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Circadian rhythms orchestrate organismal physiology and behavior in order to anticipate
daily changes in the environment. Virtually all cells have an internal rhythm that is
synchronized every day by Zeitgebers (environmental cues). The synchrony between
clocks within the animal enables the fitness and the health of organisms. Conversely,
disruption of rhythms is linked to a variety of disorders: aging, cancer, metabolic diseases,
and psychological disorders among others. At the cellular level, mammalian circadian
rhythms are built on several layers of complexity. The transcriptional-translational feedback
loop (TTFL) was the first to be described in the 90s. Thereafter oscillations in epigenetic
marks highlighted the role of chromatin state in organizing the TTFL. More recently, studies
on the 3D organization of the genome suggest that genome topology could be yet another
layer of control on cellular circadian rhythms. The dynamic nature of genome topology over
a solar day implies that the 3D mammalian genome has to be considered in the fourth
dimension-in time. Whether oscillations in genome topology are a consequence of 24 h
gene-expression or a driver of transcriptional cycles remains an open question. All said and
done, circadian clock-gated phenomena such as gene expression, DNA damage
response, cell metabolism and animal behavior—go hand in hand with 24 h rhythms in
genome topology.
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INTRODUCTION

Our environment displays multiple cycles with different periodicities, from ultradian (period less
than 24 h, as for tides), circadian (around 24 h, as for a solar day), and infradian (period greater than
24 h, as for seasons). Oscillations in light/dark cycles, availability of food and temperature rhythms
are some of the most common circadian Zeitgebers (time-giver) encountered by organisms. Hence,
virtually all species have evolved a circadian clock to adapt and anticipate such changes in
environmental conditions. The presence of a circadian rhythm is defined on the basis of three
criteria i) free-running period of ∼24-h, ii) ability to entrain to environmental cues, and iii) rhythms
that are temperature compensated.

Clocks in different organisms seem to be the result of convergent evolution as the molecular core-
clock components have diverged across the kingdoms of life. Circadian rhythms appeared in an
ancestor of present-day cyanobacteria where the oscillator is built atop a post-translational
phosphorylation-dephosphorylation cycle of the Kai A-B-C complex (Ishiura et al., 1998). It
appeared independently a second time around in an ancestor of animals as a transcriptional-
translational feedback loop (TTFL) (Dunlap, 1999; Rosbash, 2009). The clock allows anticipation of
environmental conditions, adapting physiology, behavior, and metabolism to gate biological
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functions to specific hours along the day. In mammals, the
hypothalamic suprachiasmatic nucleus acts as a master
pacemaker to synchronize or entrain peripheral clocks
distributed throughout the body. Within cells, the molecular
mechanism of the core clock involves several layers of
complexity orchestrated by transcriptional activators and
repressors and chromatin state remodeling factors. More
recently, with the establishment of powerful chromatin
conformation capture methodologies, the importance of
chromatin topology in the process has been highlighted.
Altogether, cells and tissues generate multi-scaled rhythmic
outputs from expression of gene networks to cell metabolism
and global chromatin topology reorganization. These pathways
then go on to regulate programs of DNA damage repair, cell cycle
progression, physiology, and behavior.

