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Cellular targets and lysine selectivity
of the HERC5 ISG15 ligase

Xu Zhao,1,4 Jessica M. Perez,1 Peter A. Faull,2,5 Catherine Chan,1 Femke W. Munting,1 Larissa A. Canadeo,1

Can Cenik,1 and Jon M. Huibregtse1,3,6,*
SUMMARY

ISG15 is a type I interferon-induced ubiquitin-like modifier that functions in innate immune responses. The
major human ISG15 ligase is hHERC5, a ribosome-associated HECT E3 that broadly ISGylates proteins
cotranslationally. Here, we characterized the hHERC5-dependent ISGylome and identified over 2,000
modified lysines in over 1,100 proteins in IFN-b-stimulated cells. In parallel, we compared the substrate
selectivity hHERC5 to the major mouse ISG15 ligase, mHERC6, and analysis of sequences surrounding IS-
Gylation sites revealed that hHERC5 and mHERC6 have distinct preferences for amino acid sequence
context. Several features of the datasets were consistent with ISGylation of ribosome-tethered nascent
chains, and mHERC6, like hHERC5, cotranslationally modified nascent polypeptides. The ISGylome data-
sets presented here represent the largest numbers of protein targets and modification sites attributable
to a single Ub/Ubl ligase and the lysine selectivities of the hHERC5 and mHERC6 enzymes may have im-
plications for the activities of HECT domain ligases, generally.

INTRODUCTION

Type 1 interferon (IFN-a/b) signaling leads to the expression of hundreds of interferon-stimulated genes (ISGs) in vertebrate cells, and the

protein products of these genes play important roles in the innate immune response to viral and microbial pathogens, either as effector pro-

teins or regulators of the interferon response.1 Importantly, the functions and mechanisms of only a small number of the effector proteins are

understood in molecular detail. Some of the better characterized effectors include MxA, OAS/RNaseL, TRIM proteins, IFITM, viperin, and

tetherin, each of which interferes with one or more aspects of virus ingress or egress, genome replication, or vRNA function or stability.2,3

ISG15 was one of the first ISGs to be discovered as well as the first ubiquitin-like protein modifier (Ubl) to be discovered after ubiquitin.4–6

Human ISG15 is a 157 amino acid (�17 kD) protein and consists of two ubiquitin-like domains separated by a short flexible linker. Each of

the domains is less than 40% identical to ubiquitin, and ISG15 sequences diverge significantly among mammalian species. For example,

human and mouse ISG15 are approximately 66% identical, and mouse (Mus musculus) and rat (Rattus rattus) ISG15 are approximately

73% identical.

Like other Ubls, ISG15 conjugation requires a cooperating set of E1, E2, and E3 enzymes. The human ISG15 E1 and E2 proteins are UBA7/

UBE1L and UBE2L6/UBCH8, respectively.7–9 The major ISG15 E3 ligase in human cells is HERC5 (hHERC5),10 a HECT domain ligase and the

only one of the 28 humanHECT E3 that is known to conjugate a Ubl other than ubiquitin. Depletion of hHERC5 abrogates nearly all ISGylation

in IFN-b-stimulated cells, and co-expression of ISG15, UBA7, UBE2L6, and hHERC5 in non-IFN-treated cells recapitulates ISGylation of target

proteins.10 TheUBA7,UBE2L6, andHERC5 genes are, like ISG15, induced at the transcriptional level by type I IFN signaling and are therefore

also ISGs.10 Two other E3s have been reported to function in ISGylation (TRIM25/EFP and ARIH1/HHARI), although these appear to have a

very small number of substrates and may play highly specialized roles in ISGylation.11,12 Interestingly, the human HERC6 gene, which is also

transcriptionally activated by type 1 IFN signaling, is adjacent to HERC5 on chromosome 4 and the hHERC6 and hHERC5 proteins have a

similar protein domain organization.13 Both contain a series of N-terminal RCC1 repeats (spanning approximately 370 amino acids), a central

region of approximately 270 amino acids predicted to consist primarily of a series of stacked alpha helices (based on AlphaFold14 prediction),

and a C-terminal HECT domain of approximately 380 amino acids. Despite these similarities, hHERC6 does not appear to play a significant or

perhaps any role in ISG15 conjugation in human cells. However,mice completely lack aHERC5gene, andHERC6 (mHERC6) is themajor ISG15

ligase in mice.15–17 Most other rodents are like mice in this regard (i.e., possessing a HERC6 gene and lacking a HERC5 gene), but this gene

organization is rare outside of rodents, with the only other reported example being the white rhinoceros, Ceratotherium simum.15,17 In
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contrast, cetaceans (dolphins and whales) have a HERC5 gene but do not have an intact HERC6 gene, while a small number of species (chin-

chilla and the little brown bat,Myotis lucifugus) have both aHERC5 andHERC6gene with an additional gene that resembles aHERC5/HERC6

chimera, located directly between their HERC5 and HERC6 genes.13 This surprising variation at the HERC5/HERC6 loci is consistent with the

fact that both the HERC5 and HERC6 genes, like many other genes encoding components of the innate immune response, are rapidly

evolving genes and under positive genetic selection.13,18 This is generally interpreted as an indicator of an evolutionary ‘‘arms race’’ between

host and pathogens. It should be noted that amongmammalian HERC5 and HERC6 proteins, ISG15 ligase activities have, to our knowledge,

only been experimentally validated and reported for human HERC5 and mouse HERC6.

Although ISG15-deficient mice exhibit an increased susceptibility to many viral infections,19 a single general biochemical function of pro-

tein ISGylation remains unclear and it does not target proteins for proteasomal degradation. Early proteomics studies identified over 300

cellular proteins as substrates for ISGylation,20–22 but their identities shed little light on the function or ISGylation. More recent studies

have greatly expanded the number of potential substrates of ISGylation,23–27 raising the question of how a single ligase (e.g., hHERC5 or

mHERC6) can recognize such a large number of target proteins. An apparent solution to this problem came with the finding that hHERC5

associates with polyribosomes and ISGylates newly synthesized proteins in a cotranslational manner.28 The N-terminal RCC1-like repeats

of hHERC5 are essential for ribosome association and target protein ISGylation.28 This suggested a model in which ribosome-tethered

HERC5 broadly modifies ribosome-associated nascent polypeptides in a near-stochastic manner, accounting for how a single ligase could

be responsible for modifying such a large number of target proteins. We further proposed that, in the context of a viral infection and a

type I interferon response, newly translated viral proteins may represent the key biologically important targets of ISG15, with covalent attach-

ment of ISG15 functioning as a general steric inhibitor of viral protein function. Newly translated cellular proteins would also be ISGylated

during an IFN response, but this may be largely collateral damage in an attempt to target and interfere with viral protein function. As ISGy-

lation is relatively inefficient, with, in most cases, only 5%–10% of the total pool of a newly translated protein being ISGylated, viral structural

proteins (e.g., capsid and nucleocapsid proteins) might be expected to be particularly sensitive to the effects of ISGylation due to dominant-

negative effects on formation of oligomeric complexes. This concept has been tested in two systems: (1) a human papillomavirus pseudovirus

system, where low-level ISGylation of the L1 capsid protein had a dominant-negative effect on infectivity of virus-like particles,28 and (2) in an

influenza B system,where the ISGylated formof the influenza B ribonucleoprotein (NP) prevented oligomerization of NP along the viral RNA.29

Interestingly, the effect on NP is countered by the influenza B NS1 protein, which binds and sequesters ISGylated proteins, including ISGy-

lated NP. It was proposed that this effectively removes ISGylated NP from the total pool of NP protein capable of oligomerizing along viral

RNA.29 Strong additional evidence supporting an antiviral function of ISGylation is that several virus types—including MERS, SARS-CoV-1,

SARS-CoV-2, Crimean-Congo hemorrhagic fever virus, and foot-and-mouth disease virus (FMDV)—overcome the effects of ISGylation by en-

coding their own ISG15 deconjugating enzymes.30–35 In the case of the beta coronaviruses, the de-ISGylating enzymatic activity (e.g., the

PLpro domain of the nsp3 protein of SARS-CoV-2) also proteolytically processes the orf1a viral polyprotein. The dual functions of PLpro (poly-

protein cleavage and de-ISGylation) are reflected in the similarity of the polyprotein cleavage sites (e.g., RLKGG for the nsp2-3 cleavage site)

to the C-terminal sequence of ISG15 (RLRGG). PLpro inhibitors are attractive antiviral drug targets36 as thesewould be expected to block both

polyprotein cleavage and de-ISGylation.

The goal of the work described here was to broadly characterize the hHERC5-dependent ISGylome and to compare the activities of

hHERC5 andmHERC6 in terms of cellular substrates, the sites of modification within these substrates, and characteristics of themodified pro-

teins. While this goal may seem at odds with the hypothesis that viral rather than cellular proteins are the biologically relevant substrates of

ISG15, the premisewas that analysis of a large set of ISGylation sites would reveal preferredmodification sites based on sequence context and

position within proteins. Such preferences or biases in hHERC5 andmHERC6modification sites might be expected to represent evolutionary

adaptations to species-specific pathogen challenges. Taking advantage of the fact that the last six residues of ISG15 are identical to those of

ubiquitin (LRLRGG), we used a proteomics approachpreviously used for global identification of ubiquitylation sites, based on antibody recog-

nition of the K-ε-GG remnant left onmodified lysines after tryptic cleavage.37,38We present an analysis of hHERC5-dependent ISGylation sites

and a comparison to sites modified by mHERC6, showing that the two enzymes have distinct lysine preferences based on local sequence

context. We also show that features of both the hHERC5 and mHERC6 datasets are consistent with cotranslational ISGylation of target pro-

teins. In addition, the hHERC5 andmHERC6 ISGylomes described here represent the largest number of targets and modification sites attrib-

utable to a single ubiquitin or Ubl ligase, and these results may have implications for reactions catalyzed by HECT ubiquitin ligases, generally.
RESULTS

The hHERC5-dependent ISGylome in IFN-b-treated cells

A strategy for defining the hHERC5-dependent ISGylome was developed based on antibody recognition of the di-glycine (di-G) remnant left

on ISGylated lysine residues following tryptic digestion, as originally developed for ubiquitin proteomics.37,38 This approach was feasible

because ISG15, like ubiquitin and Nedd8, terminates in an RGG sequence. An antibody specific to di-G-substituted lysine chains (anti-K-

є-GG antibodies) is available (Cell Signaling Technology) that can be used to immunoprecipitate the modified peptides, which are then

identifiedbymass spectrometrymethods. For hHERC5-specific ISG15di-Gproteomics, the challenge is to specifically identify theK-є-GGpep-

tides derived from hHERC5-dependent ISG15 conjugates, while eliminating peptides derived from ubiquitylated and Neddylated proteins.

