no. 6, pp. 3540–3547, 2016.

[27] J. Kennedy and R. C. Eberhart, “A discrete binary version
of the particle swarm algorithm,” in Proceedings of the IEEE
International Conference on Systems, Man, and Cybernetics.
Computational Cybernetics and Simulation, vol. 5, pp. 4104–
4108, Orlando, Fla, USA, October 1997.

[28] Z. Beheshti, S. M. Shamsuddin, and S. Hasan, “Memetic
binary particle swarm optimization for discrete optimization
problems,” Information Sciences, vol. 299, pp. 58–84, 2015.

[29] H. Banka and S. Dara, “A Hamming distance based binary
particle swarm optimization (HDBPSO) algorithm for high

Computational Intelligence and Neuroscience 15

dimensional feature selection, classification and validation,”
Pattern Recognition Letters, vol. 52, pp. 94–100, 2015.

[30] K. K. Bharti and P. K. Singh, “Opposition chaotic fitness muta-
tion based adaptive inertia weight BPSO for feature selection
in text clustering,” Applied Soft Computing Journal, vol. 43, pp.
20–34, 2016.

[31] J. Sun, W. Xu, W. Fang, and Z. Chai, in Adaptive and Natural
Computing Algorithms, vol. 4431 of Lecture Notes in Computer
Science, pp. 376–385, 2007.

[32] J. Zhang, Z. Zhou, W. Gao, Y. Ma, and Y. Ye, “Cognitive Radio
adaptation decision engine based on binary quantum-behaved
particle swarm optimization,” Chinese Journal of Scientific
Instrument, vol. 32, no. 2, pp. 221–225, 2011.

[33] M. Xi, J. Sun, L. Liu, F. Fan, and X. Wu, “Cancer feature
selection and classification using a binary quantum-behaved
particle swarm optimization and support vector machine,”
Computational and mathematical Methods in Medicine, vol.
2016, no. 9, Article ID 3572705, pp. 1–9, 2016.

[34] J. Yan, S. Duan, T. Huang, and L. Wang, “Hybrid feature
matrix construction and feature selection optimization-based
multi-objective QPSO for electronic nose in wound infection
detection,” Sensor Review, vol. 36, no. 1, pp. 23–33, 2016.

[35] J. G. Digalakis and K. G. Margaritis, “An experimental study of
benchmarking functions for genetic algorithms,” International
Journal of Computer Mathematics, vol. 79, no. 4, pp. 403–416,
2002.