The idea that DNA organization in the nucleus is non-
random, exists for centuries (Rabl, 1885; Boveri, 1909).
However, it is only in the 1980s that the theory of
chromosome territories was validated by the development of
Fluorescence In Situ Hybridization (FISH) (Manuelidis, 1985;
Schardin et al., 1985). This technique gave crucial information
about the spatial organization of the genome. Gene-rich
chromosomes were found to localize in the center of the
nucleus surrounded by gene-poor chromosomes, active-gene-
rich regions were found to be in the core whereas inactive-
genes regions were found to reside at the nuclear periphery in
lamina-associated domains (LAD). Finally, it is only over the past
2 decades, with the completion of human genome sequence and
the development of conformation detection techniques that
nuclear architecture has shown a resurgence of interest. The
initial breakthrough was the development of methods based on
principles of ligation of linear distal genomic regions that come
into close spatial proximity in 3D space, which allowed one to
map genome interactions (Hakim and Misteli, 2012). The first
technique developed was chromosome conformation capture
(3C), a nuclear ligation assay in conjunction with qPCR,
which allowed assessment of the proximity of two genomic
loci (Dekker et al., 2002). Then with the development of third
generation sequencing, protocols evolved to determine
interactions between a single gene locus and the genome (4C)
(Simonis et al., 2006), multiple loci against the full genome
(Capture Hi-C) (Jäger et al., 2015), and finally at the level of
the whole genome (Hi-C) (Lieberman-Aiden et al., 2009). These
techniques have revealed the existence of chromatin domains
100 kb–1 Mb in size and regions displaying enriched interactions
were named Topologically Associated Domains (TAD). These
insulated domains are subdivided into smaller chromatin
domains (“sub-TAD”). TADs are quite homogeneously active/
euchromatin or inactive/heterochromatin and are not just
structural but also functional and thus could act as a unit of
gene regulation (Cavalli and Misteli, 2013; Dekker and Heard,
2015; Sexton and Cavalli, 2015). The precise principles governing
TAD formation have not been elucidated yet. A proposed
mechanism is chromatin loop extrusion that can be mediated
by cohesin complexes and CCCTC-binding factor (CTCF) bound
to its target motif. This favors the generation of promoter-
enhancer or transcription-starting site (TSS)—transcription-

terminating site (TTS) loops and genes found within a TAD
often end up being co-regulated (Dekker and Heard, 2015; Le
Dily and Beato, 2015).

This leap in technology gives a good overview of the genome
organization in the nucleus and allowed one to ask if topological
features are static or dynamic over time. Recent studies have
focused on the genome topology reorganization under particular
biological conditions such as during development, in aging, after
an external cell stimulus, or in disease. A growing body of
evidence now suggests that topological genome organization is
rhythmic over 24 h-i.e. it cycles back to its original state at the
start of every day. Thus, not only could this phenomenon be
central in establishing circadian cycles in gene expression but also
could be used in the daily control of DNA damage protection
and/or repair pathways or regulation of aging over animal
lifetimes.

In this review, we will focus on the core-mammalian clock
mechanisms, followed by a discussion on the current evidence on
how genome topology could be integrated into the mechanism of
the core circadian clock. We will end by discussing the
consequences of cycling genome topology on cellular functions.