Our initial approach utilized a control A549 cell line (human lung adenocarcinoma) in which HERC5 was disrupted by CRISPR (A549-

HERC5KO). An immunoblot of total cell lysate from IFN-b-treated cells confirmed the loss of HERC5 expression in the A549-HERC5KO as

well as the loss of the vast majority of ISG15 conjugates in IFN-b-treated A549-HERC5KO cells compared to the parental A549 cells (Figure 1A).
2 iScience 27, 108820, February 16, 2024
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Figure 1. Di-G proteomics of IFN-b-treated A549 cells

(A) A549 or A549-HERC5KO cells were treated with IFN-b as indicated and total cell extracts were immunoblotted with antibodies specific for HERC5, ISG15, and

b-actin.

(B) Schematic overview of the Di-G proteomics workflow for characterizing the ISGylome of IFN-b-treated A549 cells.

(C) Cell extracts from IFN-b-treatedA549 andA549-HERC5KO cells were immunoblotted for ubiquitin (left) or ISG15 (right), before and after treatmentwith USP2-cc.

(D) Unsupervised clustering of 4,001 di-G peptides identified in extracts from IFN-b-treated A549-HERC5KO and A549 cells (three replicates each).
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The small amount of ISG15 conjugates present in the IFN-b-treated A549-HERC5KO cells likely represent those catalyzed by minor ISG15 li-

gases (e.g., TRIM25, HHARI, and/or other unknown ligases) and/or potentially spurious ISGylation events as a consequence of the production

of ISG15-charged UBE2L6 in the absence of its cognate ligase. As shown schematically in Figure 1B, A549 and A549-HERC5KO cells (90 3

10 cm plates each, in three biological replicates) were treated with IFN-b for 48 h, and total cell lysates were prepared. Lysates were treated

with purified USP2-cc (catalytic core) protein, a broadly acting deubiquitinating enzyme that does not recognize ISG15 conjugates. USP2-cc

reduced ubiquitin conjugates by an average of 85% across all replicates without affecting ISG15 conjugates (Figure 1C). Immunoprecipita-

tions were then performed with anti-K-є-GG antibody and peptides were processed and identified by liquid chromatography-tandem

mass spectrometry (LC-MS/MS) (see STAR Methods). A total of 4,001 unique di-G modified sites met these criteria and non-supervised hier-

archical clustering of these sites among the six biological samples is shown in Figure 1D. As expected, the three A549 biological replicates

clustered separately from the A549-HERC5KO replicates. A significant number of sites were identified broadly across both the A549 and A549-

HERC5KO replicates (cluster 1; approximately 1,000 sites) and these are expected to include residual ubiquitin and NEDD8modification sites
iScience 27, 108820, February 16, 2024 3
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Figure 2. Analysis of the IFN-b-induced A549 ISGylome

(A) Heatmap (log-transformed p values) showing the significance of overrepresentation (red) or underrepresentation (blue) for each amino acid found within +/�
7 residue window of each ISG15modification site (2,189 sites in 1,107 proteins), relative to the amino acid frequencies within the A549 proteome. Significance was

determined with two-sided Fisher’s exact test and color shading represents p values %0.001.
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Figure 2. Continued

(B) Two Sample Logo showing enrichment and depletion of amino acids within +/� 7 residue window of ISG15 modification sites, relative to amino acid

frequencies within +/� 7 residue window of all lysines in A549 proteome. Statistical significance determined by two-sample t test; p values %0.05.

(C) ISGylation modification site motifs determined by MoMo. 4 of 4 returned motifs shown; full output shown in Table S7. Foreground peptides are ISG15

modification sites (2,189 sites). Background peptides represent all lysines within the A549 proteome. Motif score is sum of negative log likelihood

probabilities for each residue in motif; fold enrichment over background and p values from Fisher’s exact test also shown for each motif.
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as well as any ISG15 sites that were independent of hHERC5 activity. Approximately 2,500 sites were specific for the A549 replicates and not

found in the A549-HERC5KO replicates (cluster 2), representing hHERC5-dependent ISGylation sites. A small set of sites (500; cluster 3) were

found with low reproducibility in the A549-HERC5KO replicates and were discarded. For bioinformatic analyses, we defined HERC5-depen-

dent ISG15modification sites as sites that were identified in at least two of the three biological replicates of the IFN-treated A549 cells (cluster

2) and were not identified in any of the three biological replicates from the A549-HERC5KO cells. Sites identified on the ISG15 conjugation

enzymes, themselves (UBE1L, UBE2L6, and HERC5), were discarded, as these are likely to represent auto-ISGylation events. These filtering

criteria resulted in a set of 2,189 HERC5-dependent ISG15modification sites in IFN-b-treatedA549 cells, representing a total of 1,107 different

proteins (Table S1). These proteins spanned a very wide range of categories and functions, as discussed further in the following section.

The set of ISG15 modification sites was first analyzed to determine whether hHERC5 has a preference for modifying lysines based on pri-

mary sequence context. Modified lysines were analyzed for enrichment or depletion of amino acids relative to the frequency of amino acids

within the total proteome (Table S2) of IFN-b-treated A549 cells. The window for analysis was +/� 7 residues surrounding themodified lysines.

Figure 2A shows a heatmap of the significance of the enrichment (red) or depletion (blue) of the twenty amino acids at each position (with p

values <10�3 colored and shaded). Notable features included a general depletion of other lysine residues from the�7 to +6 positions and a

depletion of arginine at the�1 and�2 positions. Despite this general depletion of surrounding basic residues, there was a significant enrich-

ment for arginine at the +3 position. Alanine, valine, isoleucine, and glutamine were enriched at the �1 and +1 positions, and glycine was

enriched at several positions on both sides of modified lysines. Aromatic residues (F, W, and Y) were enriched at the�2 position and aspartic

acid was enriched at �5. Figure S1A shows the representation in +/� 15 residue window, demonstrating that significant enrichments and

depletions fall off sharply outside of the +/� 7 window. A barplot representation of the significance of enrichments and depletions for all

amino acids at all positions is shown in Figure S1B, which again illustrates the general depletion of basic residues (K, R, and H) surrounding

modified lysines, with the notable exception of the enrichment for arginine at +3. The enrichment for glycine at nearly all positions is also

evident, as well as a general depletion of glutamic acid residues, with enrichment of aspartic acid at �5. A Two Sample Logo analysis39

was also performed to visualize amino acid enrichments and depletions surrounding ISGylated lysines (Figure 2B). This again showed the

general depletion of lysines surrounding the modification site as well as the enrichment of the -5D, -2F, and +3R. MoMo (modification

motifs)40 is a tool for discovering motifs associated with sites of post-translational modifications. MoMo identified four statistically significant

motifs, containing either -5D, -2F, -2I, or +3R (Figure 2C). Interestingly, none of these single amino acid enrichments were found in combina-

tion, suggesting that these represent separate and distinct preferences for hHERC5-dependent ISGylation. Together, these results indicate

that hHERC5 displays preferences for lysine sequence context. At the same time, the lack of a multi-residue preferred motif suggests that

hHERC5 does not have a strongly predictive recognition motif.
Comparison of hHERC5 and mHERC6 ISGylation activities

The set of hHERC5-dependent ISGylation sites identified in IFN-b-treated A549 cells, described previously, represents, to our knowledge, the

largest number of targets and sites attributable to a single ubiquitin or Ubl ligase, and certainly the largest set of modification sites identified

for a HECT domain ligase. To further understand and expand the hHERC5-dependent ISGylome, as well as to compare hHERC5 activities to

mouse HERC6 (mHERC6) activities in the same cell type, we developed a second proteomics workflow. As shown previously,10 ISG15 conju-

gation can be recapitulated in non-IFN-treated cells by co-transfection of plasmids expressing ISG15, UBA7, UBE2L6, and HERC5.While type

I IFN signaling induces all of these proteins at the transcriptional level, certain human cell lines, such as HEK293T cells, exhibit a detectable

basal expression of some of these ISGs, including hHERC5.We therefore disrupted the hHERC5 gene by CRISPR in HEK293T cells in order to

eliminate expression of endogenous hHERC5 and used this cell line (HEK293T-HERC5KO) for reconstitution of ISGylation by co-expression of

the four ISGylation components. For hHERC5-specific di-G proteomics, 35 10-cm plates of 293T-HERC5KO cells were transfected with either a

three-plasmid combination (FLAG-hISG15, hUBA7, and hUBE2L6) or four-plasmid (FLAG-hISG15, hUBA7, hUBE2L6, and hHERC5) combina-

tion, in three biological replicates. For mHERC6 proteomics, transfections were performed with plasmids expressing FLAG-mISG15, mU-

BE2L6, with and without mHERC6; human hUBA7 was used with the mouse ISGylation components as the E1 enzyme is not expected to in-

fluence substrate selectivity of the E3 enzymes, particularly for HECT domain ligases.41 Figure 3A shows that co-expression of hHERC5 or

mHERC6 with their cognate human or mouse ISG15 and E2 enzymes and hUBA7 led to the accumulation of ISG15 conjugates, and omission

of either hHERC5 or mHERC6 resulted in a very low background level of ISG15 conjugation. Figure 3A also shows that treatment of the cell

lysates with USP2-cc eliminated the vast majority (estimated 90%–95%) of ubiquitin conjugates and did not decrease ISG15 conjugates.

