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It is imperative to advance our understanding of heterogeneities
in the transmission of SARS-CoV-2 such as age-specific infec-
tiousness and superspreading. To this end, it is important to
exploit multiple data streams that are becoming abundantly
available during the pandemic. In this paper, we formulate an
individual-level spatiotemporal mechanistic framework to inte-
grate individual surveillance data with geolocation data and
aggregate mobility data, enabling a more granular understanding
of the transmission dynamics of SARS-CoV-2. We analyze reported
cases, between March and early May 2020, in five (urban and
rural) counties in the state of Georgia. First, our results show
that the reproductive number reduced to below one in about
2 wk after the shelter-in-place order. Superspreading appears to
be widespread across space and time, and it may have a par-
ticularly important role in driving the outbreak in rural areas
and an increasing importance toward later stages of outbreaks
in both urban and rural settings. Overall, about 2% of cases
were directly responsible for 20% of all infections. We esti-
mate that the infected nonelderly cases (<60 y) may be 2.78
[2.10, 4.22] times more infectious than the elderly, and the for-
mer tend to be the main driver of superspreading. Our results
improve our understanding of the natural history and trans-
mission dynamics of SARS-CoV-2. More importantly, we reveal
the roles of age-specific infectiousness and characterize system-
atic variations and associated risk factors of superspreading.
These have important implications for the planning of relaxing
social distancing and, more generally, designing optimal control
measures.
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The current COVID-19 pandemic continues to spread and
impact countries across the globe. There is still much scope

for mapping out the whole spectrum of the epidemiology and
ecology of this novel virus. In particular, understanding of het-
erogeneities in transmission, which is essential for devising effec-
tive targeted control measures, is still limited. For instance, much
is unknown about the variation of infectiousness among differ-
ent age groups (1–3). Also, while superspreading events have
been documented, their impact and variation over space and
time and associated risk factors have not yet been systematically
characterized (1, 4–6).

For this reason, it is crucial to exploit the growing availabil-
ity of multiple data streams during the pandemic, from which we
may obtain a more comprehensive picture of the transmission
dynamics of SARS-CoV-2. For example, shelter-in-place orders
likely change the movement patterns of a population, by reduc-
ing distance of travel. Such a change needs to be taken into
account, as movement is a key factor that shapes transmission
(7). Failing to capture this change would also bias the estimates
of key model parameters, including intervention efficacy and
transmissibility parameters that are correlated with movement

(8–10). Deidentified mobility data from mobile phone users have
been made available to state governments and research institutes
through partnerships with private companies such as Facebook.
Integration of such mobility data with surveillance data would
allow us to account for the change in movement, and therefore
more accurately infer the transmission dynamics (7, 8, 10, 11).
Geospatial location data and detailed data on spatial distribution
of population are also important for capturing heterogeneous
mixing in space (8–10). A key step is to enable individual-level
model inference that can properly synthesize these data streams,
which would go beyond most efforts so far that have focused on
aggregated level dynamics (2, 11, 12).

In this paper, building on a previous framework we devel-
oped for modeling Ebola outbreaks in western Africa (8, 9),
we formulate an individual-level space–time stochastic model
that describes the transmission of SARS-CoV-2 and captures
the impact of statewide social distancing measure in the state
of Georgia. Our model mechanistically integrates detailed
individual-level surveillance data, geospatial location data and
highly resolved population density (grid) data, and aggregate
mobility data (see Study Data). We estimate model param-
eters and unobserved model quantities, including infection
times and transmission paths, using Bayesian data augmenta-
tion techniques in the framework of Markov chain Monte Carlo
(MCMC) (see Materials and Methods). Our individual-level
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modeling framework also allows us to compute population-level
epidemiological parameters such as the basic reproductive num-
ber R0 and quantify the degree of superspreading over space
and time.

Study Data
We analyzed a rich set of COVID-19 surveillance data collected
by the Georgia Department of Public Health (GDPH), between
March 1, 2020 and May 3, 2020, in five counties which had the
largest numbers of cases. These counties include four (Cobb,
DeKalb, Gwinnett, and Fulton) in the metro Atlanta area and
one (Dougherty) in rural southwest Georgia. This dataset con-
tains demographic information of 9,559 symptomatic cases which
includes age, sex, and race, and symptom onset times. It also
contains geolocation of the residences of cases. The GDPH
Institutional Review Board has determined that this analysis
is exempt from the requirement for IRB review and approval
and informed consent was not required. Highly resolved popu-
lation density data over 100 m × 100 m grids are obtained from
http://www.worldpop.org.uk, and are used to modulate the spa-
tial spread of the virus (see Materials and Methods). Aggregate
mobility data are used to characterize the average change of
movement distance within a county before and after the imple-
mentation of statewide social distancing measures. Specifically,
we used high-volume mobility data accessed through Facebook’s
Data for Good program (13). These data represent Facebook
users in Georgia who have location services enabled on their
mobile device. These data provide information on the num-
ber of “trips” (and trip distance) that occurred daily among
users. A “trip” is defined as a directional vector starting at the
location where an individual spent most of their time during
the previous 8-h period and ending at the location where the

same individual spent most of their time during the current
8-h period.