THE MULTIPLE LAYERS OF THE
CIRCADIAN CORE CLOCK
The Transcriptional-Translational
Feedback Loop
The mammalian clock is built on an evolutionarily conserved
negative TTFL (Figure 1A) which is extensively described in
excellent reviews elsewhere (Panda et al., 2002; Takahashi, 2017;
Rosensweig and Green, 2020). The activators CLOCK (and its
paralog NPAS2) and BMAL1, belonging to the basic helix-loop-
helix-PER ARNT-SIM (bHLH-PAS) transcription factor family
(Ledent et al., 2002), form a heterodimer to bind DNA regulatory
elements containing E-boxes (CACGTG) and prime or activate
transcription in mice tissues (Gekakis et al., 1998). Direct targets
of BMAL1-CLOCK are the core clock repressors Period (PER1,
PER2, and PER3) and Cryptochrome (CRY1 and CRY2) (Gekakis
et al., 1998). In mice, the repressors start to be expressed in the
afternoon and peak at the end of the day (Menet et al., 2012). PER
and CRY proteins accumulate in the cytoplasm where they form a
MegaDalton complex which includes the serine/threonine
kinases casein kinase 1δ (CK1 δ) and CK1ε (Aryal et al.,
2017). GAPVD1 has been proposed to chaperone the
maturation and transport of the PER-CRY-CK1 complex to
the nucleus (Aryal et al., 2017). Once in the nucleus PER-CRY
complexes interact with BMAL1-CLOCK to inhibit transcription
including their own expression (Lee et al., 2001). PER complexes
contain helicases (DDX5, DHX9, and SETX) that are recruited to
block transcriptional termination and cause a build-up of RNAP
II (Padmanabhan et al., 2012). PER complexes also include
NONO, a DNA- and RNA-binding protein. NONO depletion
affects cellular rhythms (Brown et al., 2005) and could link the
circadian clock with metabolic cues (Benegiamo et al., 2018) and
the cell cycle (Kowalska et al., 2013). PER and CRY have a short
half-life due to their degradation by the SCF E3 ubiquitin ligases
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β-TrCP (Shirogane et al., 2005) and FBXL (FBXL3 and FBXL21)
(Busino et al., 2007; Godinho et al., 2007; Hirano et al., 2013; Yoo
et al., 2013), respectively. Nighttime degradation in combination
with the abrogation of their transcription leads to the rapid drop
of PER and CRY concentrations in the morning (Wang et al.,
2018). BMAL1-CLOCK transcription can start anew for a new
cycle. In addition to PER-CRY, other complexes are also recruited
to BMAL1-CLOCK to inhibit its activity as RACK1-PKCα that
phosphorylates BMAL1 (Robles et al., 2010) or CIPC (Zhao et al.,
2007). A second TTFL reinforces the core clock. Early during the
day, BMAL1-CLOCK complexes induce REV-ERBα, REV-ERBβ,
and DBP. DBP induces in turn retinoic acid-related orphan
receptor α (RORα), RORβ, and RORγ at dusk and during the
night (Yang et al., 2006). REV-ERB and RORs compete at ROR
binding elements (RORE) allowing a cyclic transcription of
BMAL1 and CLOCK, in antiphase to PER (Preitner et al.,
2002; Sato et al., 2004; Zhang et al., 2015). A third TTFL, less
studied, involves the Basic helix-loop-helix member E40 and E41
(also named DEC1 and DEC2). BMAL1-CLOCK induces DEC1
and DEC2 with a similar timing compared to PER and CRY.
Subsequently, either DEC1 or DEC2 can inhibit the activity of
BMAL1/CLOCK by directly binding to E-box elements (Honma
et al., 2002). The transcription factors involved in the three
TTFLs, i. e BMAL1-CLOCK, DBP, and ROR, have different
activity time windows. Alone or in association with cell and
tissue-specific transcription factors, they drive waves of gene

expression at different times of the day in sync with the
animal’s physiology (Trott and Menet, 2018).

Circadian Chromatin Dynamics
The cyclic activation-repression of gene expression by the core
clock transcription factor machinery relies on the secondary
structure of the genome-the chromatin landscape. Genome
compaction is achieved by the packaging of DNA into a
repeated array of nucleosomes composed of histone octamers
containing two molecules each of histones H2A, H2B, H3, and
H4 (canonical histones) or their variants (e.g., H2A.Z) (Luger
et al., 2012). The packaging of DNA in chromatin is not static and
serves as a basis for gene regulation. Post-translational
modification of nucleosomes, the variant composition of
nucleosomes, and positioning/spacing of nucleosomes together
constitute an enigmatic epigenetic code that regulates gene
expression (Allis and Jenuwein, 2016). Circadian oscillations in
all these three major pathways have been linked to the function of
the core clock and its outputs (Figure 1B) (Koike et al., 2012; Le
Martelot et al., 2012).