Following USP2-cc treatment, lysates were digested with trypsin and di-G peptides were immunoprecipitated and processed as described

previously for IFN-treated A549 cell lysates.

Co-expression of the human and mouse ISG15 conjugation components by DNA transfection in HEK293T-HERC5KO cells resulted in the

identification of a total of 16,035 di-G sites across all samples. Unsupervised hierarchical clustering of these sites is shown in Figure 3B, which
iScience 27, 108820, February 16, 2024 5
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Figure 3. Identification of targets of hHERC5 and mHERC6 by expression of conjugation components in HEK293T-HERC5KO cells

(A) Top: HEK293T-HERC5KO cells were transfected with plasmids expressing FLAG-hISG15, hUBA7, hUBE2L6, with or without hHERC5. Cell extracts were probed

by immunoblotting for ubiquitin (left) or FLAG-ISG15 (right), before and after USP2-cc treatment. Bottom: as above, except transfected plasmids were FLAG-

mISG15, hUBA7, mUBE2L6, with or without mHERC6.
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Figure 3. Continued

(B) Unsupervised hierarchical clustering of 16,035 modified lysines identified in cells expressing the human ISGylation enzymes with and without hHERC5 and the

mouse ISGylation enzymes with and without mHERC6 (three replicates of each transfection condition). Red indicates identified sites and gray indicates that the

site was not identified. Five major clusters (C1-C5) are indicated; see text for complete description.

(C) Venn diagrams showing overlap of proteins that are ISGylated by hHERC5 and mHERC6 targets (left) and overlap of hHERC5 and mHERC6 ISGylation sites

(right).

(D) Uniform manifold approximation and projection (UMAP) were used to visualize the lysine preferences of hHERC5 in A549 IFN-b-induced cells (purple) and in

HEK293T-transfected cells (red), as well as the lysine preferences of mHERC6 (pink) and total ubiquitylation site preferences in the HEK293T datasets (blue). Each

point corresponds to one of the three experimental replicates for each condition.
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identified five major clusters: sites targeted by both hHERC5 and mHERC6 (cluster 4), sites targeted by hHERC5 but not mHERC6 (cluster 3),

sites targeted bymHERC6 but not hHERC5 (cluster 2), and sites that were identified across all samples (cluster 1) which likely represent Nedd8

and residual ubiquitin modification sites. A small number of sites (cluster 5) were seen with low reproducibility in the three-plasmid controls,

which may represent the activity of minor ISG15 ligases and/or spurious ISGylation events as a result of the accumulation of ISG15-charged

UBE2L6 proteins in the absence of a hHERC5 or mHERC6 ligase.

The di-G sites were filtered with the same criteria used for the A549 ISGylome, where hHERC5 and mHERC6 sites were considered those

identified in two of three of the respective four-plasmid transfections and absent in all three of the corresponding control (three-plasmid)

transfections. This resulted in a total of 2,901 proteins and 7,117 lysine residues targeted by hHERC5 (Table S3), and 2,779 proteins and

7,182 lysine residues targetedbymHERC6 (Table S4). Interestingly, the overlap of identified proteins was significantly greater than the overlap

of the identified sites:�69%of proteins targeted by hHERC5were targeted bymHERC6 (Jaccard index of 0.54), while only�45%of the lysines

residues targeted by hHERC5 were also targeted by mHERC6 (Jaccard index of 0.29) (Figure 3C). Among the shared protein targets, 55% of

the hHERC5 sites were modified by mHERC6, preliminarily suggesting that hHERC5 and mHERC6 have distinct but partially overlapping

lysine selectivities.

We next determined how the hHERC5 and mHERC6 ISGylomes compared to each other and to the ubiquitylome. Di-G ubiquitin prote-

omics of untransfected HEK293T-HERC5KO cells was performed using the same workflow as described previously, with omission of the USP2-

cc treatment. A total of 3,672 ubiquitylation sites from 1,637 proteins (Table S5) were identified and the broad characteristics of the ubiquity-

lated sites were similar to those previously reported38 (Figure S2A). To graphically visualize the hHERC5 andmHERC6 ISGylation preferences

as well as the preferences for ubiquitylation, we created a sequence-relative-frequency vector for each dataset. This vector comprised the

relative frequencies of amino acid residues at each of the �7/+7 sites, and uniform manifold approximation and projection42 was used to

cluster and visualize the data. The three biological replicates of the A549 IFN-b ISGylome and the HEK293T-HERC5KO hHERC5-transfected

ISGylome replicates clustered closely together (Figure 3D), indicating that cell type differences and the method used to induce ISGylation

(IFN-b treatment or the four-plasmid transfection) did not have a significant impact on hHERC5 lysine selectivity. The mHERC6 ISGylome

site preferences clustered separately from the hHERC5 preferences, supporting the conclusion that the hHERC5 and mHERC6 ligases differ

in their lysine selectivities. The mHERC6 site preferences clustered closely with the ubiquitylation preferences, and a Two Sample Logo anal-

ysis within the +/� 7 residuewindowof themHERC6 ISGylation sites andHEK293T ubiquitylation sites confirmed the overall similarity inmodi-

fication sites (Figure S2B). Whether the similarities betweenmHERC6 site and ubiquitylation site preferences are a curiosity or of biochemical

significance is unclear, as the ubiquitylation sites represent the average weighted activities of hundreds of ubiquitin ligases.

The primary sequence context of hHERC5 andmHERC6modification sites was analyzed as described previously, relative to the amino acid

frequencies within the total proteomeof HEK293T cells (total HEK293T proteomepresented in Table S6). As expected, properties of hHERC5-

modified lysines in transfected HEK293T-HERC5KO cells closely resembled those seen in IFN-b-treated A549 cells (Figure S2C; note, in partic-

ular, frequencies of K, R, F, E, and G relative to their frequencies in the proteome). Figures 4A and 4B show heatmaps for the enrichment and

depletion of residues surrounding the modified lysines for the HEK293T hHERC5 and mHERC6 datasets. Notable differences between the

hHERC5 and mHERC6 datasets included the following: (1) hHERC5 exhibited an overrepresentation of positively charged amino acids (K,

R, and H) at position +1 to +3 relative to mHERC6, (2) hHERC5 showed a significant enrichment of all three aromatic residues (F, Y, and W)

at the�2position relative tomHERC6, and (3)mHERC6 showedanenrichment of negatively charged residues (DandE) across nearly the entire

window (�6 to +7) window relative to hHERC5. Notable similarities included (1) a general depletion of positively charged amino acids on the

N-terminal side of themodified sites, (2) an enrichment of glycine residues at several positions on both sides of modified lysines, (3) an enrich-

ment of uncharged amino acids at the�1 and +1 positions, and (4) a depletion of proline at the�1 position. Two Sample Logo analysis (Fig-

ure 4B) showed that the hHERC5enrichments anddepletionswere similar to those seen in theA549dataset (e.g., the elevated frequency of the

-2F and +3R). The mHERC6 Two Sample Logo, consistent with the heatmaps, showed a higher frequency of negatively charged residues on

both sidesofmHERC6-ISGylated lysines relative to hHERC5modification sites anddid not show the -2For+3R seenwith hHERC5.MoMo iden-

tified several low information content motifs for both the hHERC5 and mHERC6 datasets (Figure 4C). For hHERC5, these included the -2F as

well as a -2Ymotif and two variations of the+3Rmotif. ThreemHERC6motifs were identified, all of which contained an acidic residue upstream

at the�1 or�2 position. Additional variations at the�1 or +1 positions were also identified for bothmHERC5 andmHERC6, and are shown in

Table S7 (along with all MoMo motifs identified within all ISGylome datasets). Together, these results are consistent with the conclusion that

hHERC5 and mHERC6 have distinct but overlapping preferences for lysine ISGylation based on local sequence context.

GO enrichment analysis of the A549 and HEK293T-HERC5KO hHERC5- andmHERC6 ISGylomes showed that modified proteins spanned a

wide rangeof biological andbiochemical functions andwere localized inmany cellular compartments (Figure S3A). KEGGpathway annotation
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Figure 4. Comparisons of hHERC5 and mHERC6 ISGylomes

(A) Heatmaps (log-transformed p values) are shown for the significance of overrepresentation (red) or underrepresentation (blue) for each amino acid found

within +/� 7 residue window of each ISG15 modification site for the hHERC5 dataset (left) and mHERC6 dataset (right), relative to the amino acid

frequencies within the HEK293T proteome. Significance was determined with two-sided Fisher’s exact test and color shading represents p values %0.001.

(B) Two Sample Logo showing enrichment and depletion of amino acids within +/� 7 residue window of each ISG15 modification site, relative to amino acid

frequencies within +/� 7 residue window of all lysines in HEK293T proteome. Statistical significance determined by two-sample t test; all shown residues

have p value %0.05.

(C) ISGylation modification site motifs determined by MoMo. Four of 26 returned motifs shown for hHERC5, 3 of 23 shown for mHERC6. Full results shown in

Table S7. Foreground peptides are ISG15 modification sites (7,117 sites for hHerc5, 7,182 sites for mHerc6). Background peptides extracted from +/� 7

residue window surrounding all lysines within HEK239T proteome. Motif score is sum of negative log likelihood probabilities for each residue in motif; fold

enrichment over background and p values from Fisher’s exact test also shown for each motif.

ll
OPEN ACCESS

iScience
Article
of theA549 ISGylome indicatedan enrichment of proteins inmetabolic pathways (Figure S3B), includingproteinswithin theglycolytic pathway,

the tricarboxylic acid (TCA) cycle, fatty acid degradation and synthesis, pyruvate metabolism, and sugar metabolism. Strikingly, all eleven en-

zymesof theglycolytic pathwaywere substrates for ISGylation in all three ISGylomedatasets,with thenumberofmodifiedsites identifiedwithin

these enzymes ranging from 1 to 15 (Figure S3C). The large number of glycolytic enzymes subject to ISGylation, discussed further in the

following section, was reported previously in mice and linked to decreased glycolytic activity and thermogenesis in adipose tissue.43 Five of

the eight TCA cycle enzymes were also ISGylated in all three datasets, and every enzyme was modified in at least one dataset.