Results
Natural History Parameters and Effectiveness of Social Distancing.
We estimate that the median value of R0 across five counties
was, overall, 3.30 with 95% CI [2.34, 5.2] before the shelter-
in-place order. Dougherty County in the rural area had the
largest prior-intervention R0 (5.19 [5.01, 5.31]) and time-varying
effective reproductive number Reff at the earlier stage in March
2020 (Fig. 1). Our results suggest the shelter-in-place order
was effective, and, in all of the counties, the Reff declined
below 1 in about 1 wk to 3 wk after the intervention. This
is consistent with a recent study which shows that the effect
of changes of mobility on reducing transmission may become
noticeable after 9 d to 12 d (14). It is also worth noting that
Reff appears to begin to decline 1 wk to 2 wk before the shelter-
in-place order in urban areas, and earlier in Dougherty. We
also estimate that the incubation period (i.e., waiting time from
infection to symptoms onset) has a median value of 6.94 d
[5.30, 7.37]. These estimates are largely consistent with the
literature (15, 16).

Systematic Characterization of Superspreading. Superspreading
refers to a phenomenon where certain individuals dispropor-
tionately infect a large number of secondary cases relative to
an “average” infectious individual (whose infectiousness may be
well represented by R0). This phenomenon plays a key role in
driving the spread of many pathogens, including Middle East
Respiratory Syndrome and Ebola (8, 17). A common measure
of the degree of superspreading is the dispersion parameter k ,
assuming that the distribution of the offspring (i.e., number of
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Fig. 1. Posterior distribution of (A) basic reproductive number R0 and (B) the effective reproductive number Reff , before and after the implementation of
a statewide shelter-in-place order on April 3, 2020. Error bars represent 95% credible interval.
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secondary cases generated) is a negative binomial with variance
σ2 =µ(1+µ/k) , where µ is the mean (17). Generally speak-
ing, a lower k corresponds to a higher degree of superspreading,
and k less than 1 implies substantial superspreading. Our frame-
work infers the transmission paths among all cases and therefore
naturally generates the offspring distribution of each case (see
Materials and Methods).

While superspreading of COVID-19 has been observed (1, 4–
6), systematic characterization of its impact and variation (e.g.,
over time and space) and associated risk factors is lacking. Our
results (Fig. 2A) suggest that superspreading is a ubiquitous
feature during different periods (before and after the shelter-
in-place order) of the outbreak. Superspreading may have a
major impact for the rural area (Dougherty) among all coun-
ties (i.e., overall k =0.27 for Dougherty, which is the lowest
among all counties). Dougherty county has a disproportionately
large outbreak compared to other more populated counties—
having about only one-eighth of the population of Cobb county
(about 760,000), it has a comparable number of reported cases
(1,628). Such an anomaly may be a consequence of the sig-
nificant superspreading and large (prior intervention) R0 in

Dougherty (Fig. 1A). This is also consistent with the evidence
of superspreading events due to a funeral in the area (18). The
increasing significance of superspreading over time also high-
lights the importance of maintaining social distancing measures
that may curtail close contacts (e.g., gatherings with densely
packed crowds). Overall, the top 2% of cases (that generate
highest number of infections) are responsible directly for about
20% of the total infections. Our results also show that younger
infectees (<60 y) tend to be the main drivers of superspread-
ing (Fig. 2B); infectiousness in this age group is also higher (see
Age-Specific Infectiousness).

Age-Specific Infectiousness. The current COVID-19 pandemic
indicates heterogeneity of susceptibility among different age
groups (3, 19, 20). Much is unknown about the variation of
infectiousness among different age groups (1–3). Our results
(Fig. 3) suggest that the younger cases (<60 y) may be, over-
all, 2.78 [ 2.10, 4.22] times more infectious than elderly cases
(≥60 y). Due to the very small number of reported cases in
children (e.g., <15 y), we do not consider a finer age strati-
fication (see also Discussion). We also test the robustness of