During the activation phase, the BMAL1-CLOCK complex has
been shown to recruit lysine-specific histone demethylase
JARID1A and LSD1 that could remove the repressive H3 lys9
di- and tri-methyl (H3K9me2/3) marks (DiTacchio et al., 2011;
Nam et al., 2014). The disappearance of H3K9me2/3 releases HP1
and thus favors chromatin de-condensation. Moreover, CLOCK

FIGURE 1 | (A) The core circadian transcriptional feedback loop in mammals. Three interlocked transcriptional feedback loops build the core clock network. All
three are based on the BMAL1-CLOCK transcription factor heterodimer that recognizes E-Box DNA sequence elements. i. BMAL1-CLOCK activates Per and Cry
transcription whose protein products interact and inhibit their own transcription. The stability of PER and CRY is under the control of the E3-ubiquitin ligase β-TrCP and
FBXL3, respectively. ii. BMAL1-CLOCK complex induces the nuclear receptors REV-ERB, which rhythmically repress BMAL1 expression driven by retinoic acid-
related orphan receptor (ROR). iii. BMAL1-CLOCK complex induces DEC expression that in turn binds to E-Box elements in an competitive inhibitory manner. In addition
to the feedback loops, the BMAL1-CLOCK complex induces the expression of the transcription factor DBP. Together, BMAL1-CLOCK, DBP, and ROR, in combination
with cell and tissues specific transcription factors, allow the precise expression of circadian output genes at the right time. (B)Mammalian circadian chromatin. BMAL1-
CLOCK complex can recognize E-box sequences engaged within nucleosomes. BMAL1-CLOCK recruits several epigenetic factors to alter chromatin state at clock
genes. Consequently, and with the recruitment of other transcription factors, it activates transcription. At the end of the active phase, the PER-CRY complex binds to
BMAL1-CLOCK and recruits epigenetic repressors. The megadalton complex formed establishes repressive chromatin states to inhibit transcription.
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is thought to have histone acetyltransferase activity (HAT); it
positively imprints the chromatin by acetylating H3K9 and
H3K14 (Doi et al., 2006). BMAL1-CLOCK brings P300 and
CREB-binding protein (CBP), other HATs, which could
increase, accelerate or reinforce the robustness of histone
acetylation (Etchegaray et al., 2003; Hosoda et al., 2009). In
parallel, the complex brings acetylated MLL1 to methylate
H3K4 (Katada and Sassone-Corsi, 2010), an activity that slows
down when SIRT1 is recruited. SIRT1 inactivates MLL1 by
deacetylating it (Aguilar-Arnal et al., 2015).

To prepare the repressive phase, the BMAL1-CLOCK
complexes mark nucleosomes with ubiquitin moieties at their
target sites with the aid of DDB1-CUL4 complexes. The resulting
mono-ubiquitinated H2B nucleosomes participates in PER
complex recruitment (Tamayo et al., 2015). The repressive
PER complexes contain PSF that acts as a scaffold for
recruitment of repressor complexes SIN3-HDAC (Duong
et al., 2011) and HP1γ-SUV39H (Duong and Weitz, 2014),
which deacetylates histones H3K9, and H4K5 and di-tri-
methylate H3K9, respectively. The methyltransferase WDR5
also interacts with the PER complex and actively participates
in the repressive methylation cycles (Brown et al., 2005).
CHRONO, a recently discovered clock component interacts
with BMAL1-CLOCK independently of the PER complex to
repress transcription in a deacetylation-dependent manner
(Anafi et al., 2014; Goriki et al., 2014; Yang et al., 2020). The
deacetylation, methylation, and recruitment of HP1 in turn,
changes the nature of chromatin, allowing it to condense to
form facultative heterochromatin and inhibit transcription.

In addition to post-translational modifications, canonical
histones can also be exchanged for histone variants. The
variant histones have specific characteristics compared to
canonical counterparts. In addition to not having the same
residues for post-translational modification they also have
varying affinity of interactions with other histones, DNA and
act as a scaffold for chromatin interactor recruitment. The histone
variant H2A.Z has been proposed to participate in chromatin
opening due to a higher density of these nucleosomes around
BMAL1 binding site following TF binding (Menet et al., 2014) but
functional studies are lacking. The histone variant MacroH2A1
has been shown to impact circadian rhythms in a human
hepatocarcinoma cell line model by regulating core-clock gene
expression (Carbone et al., 2021).