An expectation of the cotranslational model for ISGylation is that IFN-induced proteins might, themselves, be targets of ISGylation in IFN-

b-treated cells. 115 IFN-induced proteins were identified in the background proteome of IFN-b-treated A549 cells (based on induction R
8 iScience 27, 108820, February 16, 2024
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Figure 5. Both hHERC5 and mHERC6 associate with polysomes and modify proteins cotranslationally

(A) Schematic diagram of the cotranslational ISGylation assay. See text for complete description.

(B) Cotranslational ISGylation assay. HEK293T-HERC5KO cells were transfectedwith plasmids expressing hHERC5 ormHERC6 as indicated, alongwith hUBA7 and

the respective human or mouse FLAG-ISG15 and UBE2L6 plasmids. Polysomes were isolated and nascent chains were labeled with biotinylated puromycin (Bio-

Puro). The left panel shows a fraction (2.5%) of the total Bio-Puro reaction products (labeled nascent chains), detected with fluorescently labeled streptavidin

(Streptavidin FL680). The right panel shows the products (biotinylated and ISGylated nascent chains) after anti-FLAG immunoprecipitation, detected with

Streptavidin FL680.
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Figure 5. Continued

(C) HEK293T-HERC5KO cells were transfected with plasmids expressing NTAP-tagged E3 constructs: hHERC5, hHERC5 deleted of the RCC repeat region

(hHERC5-ORLD), mHERC6, and mHERC6-ORLD. Cell extracts were fractionated by sucrose density gradient ultracentrifugation and a representative A254

absorbance trace is shown (for the hHERC5 transfection), with ribosome and polysome peaks indicated. Gradient fractions were analyzed by immunoblottingwith

anti-protein A (to detect the NTAP tag), anti-RPS6 (small ribosomal subunit), and anti-RPL23A (large ribosomal subunit) antibodies.

(D) Deletion of the RCC repeats abrogates substrate ISGylation by both hHERC5 and mHERC6. V5-tagged Moesin or V5-Ran was expressed in HEK293T-

HERC5KO cells as substrates for ISGylation, along with the basal ISGylation components and hHERC5, hHERC5-ORLD, mHERC6, or mHERC6-ORLD.

ISGylation of the V5-tagged substrates was only detected in the presence of the full-length hHERC5 or mHERC6 proteins.
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2-fold at the transcriptional level; Interferon.org).44 40 of these proteins (�35%) were ISGylated in IFN-b-treated A549 cells (Table S8). This was

consistent with a previous smaller scale proteomics study that identified IFN-induced proteins as ISGylation targets.20

Both hHERC5 and mHERC6 target nascent polypeptides

Wepreviously showed that hHERC5 associates with polysomes and broadly ISGylates newly translated proteins,28 accounting for how a single

ligase can target such a large number of protein targets. We developed an assay for cotranslational ISGylation (shown diagrammatically in

Figure 5A) to determine if mHERC6 also functioned cotranslationally. Cells expressing FLAG-ISG15 and the E1, E2, and HERC5/6 enzymes

were lysed in polysome lysis buffer containing cycloheximide and NEM; under these conditions, nascent chains are retained on polysomes

at the point of cell lysis, and NEM prevents ISGylation from occurring following cell lysis. After partial purification of polysomes by sucrose

density ultracentrifugation, polysomes were incubated with biotinylated puromycin (BIO-Puro), which forms a covalent bondwith the terminal

carboxyl group of nascent polypeptides at the peptidyl-transferase center of the ribosome. The cotranslational model for ISGylation predicts

that this should result in the generation of doubly modified nascent chains (BIO-puromycylated and ISGylated), which could only have been

generated if (1) hHERC5/mHERC6 ISGylated the nascent chains prior to cell lysis and (2) BIO-Puro was incorporated into those ISGylated

nascent chains in vitro within intact translation complexes. Doubly modified products were assayed by immunoprecipitation of FLAG-

ISG15 from polysome fractions followed by blotting with fluorescent streptavidin. As shown in Figure 5B, expression of the complete set

of conjugation components with either hHERC5 or mHERC6 resulted in the production of the doubly modified polypeptides, while omission

of hHERC5 or mHERC6 from the transfection did not result in production of the doubly modified proteins. These results indicate that both

hHERC5 and mHERC6 modify nascent chains within active translation complexes.

AlphaFold13-predicted structures for hHERC5 and mHERC6 are shown in Figure S4A. Overall, the primary sequences of the proteins are

46% identical and they are 61% identical within their HECT domains. All major structural features of the two proteins are similar (theN-terminal

RCC-1-like domain [RLD], central alpha-helical region, and the HECT domain; Figure S4B), with the most notable difference being the pres-

ence of an unstructured leader at the N terminus (residues 1–30) of hHERC5, prior to the RLD 7-bladed propeller structure. Deletion of the

complete RLD of hHERC5 (residues 1–386) abrogates both polysome association and global ISGylation.28 To determine whether the same

was true for mHERC6, full-length and RLD-deletion mutants of hHERC5 and mHERC6 were expressed and assayed for co-fractionation

with polysomes by sucrose density gradient ultracentrifugation. As shown in Figure 5C, a fraction of the expressed full-length hHERC5

and mHERC6 proteins co-fractionated with polysomes, while the RLD deletion mutants of both proteins were nearly completely absent

from the polysome fractions. While most of the hHERC5/mHERC6 full-length proteins were not present in the polysome fractions (i.e.,

they remained at the top of the gradient), this was likely due to overexpression.28 Both the hHERC5 and mHERC6 RLD deletion mutants

were defective for protein ISGylation, as shown for two specific substrate proteins, V5-tagged Moesin and Ran (Figure 5D). Together, these

results show that mHERC6 shares characteristics with hHERC5 in terms of ISGylating nascent polypeptides, associating with polysomes, and

the requirement for the RLD for both polysome association and substrate protein ISGylation.

A prediction of the cotranslational model for ISGylation is that the ISGylome would be strongly biased towardmore highly translated pro-

teins. Ribosome profilingmeasures transcriptome-wide translation by sequencing of ribosome-protectedmRNA fragments (RPFs).45 A proxy

of translation efficiency of specificmRNAs is then the ratio of RPF counts tomRNAabundance, as determined by RNA-seq. Three replicates of

ribosome profiling and RNA-seq datasets cells were utilized to determine the translational efficiency of transcripts in HEK293T cells.46,47 Of

12,374 identified transcripts, approximately 22% encoded either hHERC5 or mHERC6 targets, and the median translational efficiency of tran-

scripts corresponding to ISG15 targets was significantly greater than for proteins that were not ISGylated (Figure 6A; Table S9). This was

particularly the case for the ISGylated glycolytic and TCA cycle enzymes (Figure 6B), suggesting that the high degree of ISGylaton of proteins

in these pathways is due to the fact that they are simply highly translated proteins. Together, these observations are consistent with themodel

that the ISGylome broadly reflects the translational activity of the cell.

We also considered whether the ‘‘dwell time’’ of a nascent chain on the ribosome would be positively correlated with ISGylation, with the

hypothesis being that the longer a lysine-containing peptide is tethered to the ribosome the greater the chance that it will be ISGylated. This

would predict that longer proteins would be preferentially targeted over shorter proteins. As shown in Figure 6C, a significant difference was

observed in the size distribution of proteins targeted by hHERC5 in the IFN-b-treated A549 dataset (543 amino acids for ISGylated proteins,

relative to 480 amino acids for the total proteome) and for both hHERC5 and mHERC6 in transfected HEK293T-HERC5KO cells (548 and 574

amino acids, respectively, relative to 480 amino acids for the proteome). This was not seen for the HEK293T ubiquitylome, where the size dis-

tribution of ubiquitylated proteins was not statistically different from that of the total proteome (Figure 6C, right).

A second prediction related to ribosome dwell time is that ISGylated lysines might be expected to be overrepresented within amino-ter-

minal regions of proteins, as these will be exposed for a greater period of time to the activity of ribosome-bound hHERC5/mHERC6 than
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Figure 6. Features of the hHERC5 and mHERC6 ISGylomes are consistent with cotranslational ISGylation

(A) Boxplots comparing the distribution of the translational efficiency (RNA-expression normalized ribosome occupancy) of proteins that were not ISGylated (Not

targeted) to proteins that were ISGylated (targeted) in hHERC5 and mHERC6-expressing cells. Wilcoxon rank-sum test p values are shown.

(B) Boxplot comparing the distribution of the translational efficiency of proteins that were not ISGylated (untargeted) to the translational efficiency of glycolytic

enzymes (red) and TCA enzymes (blue) that were ISGylated by hHERC5 and mHERC6. Wilcoxon rank-sum test p values are shown.

(C) Left, size distribution (in number of amino acids) of proteins in the total A549 proteome (gray) and size distribution of proteins in the IFN-b-treated A549

ISGylome (red); middle, size distribution of the total HEK293T proteome (gray) and size distribution of proteins in the HEK293T hHERC5 (blue) and mHERC6

(yellow) ISGylomes; right, size distribution of the total HEK293T proteome (gray) and the HEK293T ubiquitylome (green). Kolmogorov-Smirnov (K-S) test p

values are shown.
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Figure 6. Continued

(D) Left, distribution of sites of ISG15 modification sites on targeted proteins of (500–700) amino acids in length, in the IFN-b-treated A549 dataset and HEK293T

hHERC5 andmHERC6 datasets. Red, percentage of ISGylated lysine residues in each third of the length of the proteins; gray, percentage of total lysine residues

in each third. Right, similar analysis for the HEK293T ubiquitylome (green) and phosphorylome (purple). Significance was evaluated with Z score test (*: p = 0.02;

****: p < 0.0001, ns, p > 0.05).
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lysines toward the carboxy-termini of proteins. We binned ISG15 target proteins from all three ISG15 di-G datasets into size groups of 300–

500, 500–700, and 700–900 amino acids. Protein sequences within each bin were divided into thirds (N-terminal, central, and C-terminal

thirds), and the distribution of ISGylated lysines within the thirds was compared to the distribution of all lysines within the same proteins.