Finally, remodeling of nucleosome array can also participate in
the activation and repression of circadian gene expression. At the
beginning of the activation phase, the BMAL1-CLOCK complex,
which is thought to act as a pioneer factor, recognizes E-box
sequences engaged within nucleosomes in facultative
heterochromatin and favors nucleosome eviction creating
nucleosome depleted regions (Menet et al., 2014). Associated
with the activator complex are components of the Nucleosome
Remodeling and deacetylase (NuRD) complex, CHD4, and
MTA2 (Kim et al., 2014). Despite the well-described role of
the NuRD complex in repression, some activator functions
have also been described (Hoffmeister et al., 2017). In the
circadian context, CHD4 actively participates in the activation
of transcription (Kim et al., 2014) likely due to its chromatin

remodeling action and in association with additional nucleosome
remodeling factors such as SNF2h or BRG1. MTA2, which is also
found in the BMAL1-CLOCK complex, acts purely in feedback
transcriptional repression (Kim et al., 2014) and could be
important for the proper assembly of the full NuRD complex
(Zhang et al., 1999). At the end of the active phase, the PER
complex brings the other “half” of the NuRD complex, MBD2,
GATAD2a, and HDAC1 that are required for the repressive
action of the NuRD complex and thus imparts specificity to
the clock (Kim et al., 2014).

Experiments to determine the full repertoire of chromatin
modifiers and remodelers that are at the core of the circadian
oscillator are still ongoing. The mechanism by which cells
coordinate gene-specific remodelers at the genome-scale is
likely linked to the higher layer of gene expression control - at
the level of 3D organization of the genome.

The Spatio-Temporal Organization of
Circadian Chromatin
Starting from a linear fiber of DNA to the highly condensed
mitotic chromosome, there exists several intermediate levels of
chromatin organization. Chromatin forms loops which can be
grouped into TADs and sub-TADs are split between
compartment A (transcriptionally active) and compartment B
(transcriptionally repressed) (Dixon et al., 2012). TADs can be
recruited to the lamina generating Lamina Associated Domains
(LADs) that are heterochromatic by nature (Gonzalez-Sandoval
and Gasser, 2016). In addition to this primary layer of chromatin
organization, each chromosome is associated with an allocated
territory within the nucleus (Krumm andDuan, 2019). In general,
chromosome territories and TADs are well-conserved among
tissues and even likely among species (Dixon et al., 2012; Nora
et al., 2012; Harmston et al., 2017; Eres and Gilad, 2021).

A series of studies have explored the cause and consequences
of genome topology on the control of gene expression in general
but also more specifically within the circadian context (for
previous reviews on this topic, we refer you to (Yeung and
Naef, 2018; Pacheco-Bernal et al., 2019)). The first evidence
that genome topology takes part in the circadian mechanism
came from chromosome conformation capture on chip (4C)
experiments (Aguilar-Arnal et al., 2013). In mouse embryonic
fibroblasts, using the Dbp locus as a viewpoint, interactions with
200 genomic interchromosomal loci were observed in all, of
which 29 were oscillating. Knocking out Bmal1 in these cells
specifically disrupted the oscillating interactions revealing the
need for the core clock in the dynamic Dbp gene interactome.
Investigations at the Nr1d1 locus (coding REV-ERBα) revealed
stable interactions during the circadian cycle that are important
for the cyclic activation of transcription (Xu et al., 2016). Cohesin,
independently of CTCF, is particularly important in chromatin
topology as it allows the formation of a hub of co-regulated genes
by bringing together enhancers and promoters. In the murine
liver, cohesin in association with CTCF allows the insulation of
specific domains of the chromatin, and was shown to separate
circadian TADs according to the acrophase, and circadian TADs
from non-circadian TADs (Xu et al., 2016).
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Furthermore, the Lazar group deployed the Hi-C method to
define interactions between two genomic loci (Kim et al., 2018)
at two diurnal time points. Around 900 “intra-TAD”
oscillating interactions were revealed whereas TAD borders
were observed to remain stable. The importance of REV-ERBα
was highlighted in establishing these domains. REV-ERBα
abrogates chromatin interactions to inhibit transcription
during the day in mice (Figure 2). To do so, REV-ERBα
recruits NCoR-HDAC3 and removes the elongation factor
BRD4 and the looping factor MED1. Nevertheless, not all
REV-ERBα binding sites are equivalent and at “passive”
sites REV-ERBα recruitment had no effect on loop
dissociation. Despite the demonstrated role of REV-ERBα in
circadian genome topology, the function of REV-ERBα seems
to be mainly on the regulation of output genes as cells depleted

of REV-ERBα and REV-ERBβ still have a functional core-clock
(Ikeda et al., 2019).

To better understand the importance of the chromatin
topology on a role in the function of the core clock or the
expression of the circadian output genes, two other studies
focused on the circadian chromatin topology (Furlan-Magaril
et al., 2021; Mermet et al., 2021). The Naef group used 4C-seq to
follow the interactions of several loci with the rest of the genome
over 24 h (Mermet et al., 2021). Three promoters of important
core clock genes, Bmal1 Per1 and Per2 were shown to be involved
in oscillating interactions with surrounding enhancers. The time
of the highest interactions between promoter and enhancers
precedes pre-mRNA synthesis. To determine if oscillating
genomic contacts are specific to the core clock or general
among oscillating genes, several output gene loci were also

FIGURE 2 | Spatio-temporal regulation of chromatin. During the active phase, most of the circadian TADs are in compartment A (euchromatin) with numerous intra-
TADs interactions. Cohesin, Med1 and BRD4 participate in the intra-TAD interactions. The TADs form hubs for co-transcriptional regulation by BMAL1-CLOCK. In
addition, for the core-clock genes, enhancer-promotor loops activate gene transcription. The shift to the repressive phase is accompanied by a transition of a circadian
TAD from compartment A to B. The intra-TAD interactions are maintained for clock output genes whereas promotor-enhancer loops engaged for core-clock genes
dissociate.
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considered (Mreg,Nampt, Pfkfb3,Msfd2a, and Por). Most of these
loci showed stable interactions with enhancers over time and
importantly these were observed also in arrhythmic Bmal1−/−

animals. Output genes seem to arrange in a chromatin hub of
temporally co-transcribed genes. An independent study from the
Fraser group arrived at a similar conclusion but at a genome-wide
scale (Furlan-Magaril et al., 2021). To study chromatin contacts
of promoters at high resolution over time, they applied promoter
capture Hi-C. The analysis revealed that core clock loci tend to
contact fewer genomic elements but are more dynamic.
Contrarily, output genes revealed more interactions which
were also more stable. The genome-scale analysis shows that
TAD borders are stable over time and circadian genes with a
shared transcriptional phase are grouped within a TAD. In
addition, the chromatin within a circadian TAD oscillated
between the A and B compartments (from active to inactive)
over the course of a day. Reanalysis of the REV-ERBα HiC
experiment (Kim et al., 2018) considering not just two but
three categories: REV-ERBα engaged sites associated with
core-clock genes, REV-ERBα engaged sites associated with
clock-output genes and REV-ERBα passive sites, could also
prove interesting in light of these recent observations.

In sum, clock output genes tend to form hubs that allow co-
expression of genes with the same acrophase (Figure 2). While
numerous chromatin contacts are formed between promoters
and enhancers at both core-clock and output genes, the majority
of the interactions stay stable over the day for the outputs.
Contrarily, core clock genes tend to be controlled by few
specific dynamic contacts with genomic regulatory elements.
The distinction, at the gene topological level, highlighted
between core-clock genes and clock-output genes (Furlan-
Magaril et al., 2021; Mermet et al., 2021) is unexpected and
significant and raises important questions about the how, why
and for what. The highly dynamic interactome, specific to core
clock genes, suggests another layer of control of BMAL1:CLOCK
mediated circadian gene expression that ensures in its robustness
whereas the TADs could be the unit of regulation of output genes.
Mechanisms underlying these different behaviors are waiting to
be discovered.