As shown in Figure 6D for proteins of 500–700 amino acids, ISGylated lysines were significantly overrepresented within the N-terminal third

of the proteins and underrepresented within the C-terminal third in all three ISG15 di-G datasets. This N-terminal bias was not observed for

ubiquitylation (HEK293T ubiquitylome) or an available phosphoproteome dataset,48 as expected for post-translational modifications (PTMs)

that occur primarily after protein synthesis is fully completed. The same results were observed for proteins of 300–500 and 700–900 amino

acids in length (Figures S5A and S5B, respectively).

PTMs that occur on fully folded proteins are generally expected to be on surface-exposed residues. Although charged residues are more

often surface exposed than buried in fully folded proteins, lysines can be buried or partially buried.49 We reasoned that at least some lysines

that are buried or partially buried in fully folded proteins might be solvent exposed during translation and therefore subject to potential IS-

Gylation. Relative accessible surface area (RASA) is a measure of the solvent-accessible surface area of a residue within a folded protein.50 It is

the ratio of the solvent exposure of a residue within a folded protein to themaximum solvent exposure for that amino acid type; the RASA of a

fully buried residue would be close to zero, while it would be close to one for a fully solvent-exposed residue. The RASA of each lysine residue

within all ISGylated proteins was determined by Define Secondary Structure of Proteins,51,52 using AlphaFold2-predicted structures of the

ISGylated proteins, and the RASAs of ISGylated lysines were compared to those of the non-ISGylated lysines. As shown in Figure 7A, the me-

dian RASA of ISGylated lysines was lower than themedian RASA for non-ISGylated lysines within the same proteins, for both the hHERC5 and

mHERC6 datasets. In contrast, ubiquitylated lysines had a slightly higher RASA relative to all lysines within ubiquitylated proteins. Using an

RASA of 0.25 as the cutoff for buried or partially buried lysines,53 approximately 12.1% of all lysines had an RASA of less than 0.25, while

approximately 18.5% of all ISGylated lysines had an RASA less than 0.25 (Figure 7B). By comparison, in the HEK293T ubiquitylome, approx-

imately 11.2% of all lysines in ubiquitylated proteins had an RASAof less than 0.25, while a lower percentage (9.4%) of the ubiquitylated lysines

had an RASA of less than 0.25. These results suggest that hHERC5 and mHERC6 have access to lysine residues that would be expected to be

buried or partially buried in fully folded proteins, perhaps due to their exposure during translation.
DISCUSSION

The proteomics results presentedhighlight several important aspects of the function of hHERC5 andmHERC6 in ISG15 conjugation, including

(1) the remarkable number and breadth of proteins targeted for ISGylation by both ligases, (2) similarities and differences in the local amino

acid environment surrounding hHERC5 andmHERC6 ISGylation sites, and (3) the cotranslational nature of hHERC5- andmHERC6-dependent

ISGylation and the correlation of translation activity with ISGylation. In addition, the hHERC5- and mHERC6-dependent ISGylome datasets

presented here represent the largest number of protein targets and modification sites attributable to a single Ub or Ubl ligase and may have

implications for the lysine selectivity of HECT domain ligases, generally.

Two cell-based approaches were taken for characterizing the hHERC5 ISGylome, purifying ISG15 conjugates from either (1) an IFN-

b-treated cell line (A549) or (2) from non-IFN-treated HEK293T cells that co-expressed the four ISGylation components by DNA transfection

(ISG15/E1/E2/E3). The ISGylomes from the two systems were similar to each other based on all criteria analyzed, providing an internal vali-

dation that re-constitution of ISGylation in non-IFN-treated cells did not skew the lysine selectivity of HERC5 relative to IFN-b treatment. A

comparison to mHERC6 in the same HEK293T-HERC5�/� cells allowed us to directly compare mHERC6 activity with hHERC5 (in combination

with their respective human or mouse E2s and ISG15s). Interestingly, the mHERC6 +/�7 amino acid heatmap was dissimilar to the hHERC5

map in several aspects and overall was more similar to the ubiquitylome heatmap. The specific differences included enrichment of an R at

the +3 position and F at the�2 position in the hHERC5 datasets, while negatively charged residues were enriched on both sides of modified

lysines in themHERC6 dataset. Importantly, many variables can systematically skew di-G peptide identification in such datasets, including the

source of the anti-K-e-GG antibody, the method of minimizing contamination of ubiquitin di-G peptides, and many other factors related to

post-IP peptide processing, LC-MS/MS, and data filtering. These factors can make comparisons to other published di-G datasets problem-

atic. For example, a recent mouse ISGylome study did not note any specific enrichment or depletion of amino acids relative to modified ly-

sines,26 with the caveat that this was not a mHERC6-specific dataset. With this consideration, a very minimal conclusion from our study is that

the hHERC5 andmHERC6 ligases, when analyzed in parallel in the same cell type, are significantly different with respect to amino acid compo-

sition aroundmodified lysines, regardless of the specific nature of these differences. At the same time, we note overall lysine selectivity within

our ubiquitylomewas similar to that reported by Kim et al.,38 indicating that our work successfully replicated specific features of the di-G data-

sets reported in that study.

While both hHERC5 and mHERC6 appear to have clear lysine preferences based on sequence context, we did not identify a consensus

recognition motif for ISGylation by either enzyme. Among Ubls, the best example of a sequence motif for lysine modification is that for

SUMOylation (J-K-x-D/E), catalyzed by the UBC9 E2 enzyme.54 UBC9 directly interacts with the consensus peptide sequence, although
12 iScience 27, 108820, February 16, 2024
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Figure 7. Relative accessible surface area (RASA) of ISGylated and ubiquitylated lysines

(A) Distribution of the RASAs of lysines in ISGylated proteins that are either not ISGylated (ot targeted; gray bars) or ISGylated (targeted; red bars), for the IFN-

b-treated A549 ISGylome, and the HEK293T hHERC5 and mHERC6 ISGylomes. The same analysis is shown for lysines in ubiquitylated proteins that were not

ubiquitylated (gray) or ubiquitylated (green) in the HEK293T ISGylome. Differences were evaluated with Wilcoxon rank-sum test; p values are shown.

(B) The percentages of lysines with an RASA <0.25 are shown for all lysines in ISGylated proteins, all ISGylated lysines, all lysines in ubiquitylated proteins, and all

ubiquitylated lysines. Fisher’s exact test p values are shown.
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SUMO E3s may facilitate recognition of the modification site by recruiting and orienting the UBC9, SUMO, or the substrate.55 By analogy,

future structural studies of the hHERC5 and mHERC6 HECT domains with peptides containing optimal modification sites might be expected

to reveal themolecular basis for the lysine preferences of these ISG15 ligases. Considering the overall similarity of HECTdomains, the HERC5/

6 ISGylomes described here may provide a starting point for understanding lysine selectivity of HECT ubiquitin ligases, generally. It is impor-

tant to note a HECT ubiquitin ligase-specific ubiquitylome would be very difficult to obtain, given the difficulty of distinguishing the targets of

a single ligase from the hundreds of other ubiquitin ligases in a cell. Further, even if this were feasible, the number of substrates and sites of

any single ligase would likely be too small to yield statistically significant information. The extreme number of protein targets of HERC5 and

the fact that it is the single major ligase for ISG15 has provided a means for probing lysine selectivity for a HECT domain ligase. We note that

Kamadurai et al.56 reported on lysine prioritization of the yeast RSP5 ubiquitin ligase, although this was prioritization in the sense of spatial
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location of lysine residues of the substrate, rather than sequence context of the modified lysines. Nevertheless, assay systems such as those

used in that study and elsewhere, employing simplified single-lysine substrates,41,56 could be adapted to address the effect of sequence

context on single-lysine ubiquitylation substrates.

The vertebrate ISG15 conjugation system is remarkable for being a complete E1-E2-E3 enzyme cascadewhere each component is induced

at the transcriptional level by type 1 interferon. Like the products of other ISGs, these proteins are involved in defense against pathogens, and

inmany cases viruses have evolvedmechanisms to overcomeor reverse ISG15 conjugation. Notable instances include influenzaB, which binds

and sequesters ISG15 conjugates via theNS1protein, and viruses that encodede-ISGylating enzymes (e.g., SARS-CoV-2, FMDV, and the ERVE

nairovirus).29,30,33,57 On the premise that viral proteins are important targets of ISGylation, a more subtle but potentially effective approach for

a virus to evade ISGylationwould be to alter overall lysine content or the sequence context of lysine residues to evade the activity and inherent

specificities of the HERC5/6 ISG15 ligase. Interestingly, examples of viral proteins devoid or diminished for lysine content have been noted

previously, and it was suggested that this feature may have been selected for evasion of ubiquitylation; 58 ‘‘Lysine deserts’’ have also been

proposed to be a basis for evasion of ubiquitylation in cellular proteins.59 We suggest that such selectionmay also drive evasion of ISGylation

for certain viral proteins. HSV-1, for example, encodes eight proteins devoid of lysines, and two of these are oligomerizing capsid proteins.58

With this inmind, having a singlemajor ligase for ISG15would appear to be a vulnerability of the system, setting the stage for a host-pathogen

evolutionary arms race where viruses are selected to evadeHERC5/6 activities, while the host selects for HERC5/6 activities that will effectively

combat key specific pathogens. Consistent with this, theHERC5 gene shows evidence of pathogen-driven positive selection in primates, and

the HERC6 gene shows evidence of strong genetic selection across several mammalian orders, particularly rodents and bats.17 In the case of

the HERC6 proteins, the codons that show evidence of positive selection are found in all major domains of the protein (the RLD, the central

domain, and theHECTdomain).We speculate that someof these changesmay influence lysine selectivity andmay be a reflection of pressures

imposed by specific pathogens over evolutionary time frames. Based on the fact that HECT domain determinants control polyubiquitin chain

type formation inHECTubiquitin ligases,41 positively selected codons inHERC5/6 proteins that affect lysine selectivitymight also be expected

to be located within the HECT domain. Clarification of this will require biochemical characterization and roles of all the functional domains of

HERC5/6 proteins. It should be noted that HERC6 in primates is also under positive selection, yet hHERC6, unlike hHERC5, does not mediate

broad protein ISGylation,10 suggesting that it is either a ubiquitin ligase or that it is an ISG15 ligasewith a limited number of specific substrates.

This underscores the importance of characterizing the HERC5 and HERC6 orthologs in other mammals, including in those few species (e.g.,

chinchilla and little brown bat) that encode HERC5, HERC6, and a third protein that appears to be a HERC5/6 chimera.17

We have shown here that mHERC6, like hHERC5, co-fractionates with polyribosomes, modifies nascent polypeptides within active trans-

lation complexes, and that the RLD is required for both polysome association and broad substrate ISGylation. Only a fraction of the mHERC6

protein was present in polysome sucrose gradient fractions, and this was also the case for hHERC5, as shown here and previously.28 In

contrast, nearly all of the endogenously expressed hHERC5 in IFN-b-treated cells associates with polysomes,28 suggesting that overexpres-

sion may saturate the capacity of hHERC5/mHERC6 to associate with polysomes. Whether other factors (other proteins or modifications of

either the ligases or the ribosome) are required for association of hHERC5/mHERC6 with polysomes is not known; however, the fact that co-

expression of ISG15 and the E1/E2/E3 enzymes by DNA transfection is sufficient to reconstitute ISGylation in non-IFN-treated cells indicates

that any additional required factors are not induced by IFN. Consistent with a cotranslational model for ISGylation, the di-G proteomics data-

sets for both hHERC5 andmHERC6 showed a bias for modifying lysines within more N-terminal regions of proteins as well as a bias for modi-

fying longer proteins relative to the total proteome. Neither of these biases were seen for global ubiquitylation. We suggest that the ISGy-

lation biases reflect the length of time that lysines within nascent polypeptides are held in proximity to ribosome-tethered hHERC5/mHERC6

(i.e., the ‘‘dwell time’’ of the nascent polypeptide on the ribosome). Further biochemical evidence that hHERC5 andmHERC6modify nascent

polypeptides comes from the cotranslational ISGylation assay that detected doubly modified (ISGylated and puromycylated) polypeptides.

Post-translational modifications that occur on fully folded proteins are expected, in the vast majority of cases, to occur on surface-exposed

residues. A prediction of the cotranslational model, however, is that lysines that are buried or partially buried in a fully folded protein should

be accessible for modification during translation. Consistent with this, we found that the percentage of ISGylated lysines with a RASA of less

than 0.25, corresponding to buried or partially buried residues, was significantly greater than the overall occurrence of buried or partially

buried lysines in the same proteins. Cotranslational ISGylation, occurring prior to the completion of protein folding, is a plausible mechanism

by which these lysines could have been accessible to the activity of hHERC5. At the same time, we did not expect to see that low-RASA lysines

would actually be preferred modifications sites, as our results suggest. A possible explanation for this can be seen by examining the motif

logos generated for the hHERC5 and mHERC6 datasets (Figure 4B). While leucine did not appear in the heat maps as a residue that was en-

riched relative to the frequency of leucine in the proteome, it was themost common or secondmost common residue surrounding both sides

ofmodified lysines. Therefore, a general hydrophobic environment around lysinesmight account for why lysines with an RASAof less than 0.25

might be slightly preferred targets.

We previously suggested that cotranslational ISGylation of cellular proteins, in the context of a virus-induced type I interferon response,

may simply be a reflection of the proteins that are beingmost actively translated in a particular cell type.28 Consistent with this, we have shown,

using ribosome profiling data, that the median translational efficiency of transcripts corresponding to ISG15 targets was significantly greater

than for proteins that were not ISGylated. The ISGylation of glycolytic and TCA cycle enzymes, as well as other IFN-induced proteins, are strik-

ing examples of this. It was recently reported that ISGylation of glycolytic enzymes, and LDHA in particular, has an important biological effect

in beige adipose tissue in mice.43 This is dependent on inflammation-driven activation of IRF3, which in turn activates expression of the IS-

Gylation machinery. The consequence of LDHA ISGylation is a decrease in lactate production as a result of decreased flux through the
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glycolytic pathway, which results in suppression of thermogenesis and diet-induced weight gain. Consistent with this, isg15�/� mice were

found to be resistant to diet-induced obesity, which, interestingly, suggests that inhibitors of ISGylation (e.g., an inhibitor of hHERC5) might

have therapeutic utility in obesity. This example illustrates that even though ISGylation may have important biological consequences under

certain pathologic conditions (e.g., obesity and chronic inflammation), thismay be driven simply by the fact that highly translatedproteins, like

glycolytic enzymes, are the targets of ISGylation (as opposed to a model where the ISG15 conjugation machinery was selected to specifically

regulate glycolysis). A second potential example of this involves activation of ISGylation in cells deleted of NBS1, a component of the MRE11

DNA repair complex.60 ISGylation of DNA replication fork proteins (including FEN1, TOP2A, SMC3, and VCP) was shown to mitigate DNA

replication stress. All four of these replication fork proteins were identified in all three of our ISG15 di-G datasets, indicating that they are

targets of hHERC5 and mHERC6 and that they are therefore most likely cotranslationally ISGylated, as opposed to being ISGylated at repli-

cation forks. As with ISGylation of glycolytic enzymes, we suggest that this is a case in which activation of near-stochastic hHERC5/mHERC6-

dependent ISGylation under stress conditions can have important and unexpected downstream biological consequences. Finally, a large

fraction of all IFN-induced proteins expressed in A549 cells were ISGylated (40 out of 115), as expected based on the cotranslational model.

This was also observed in a previous smaller scale ISG15 proteomics study.20 While this might be predicted to impair the functions of these

proteins, it is interesting to note that while ISG15 is very rapidly induced by IFN-b, the IFN induction of UBA7, UBE2L6, and HERC5 is signif-

icantly delayed,10 consistent with the fact that ISG15 conjugates do not begin to peak until 18–24 h after IFN treatment.7 We speculate that

this delay in conjugation might be built into the ISG15 system in order to protect IFN-induced proteins expressed at earlier time points from

being even more extensively ISGylated.

Many viruses are sensitive to the effects of ISG15 conjugation19 and a central conclusion from the results described here is that hHERC5 has

preferences for sites of modification, both in terms of lysine sequence context and location of lysines within protein substrates. These pref-

erences may therefore influence the degree to which ISGylation of viral proteins is protective against specific virus types. hHERC5 and

mHERC6 gene sequences are under positive genetic selection, suggesting that pathogens may be selected for their ability to evade the ac-

tivities of ISG15 ligases. Biochemical characterization of the basis for differences in lysine selectivity as well as characterization of HERC5/6

orthologs in other vertebrate species will aid in testing the hypothesis that differences in ISGylation activities represent adaptations to spe-

cies-specific pathogen challenges.

Limitations of the study

A limitation of the study is that mouse cells were not used for proteomic analyses; mHERC6 was only analyzed in transfected human cells and

not in interferon-stimulated mouse or transfected mouse cells, and hHERC5 was not analyzed in transfected mouse cells. This is significant

because we cannot rule out that subtle differences in ribosomal proteins and/or translational regulation between mouse and human cells

might skew the targets of the ligases when expressed in the non-cognate cell type. An additional limitation of the study is that preferential

ISGylation motifs were not validated by mutagenesis of sequences surrounding modified lysines.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Mouse Monoclonal Anti-Flag M2 Sigma CAT# F1804; RRID: AB_262044

Anti-Ubiquitin Sigma CAT#SAB4503053; RRID: AB_10747077

Rabbit Anti-ISG15 Thermo Fisher Scientific CAT# 703131; RRID:AB_2784562

Rabbit Anti-HERC5 Thermo Fisher Scientific CAT# 703675; RRID:AB_2784598

Mouse Anti-beta Actin Monoclonal (AC-15) Thermo Fisher Scientific CAT# AM4302; RRID:AB_2536382

Mouse Anti-V5 tag (clone SV5-Pk1), Unconjugated Bio-Rad, formerly AbD Serotec CAT# MCA1360; RRID:AB_322378

Mouse Anti-Ribosomal Protein S6 Monoclonal

Antibody, Unconjugated, Clone C-8

Santa Cruz CAT# sc-74459; RRID:AB_1129205

RPL23A monoclonal antibody (M10), clone 3E11 Abnova CAT# H00006147-M10; RRID:AB_1713216