Some clues could come from the nuclear localization of
chromatin domains in addition to chromatin folding. For
example, at the nuclear periphery, chromatin associated with
the membrane form lamina-associated domains (LAD). LADs are
typically heterochromatic in nature. In 2015, Zhao et al.
demonstrated that PARP1 targets CTCF-bound chromatin to
LADs to inhibit circadian gene expression (Zhao et al., 2015). The
experiments were performed on embryonic stem cells or
embryonic bodies that do not have robust clocks (Zhao et al.,
2015; Benitah and Welz, 2020) and confirmed on HCT116
cancerous cells (Zhao et al., 2015). In addition, it is interesting
to note that DEC1 can interact with CTCF and reinforce
chromatin loops formed by CTCF (Hu et al., 2020). Since
DEC1 can bind E-boxes, in coordination with a CTCF-PARP1
complex it could, in theory, target chromatin to LADs for
transcriptional inhibition. Nevertheless, more work in vivo will
be required to confirm these results obtained from cultured cells,
especially since a study from the Collas lab showed that

chromatin interactions with nuclear lamina are uncoupled
from rhythmic gene expression in synchronized liver tissue
(Brunet et al., 2019).

Additional work on the nuclear location of core-clock and
output gene loci will be required to understand the roles of the
interactions. Are genomic interactions by themselves the crucial
topological features of the core clock and output gene expression?
Or do genomic interactions participate in relocation of the loci in
3D space required for gene repression? It is tempting to speculate
that because core clock genes form transient loops during the day,
the enhancer-promoter interactions are directly involved in the
regulation. Could the hub could move from euchromatin
territories to heterochromatin territories like the lamina or
around the nucleolus? The requirement of chromatin topology
modifications to build the circadian core clock is fertile for the
next phase of investigations.

CONSEQUENCES OF GENOME
TOPOLOGY OSCILLATIONS BEYOND
GENE EXPRESSION
The circadian clock integrates several layers of regulation from
the activator-repressor complexes to genome topological
oscillations via chromatin state modifications. Such a robustly
controlled self-sustained mechanism not only manages the
expression of output genes but also could use these dynamics
for other functions within cells. One such phenomenon in
differentiated cells is the DNA damage and repair response.

Genomic integrity is at constant risk of damage from solar
ultraviolet radiation, from metabolism-derived reactive species
and xenobiotics. The risk to the genome from such phenomena
are spread out over 24 h and is linked to light exposure that affects
exposed organs such as the skin, while activity and feeding cycles
typically impact visceral tissues. A description of DNA damage
pathways and damage response and repair (DDRR) is beyond the
topic of this review, and we invite readers to other excellent
reviews on this topic (Sirbu and Cortez, 2013). DDRR pathways,
which include DNA repair, cell cycle arrest or death have evolved
to limit genomic damages that happen during the day. Human
keratinocytes activate pathways that offer protection from UV in
anticipation of the incoming radiation-induced damage every day
(Janich et al., 2013) Moreover, the sensitivity to rhythmic damage
is lost in the absence of core clock components such as BMAL1 or
the CRYs (Geyfman et al., 2012). While circadian machinery may
be expendable for DDRR to work (Gaddameedhi et al., 2012),
some genes of the DDRR such as XPA were shown to be cyclically
expressed and the activity of the DDRR pathways such as
nucleotide excision repair was shown to be cyclic
(Gaddameedhi et al., 2012; Geyfman et al., 2012; Yang et al.,
2018).