Rabbit Anti-Protein-A Antibody, Unconjugated Sigma CAT# P3775; RRID:AB_261038

Bacterial strains

E. coli BL21 (DE3) Electrocompetent Cells Novagen CAT# 69388

Chemicals, peptides, and recombinant proteins

DNA Transfection Reagent X-tremeGENE� CAT# 6366236001

Alt-R� S.p. Cas9 Nuclease V3 IDT CAT# 1081059

Alt-R� CRISPR-Cas9 tracrRNA IDT CAT# 1073190

Lipofectamine� RNAiMAX Reagent Invitrogen CAT# 13778-150

Human Interferon-b-1b PBL Assay Science CAT# 11420-1

Polyethylenimine (PEI) Polysciences CAT# 24765

Glutathione Thermo Scientific CAT# 120000050

Urea Fisher CAT# U15-3

Dithiothreitol (DTT) Thermo Scientific CAT# R0861

Iodoacetamide Sigma CAT# I6125

Formic acid Fisher CAT# A117

Acetonitrile Fisher CAT# A955

Trifluoroacetic acid (TFA) Fisher CAT# A116

Lysyl Endopeptidase (Lys-C) FUJIFILM Wako Chemicals CAT# 129-02541

Trypsin, bovine Sigma CAT# T1426

Glutathione Sepharose GE Healthcare CAT# 17075601

Cyclohexamide (CHX) Sigma CAT# C7698-5G

D-Sucrose Fisher BioReagents CAT# BP220-212

Biotin-dC-Puromycin Jena Bioscience CAT# NU-925-BIO

Anti-FLAG M2 Affinity Gel Sigma Aldrich CAT# A2220

SUPERaseIN RNase Inhibitor Invitrogen CAT# AM2696

IRDye 680RD Streptavidin Licor CAT# 926-68079

Halt Protease and Phosphatase Inhibitor Cocktail ThermoFisher CAT# 78442

Critical commercial assays

Sep-Pak� C18 Cartridges Waters CAT# WAT051910

Quantitative Colorimetric Peptide Assay Kit Pierce� CAT# 23275

PTMScan� Ubiquitin Remnant Motif (K-epsilon-GG) Kit Cell Signaling Technology CAT# 5562

High pH Reversed-Phase Peptide Fractionation Kit Pierce� CAT# 84868

(Continued on next page)
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Deposited data

The mass spectrometry proteomics data

have been deposited to the ProteomeXchange

Consortium via the PRIDE (Deutsch et al., 2023).

Proteomexchange.org PXD044834

Experimental models: Cell lines

HEK293T CRL-3216� ATCC CAT# CRL-3216

HEK293T-HERC5KO This manuscript N/A

A549 CCL-185� ATCC CAT# CCL-185

A549-HERC5KO This manuscript N/A

Oligonucleotides

Guide RNA for HERC5 CRISPR/Cas9 deletion;

HEK293T cells; 50-GCGCAACGGGCGCTCGACCG-30
This manuscript N/A

Guide RNA for HERC5 CRISPR/Cas9 deletion;

A549 cells; 50-GCGAGGTGCTCCACAATCTG-30
This manuscript N/A

Recombinant DNA

pcDNA3 hUBA7 Durfee et al.61 N/A

pcDNA3 hUBE2L6 Durfee et al.61 N/A

pFlagCMV2-UbcM8 (mUBE2L6) Addgene CAT# 12440; RRID: Addgene_12440

pcDNA3 mUBE2L6 This paper N/A

pcDNA3 HA-hHERC5 Durfee et al.61 N/A

pcDNA3 HA-mHERC6 Ketscher et al.15 N/A

pcDNA3 HA-hHERC5 DRCC

(contains residues 381-1024 of hHERC5)

Durfee et al.61 N/A

pcDNA3 HA-mHERC6 DRCC

(contains residues 371-1003 of mHERC6)

This manuscript N/A

pcDNA3 V5-hHERC5 This manuscript N/A

pcDNA3 V5-mHERC6 This manuscript N/A

pcDNA3 NTAP-hHERC5 Dastur et al.10 N/A

pcDNA3 NTAP-hHERC5 DRCC

(contains residues 381-1024 of hHERC5)

This manuscript N/A

pcDNA3 NTAP-mHERC6 This manuscript N/A

pcDNA3 NTAP-mHERC6 DRCC

(contains residues 371-1003 of mHERC6)

This manuscript N/A

pcDNA3 6His3xFLAG-hISG15 This manuscript N/A

pcDNA3 6His3xFLAG-mISG15 This manuscript N/A

MLM3636 guide RNA (gRNA) expression vector Addgene CAT# 43860; RRID:Addgene_43860

pSpCas9(BB)-2A-Puro (PX459) V2.0 Addgene CAT# 62988; RRID:Addgene_62988

pET28a-LIC USP2 Addgene CAT# 36894); RRID:Addgene_36894

pGEX-6p-USP2-cc This manuscript N/A

pcDNA3.1 Invitrogen CAT# V79020

Software and algorithms

Proteome Discoverer v2.5 Thermo Fisher Scientific https://thermo.flexnetoperations.com/

control/thmo/login

MaxQuant Max Plank Institute of Biohemistry https://www.maxquant.org/

Python3 Python.org https://www.python.org/

DSSP Wolfgang Kabsch and Chris Sander https://github.com/PDB-REDO/dssp

(Continued on next page)

ll
OPEN ACCESS

iScience 27, 108820, February 16, 2024 19

iScience
Article

https://thermo.flexnetoperations.com/control/thmo/login
https://thermo.flexnetoperations.com/control/thmo/login
https://www.maxquant.org/
https://www.python.org/
https://github.com/PDB-REDO/dssp


Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

RiboPy C. Cenik github.com/ribosomeprofiling/ribopy

Goatools github.com/tanghaibao/goatools

Enrichr Ma’ayan Laboratory https://maayanlab.cloud/Enrichr

BioRender BioRender.com
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RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Jon Huibregtse

(huibregtse@austin.utexas.edu).

Materials availability

All plasmids and cell lines generated in this study are available upon request from the lead contact.

Data and code availability

� Themass spectrometry proteomics data have been deposited to the ProteomeXchangeConsortium via the PRIDE62 partner repository

with the dataset identifier PXD044834.
� This paper does not report original code.
� Any additional information required to reanalyze the date reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL DETAILS

Cell lines

HEK293T (ATCC CRL-3216; human female) and A549 (ATCCCCL-185; humanmale) cells were obtained directly from the American Type Cul-

ture Collection. Both cell lines and all engineered variants (see method details) were grown in Dulbecco’s modified Eagle’s medium (DMEM)

supplemented with 10% fetal bovine serum and 1% penicillin-streptomycin and grown at 37�C with 5% atmospheric CO2. All cell lines tested

negative for mycoplasma contamination.

METHOD DETAILS

CRISPR/Cas9 gene disruption

CRISPR/Cas9 gene disruption of the HERC5 gene in HEK293T cells used the MLM3636 plasmid (Addgene #43860), modified to generate

Guide RNA (gRNA) (50-GCGCAACGGGCGCTCGACCG-30). This was cotransfected (HP DNA Transfection Reagent X-tremeGENE) with

plasmid PX459 (pSpCas9(BB)-2A-Puro V2.0; Addgene #62988).63 Puromycin was used for initial positive clone screening. A549-HERC5KO cells

were generated through direct lipofection (RNAiMax, Thermo) of assembled Cas9 ribonucleoprotein (Alt-R CRISPR Systems IDT) containing

gRNA with the sequence (50-GCGAGGTGCTCCACAATCTG-30). Clonally selected candidates of both knockout cell lines were validated by

anti-HERC5 immunoblot of IFN-b-treated cells.

Induction of ISG15 conjugation by IFN-b treatment or plasmid transfection

HEK293T-HERC5KO cells were transfected at �60% confluency using polyethylenimine (PEI) at a DNA to reagent ratio of 1:5. Cells in 10 cm

plates were transfected with plasmids expressing human UBA761 (1.25 mg), human UBE2L68,61 or mouse UBE2L6 (pFlagCMV2-UbcM8, Addg-

ene# 124409 (1.25 mg), HA-tagged hHERC5 ormHerc6 (1.75 mg) and 3xFLAG-tagged human ormouse ISG15 (1.75 mg). In control transfections,

empty vector pcDNA3.1 (1.75 mg) was used in place of hHERC5 or mHerc6 expression plasmids. Thirty-five plates of HEK293T-HERC5KO cells

were used for each transfection condition for proteomics experiments. A549 andA549-HERC5KO cells were�60% confluentwhen treatedwith

IFN-b (PBL Assay Science) at a concentration of 100 units/mL for 48 h. For proteomics experiments 90 10 cm plates were used for each IFN-

b-treated sample. Cells were harvested and lysed by sonication in buffer containing 0.5% NP40, 50 mM Tris, pH 8, and 150 mMNaCl. Protein

concentrations were determined by Bradford assay (Thermo Scientific).

USP2 expression and purification and in vitro USP2 treatment

The catalytic core of USP2 (Usp2cc)64,65 was cloned into pGEX-6P-1 plasmid and then transformed into E. coliBL21. Expression of GST-Usp2cc

was induced in a 500 mL culture with 0.1 mM Isopropyl b-D-1-thiogalactopyranoside (IPTG) at 30�C, 3 h. Cells were harvested and lysed in

10 mL phosphate buffer saline (PBS) containing 1% Triton X-100 (Sigma Aldrich) by sonication. GST-fused Usp2cc was purified from clarified

cell lysates using glutathione Sepharose beads (GE Healthcare) at 4�C for 2 h. Purified GST-Usp2cc was eluted from Sepharose beads with
20 iScience 27, 108820, February 16, 2024
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50 mM reduced glutathione, 1 mM DTT, 50 mM Tris, pH 8.5 and 100 mM NaCl at 4�C, 16 h. HEK293T or A549 cell lysates were treated with

GST-Usp2cc at a final concentration of 2.5 mM at room temperature for 3 h. De-ubiquitylation was assessed by anti-ubiquitin and anti-FLAG-

ISG15 immunoblotting.
Lys-e-GG (di-G) proteomics and data processing

GST-Usp2cc-treated lysates were denatured with 8 M urea (Fisher). Lysates were then reduced with 5 mM DTT at room temperature for 1 h

and alkylatedwith 14mM iodoacetamide in a dark room for 30min at room temperature. Sampleswere digestedwith Lys-C (Wako, Fujifilm) at

an enzyme to substrate ratio of 1:100 at 37�C for 4 h followed by digestion with trypsin (Sigma Millipore) with an enzyme to substrate ratio of