It has notably been shown that condensed heterochromatin is
more resistant to DNA damage and protected from double-
strand breaks (DSB) while more open chromatin is more
sensitive to such damage (Cann and Dellaire, 2011; Takata
et al., 2013; Nair et al., 2017). One of the reasons is that DNA
damaging agents have less likelihood of affecting genomic sites
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protected either by local chromatin architecture or protein
complexes when compared to open/accessible DNA.
Nevertheless, at the same time, the DDRR machinery needs
access to the damaged loci to repair the damage. DDRR
therefore is more active in open chromatin (Adar et al., 2016;
Nair et al., 2017). Finally, even if heterochromatin is less prone to
DNA damage, the lower accessibility for DDRR factors induces
higher rates of mutagenesis in heterochromatin (Schuster-
Böckler and Lehner, 2012; Zheng et al., 2014; Mao and
Wyrick, 2019).

Interestingly, inmice, a non-negligible part of chromatin tends
to be more open during the day and more condensed during the
night (chromatin marks (Koike et al., 2012), DNAse sensitivity
(Sobel et al., 2017), compartment repartition (Furlan-Magaril
et al., 2021)). Bee et al. showed that in clock-synchronized cell
lines micrococcal nuclease accessibility as well as chromatin
condensation measured by fluorochrome binding differed in
two dishes of cells 12 h antiphase to each other (Hood and
Amir, 2017). Moreover, cells are more prone to DNA damage
and better repair during the time of the day with high BMAL1
protein content which correlated with relaxed chromatin (Bee
et al., 2015). While these experiments do not approach the
resolution provided by chromatin-capture technologies, it
would be interesting to determine if DNA damage and DNA
repair pathways correlate with oscillating and non-oscillating
TADs that move from compartment A to B in a circadian
manner i.e. the crosstalk between circadian chromatin
topology and circadian DNA damage and DDRR.

CONCLUSION AND PERSPECTIVES

The circadian clock uses numerous mechanisms to sustain robust
and precise oscillations. Over 3 decades of work have identified
core-clock components and the competition between activators
(BMAL1, CLOCK, and ROR) and repressors (PER, CRY, REV-
ERB, and DEC) that build the loop. The discovery of chromatin
organization dynamics followed after. The clock complexes
recruit multiple chromatin modifiers and so epigenetic marks
oscillate over 24 h. Finally, it is only recently that genome
topology dynamics have been implicated in the core clock
mechanism with specific features that distinguish it from the
outputs of the clock. The core clock loci form few and dynamic
contacts whereas output loci make numerous but stable
interactions. Nevertheless, work is still required to understand
the requirement of genome topology in the circadian clock and if

the folding of the chromatin is sufficient or if the spatial
displacement of circadian regions in nuclear space is also a
prerequisite. Whether pathways that are identified in the liver
or cell lines apply to all tissues/cells where peripheral clocks
function also remains open to study.

How does the aging clock alter chromatin and genome topology?
During aging, rhythms tend to weaken with damped amplitudes and
shorter periods (Chen et al., 2016; Hood and Amir, 2017) and at its
extreme, clock defective mice models (especially Bmal1 knockouts)
age extremely rapidly (Kondratov et al., 2006). Cells from aged
individuals often exhibit reduced areas of heterochromatin, loss of
repressive histone marks, the altered composition of core histones
and histone variants, and appearance of nucleosome-depleted
regions (Cavalli and Misteli, 2013). Nevertheless, rhythms in
tissues from luciferase mouse models can stay remarkably stable
over time (Canaple et al., 2018). Are core-clock loci and the
topological domains that house them immune to the aging effect?
Following increasing evidence for reciprocal interactions between
aging and circadian rhythms (Kondratova and Kondratov, 2012), a
focus on chromatin organization and genome topology could hold
the key to decrypting the underlying mechanism. This will help
design bi-directional therapies: regimens that stabilize the circadian
clock would favor healthy aging, while improving healthspan would
strengthen the clock and control of animal physiology, metabolism
and behavior (Eckel-Mahan and Sassone-Corsi, 2013; Akashi et al.,
2020).
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