1:50 at 37�C for 15 h. Tryptic digests were acidified to a pH of 2–3 with formic acid (Fisher) and cleared by centrifugation at 10,000 3 g for

10 min at room temperature. The resulting cleared digest samples were desalted with C18 reverse phase cartridges (Waters). Peptide con-

centrations were determined with a Quantitative Colorimetric Peptide Assay (Pierce). 70 mg peptides from the HEK293T samples and 40 mg

peptides from A549 samples were used as the input for processing. Samples were lyophilized, resuspended in 1X PTMScan IAP buffer (Cell

Signaling Technology), and immunoprecipitated with K-ε-GG antibody (Cell Signaling Technology). Enriched peptides were concentrated

with a C18 ZipTip (Millipore Sigma) and analyzed on the Dionex LC (Thermo Fisher Scientific) and Orbitrap Fusion Lumos (Thermo Fisher Sci-

entific) for LC-MS/MS with a 180-min run time. Raw data files were analyzed usingMaxQuant version 2.0.3.0 against the SwissProt human pro-

teome and the MaxQuant protein contaminants file. Additional specific protein sequences for mISG15, mHERC6, and mUBE2L6 were added

when required for the search. The following specific search parameters were included: trypsin enzyme digest, 5 mis-cleavages permitted,

fixed modification of cysteine carbamidomethylation, and variable modifications of methionine oxidation, N-terminal acetylation and lysine

di-G. A 1% false discovery rate was used at both the peptide and protein level. All other settings were maintained at default.
Acquisition of HEK293T-HERC5KO ubiquitylome dataset

Thirty untransfected HEK293T-HERC5KO cell lysates and processed as described above, without USP2-cc treatment. After desalting and

lyophilization, 30 mg di-Gly peptides were enriched by immunoprecipitation with K-ε-GG antibody. Samples were concentrated and run

on the LC-MS/MS system as described above. Peptide and protein identification were performed and filtered as described above.
Acquisition of HEK293T-HERC5KO and A549 proteome background database

Untransfected HEK293T-HERC5KO and IFN-b-treated A549 cell lysates and processed as described above, without USP2-cc treatment, de-

salting or di-Gly enrichment. Tryptic digests were fractionated using High pH Reversed-Phase Peptide Fractionation Kit into 8 fractions

per sample (PierceTM). Samples were concentrated and run on the LC-MS/MS system as described above. Raw data were analyzed using

MaxQuant version 2.0.3.0 as described above but with 2 mis-cleavages permitted and di-G was not included as a variable modification.
Cotranslational ISGylation assays

For each sample, two 100mm dishes of HEK293T-HERC5KO cells were transfected at�60% confluency using polyethylenimine (PEI) at a DNA

to reagent ratio of 1:3. Transfected plasmids for each plate consisted of 1.5 mgpCDNA3-hUBA7, 1.5 mg pCDNA3 hUBE2L6, 2.5 mgpCDNAV5-

hHerc5 and 2.5 mg pcDNA 6H3XF-hISG15. Twenty-four hours post-transfection, cell were rinsed with with ice-cold PBS and lysed in 3 mL ice-

cold high-salt polysome lysis buffer containing 100mMTris (pH 7.4), 50mMKCl, 25mMMgCl2, 100 mg/mL cycloheximide, 1 mMDTT, 100 mM

PMSF, 4 mM leupeptin, 0.3 mM aprotinin, 200 mg/mL heparin, 50 mMN-ethylmaleimide (NEM), 40 U/mL SUPERaseIN RNase Inhibitor (Invitro-

gen), and 1% Triton X-100 (Sigma-Aldrich). Lysates were clarified by centrifugation at 16,300 3 g for 10 min at 4�C, and supernatant was

loaded onto a 2 mL 35% sucrose cushion (with 10mM Tris pH 7.4, 85mM KCl, 5mM MgCl2, 50 mg/mL cycloheximide) and centrifuged for

75 min at 316,000 3 g in a Beckman NVT 65.2 rotor at 4�C. Polysome-containing pellets were resuspended in 150 mL polysome buffer

(10 mM Tris pH7.4, 10 mM NaCl, 3 mM MgCl2, and 0.2 mM DTT) plus 50 mL high-salt polysome lysis buffer. Polysome-associated nascent

chains were labeled with biotin-puromycin (Bio-puro) in vitro by inclubating resuspended polysomes in 400 mM KCl, and 2 mM Bio-puro

at 37�C for 15 min, followed by room temperature incubation for 75 min. Reactions were diluted with an equal volume of buffer containing

0.1%NP40,100mMTris, pH 7.9, 100mMNaCl and centrifuged at 16,3003 g for 30 s to remove any precipitatedmaterial. 2.5% of the reaction

was saved to run as input to assess labeling of total nascent chains; the remainder was incubated with Anti-FLAG M2 affinity gel overnight at

4�C to immunoprecipitate FLAG-ISG15 modified nascent chains. FLAG M2 beads were washed three times with 0.1% NP40 buffer and

proteins were eluted from beads by adding SDS-PAGE loading buffer and boiling at 90�C for 5 min. Samples were run on a NuPAGE 4%–

12% Bis-Tris gel and transferred to PVDF-FL for probing with fluorescently tagged streptavidin.
Determination of translational efficiency

Ribosome profiling and RNA-Seq experiments were downloaded from GSE158374.47 Preprocessing and alignment of sequencing data was

done using RiboFlow.46 RNA-seq reads and ribosome protected footprints (28–35 nucleotides) mapping to coding regions were extracted.

Expressed transcripts (n = 12,374) were defined as having counts per million greater than one in at least two libraries (n = 3 biological rep-

licates each for RNA-seq and ribosome profiling). Translation efficiency was estimated as the ratio of the mean of normalized ribosome oc-

cupancy to RNA expression. 2,753 hHERC5 and 2,645mHERC6 targets were among the 12,374 transcripts detected in ribosome profiling and
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RNA-Seq experiments. Translation efficiency of hHERC5 andmHERC6 targets were compared to remaining detected transcripts using a two-

sample Wilcoxon Rank-Sum test.
Substrate ISGylation

HEK293T-HERC5KO cells were transfected at �60% confluency with expression plasmids for V5-tagged substrate ORFs and the ISGylation

components using polyethylenimine (PEI) at a DNA to reagent ratio of 1:3. Forty-eight hours post-transfection cells were harvested and lysed

in 1% NP40 lysis buffer containing 1 mM DTT, 100 mM PMSF, 50 mM N-ethylmaleimide (NEM), and 100X Halt Protease and Phosphatase In-

hibitor Cocktail. SDS-PAGE loading buffer was added to 30mg total cell lysate and samples were boiled at 90�C for 5 min, run on a NuPAGE

4%–12% Bis-Tris gel and transferred to PVDF-FL for probing with anti-V5 antibody.
Sucrose gradient fractionation

Co-fractionation of the E3 ligases with polysomes was performed as described66 with minor modifications noted here. For each ligase tested,

one 100 mm culture dish of HEK293T-HERC5KO cells was transfected at �60% confluency with 3 mg DNA using polyethylenimine (PEI) at a

DNA to reagent ratio of 1:3. Cells were harvested 24-h post-transfection at 80–90% confluency by replacing the culturemedia with freshmedia

containing cycloheximide (100 mg/mL) for 30 min. Cells were washed with ice-cold phosphate-buffered saline (PBS) containing cycloheximide

(50 mg/mL), followed by resuspension in an ice-cold polysome lysis buffer (10 mM Tris-HCl, pH 7.4, 10 mM NaCl, 3 mM MgCl2, 200 mg/mL

Heparin, 1 U/ml SUPERase-In (Invitrogen), and 0.5% (v/v) Triton X-100) for 10 min. Lysates were centrifuged for 10 min at 16,300 3 g at

4�C, and supernatants were loaded onto linear 7%–47% (w/v) sucrose gradients containing cycloheximide (200 mg/mL). Gradients were centri-

fuged at 222,0003 g for 90 min at 4�C in a Beckman SW41Ti rotor. Polysome profiles weremonitored by absorbance at 254 nm, and gradient

fractions were collected on an ISCO density gradient fractionator. Following fractionation, SDS-PAGE loading buffer was added to either

30 mL (Herc5) or 45 mL (Herc5-DRLD, mHerc6, mHerc6-DRLD) of each of nine gradient fractions and boiled at 90�C for 5 min. Samples

were run on a Bolt 4%–12% Bis-Tris gel (Thermo Fisher) and transferred to Immobilon PVDF-FL (Millipore) and probed with the indicated

antibodies. Detection utilized Li-Cor reagents and instrumentation.
QUANTIFICATION AND STATISTICAL ANALYSIS

Gene Ontology Enrichment Analysis (GOEA) was performed using the goatools67 with GO slim terms. Metabolic pathway annotation was

performed with Enrichr68 searching the KEGG 2021 human library. Significance of GO terms or pathway enrichment was performed with

Fisher’s exact test and adjusted with the Benjamini-Hochberg (BH) procedure. Multiple tests with BH-adjusted p value smaller than 0.05

were considered significant. Relative accessible solvent area (RASA) was determined with DSSP51 and AlphaFold13 predicted structures.

The structures of approximately 97% of the ISGylated or ubiquitylated proteins were available on AlphaFold. The RASAs of targeted lysines

residues were compared to unmodified ones using a two-sample Wilcoxon Rank-Sum test. Motif analysis of ISGylated sites was performed

using MoMo,40 with the motif-x algorithm and a motif width of 15 residues and a minimum occurrence of 20 and p value threshold for indi-

vidual residues of 1.03 106. Motifs are ranked according to a combination of motif score and fold enrichment; precise ranking algorithm not

provided by MEME Suite. Two Sample Logo was used as a visual complement to motif enrichment.39 Background proteome for both MoMo

analysis and Two Sample Logo visualization consists of 15-residue peptides centered on all lysines in MS-determined proteomes. Additional

information for when specific tests and analysis were used can be found in method details and Figure Legends.
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