A

B

Fig. 2. (A) Degree of superspreading quantified by the dispersion parameter k (where k< 1 indicates significant superspreading) during different periods
of the outbreak. Let T be the day of announcing the shelter-in-place order: Period 1 is time t< T , period 2 is [T , T + 14), and, finally, period 3 is t> T + 14.
Overall, about the top 2% of cases (that have highest mean number of offspring) directly infected 20% of the total infections. (B) Mean number of offspring
generated by cases in each age group. Red dots represent those cases that have mean offspring ≥ 8. The younger age group (<60 y) tends to have more
cases that produce an extreme number of offspring, and also a larger average (blue lines) of the mean number of offspring. Overall means of k also tend
to be similar or smaller among the younger group: 0.53 for the younger group versus 0.82 for the older group in Cobb County, 0.57 versus 0.54 in DeKalb,
0.46 versus 0.64 in Fulton, 0.6 versus 0.6 in Gwinnett, and 0.39 versus 0.62 in Dougherty.
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Fig. 3. Infectiousness of younger patients (<60 y) relative to the older
patients (≥60 y).

these results to underreporting and take into account the dis-
crepancy in the reporting rates of different age groups (see
Sensitivity Analysis). We also test the robustness of our results
to assumptions concerning relative susceptibility of the younger
age group (see Materials and Methods). It is worth noting that
we are not explicitly modeling biological factors such as viral
loads that may potentially affect infectiousness. Instead, our
model captures how likely it is that a case may generate sec-
ondary cases (see Materials and Methods), which, collectively and
implicitly, accounts for multiple factors including viral loads and
contact rates.

Sensitivity Analysis. Underreporting is a ubiquitous feature of
epidemiological data, and is particularly so for COVID-19 due
to, in particular, a substantial number of asymptomatic cases
and the lack of testing at the earlier stages of the pandemic. In
particular, older people may tend to be more susceptible and
develop severe symptoms, and hence have a higher probability
of being reported (3, 19, 20). Such a discrepancy in report-
ing rates may potentially affect our estimation of age-specific
infectiousness. We explore the effect of such underreporting
on our results under these probable scenarios: We assume
that, in March, probabilities of being reported for younger
case (<60 y) and older cases are, respectively, 0.1 and 0.2,
and, to account for increased testing capacity, these probabil-
ities in April increase to 0.3 and 0.6, respectively. Details of
how to include underreported cases are given in Materials and
Methods. Fig. 4 shows that the younger age group remains to
be more infectious than the older age group. The estimated
impact of superspreading also appears to be robust: Estimated
overall dispersion parameter k is 0.45 for Cobb County, 0.43
for Dekalb, 0.39 for Fulton, 0.49 for Gwinnett, and 0.32 for
Dougherty.

We assumed that the older age group is twice as susceptible
as the younger group (see Materials and Methods). To explore
whether this assumption has an effect on the estimate of the rel-
ative infectiousness of the younger group, we fit the model by
assuming equal susceptibility between the two age groups. The
estimated infectiousness of the younger group relative to the

older group is 2.84 [1.65, 3.60], which is similar to the estimate
when we assume nonuniform susceptibility.

Discussion
Transmission dynamics of infectious diseases are often nonlin-
ear and heterogeneous over space and time. It is important to
exploit available data that are relevant to describing and esti-
mating such complex processes. For COVID-19, a key step is
to enable individual-level model inference that is able to sta-
tistically synthesize these data streams, beyond aggregate-level
dynamics (2, 11, 12). In this paper, we incorporated multi-
ple valuable data streams including formal surveillance data
into our individual-level spatiotemporal transmission modeling
framework, achieving a more granular mechanistic understand-
ing of the dynamics and heterogeneities in the transmission of
SARS-CoV-2.

Our results give similar estimates of important population-
level epidemiological parameters such as R0 found in the liter-
ature, and reinforce the conclusion from most studies that social
distancing measures are effective. This paper also advances our
understanding of individual-level heterogeneities in the trans-
mission of SARS-CoV-2, which is crucial for informing optimal
interventions. We show that superspreading is an important and
ubiquitous feature throughout the pandemic, and it may have
a pivotal role in driving large outbreaks in rural areas. The
increasing significance of superspreading over time also high-
lights the importance of maintaining social distancing measures
that may curtail close contacts (e.g., gatherings with densely
packed crowds). We also find that infected younger cases (<60 y)
tend to be more infectious and to promote superspreading. Our
results have important implications for designing more effective
control measures—particularly, they highlight the importance of
more targeted interventions.

Our study has a number of limitations. First of all, due to
the lack of widely available testing, the underreporting rate
was almost surely high during earlier phases of the pandemic.
Also, severity of symptoms (and hence reporting rates) may vary
among different age groups. We explore the robustness of our
main results toward these possible underreporting scenarios, in
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Fig. 4. Infectiousness of younger patients (<60 y) relative to the older
patients (≥60 y), calibrated for underreported cases.
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Sensitivity Analysis. Reassuringly, our main conclusions appear
to be largely robust. Second, with the lack of detailed individ-
ual movement data, our model implicitly assumes transmission
occurred mostly near people’s homes. Nevertheless, most activ-
ities (hence transmissions) were likely to have clustered around
homes due to the increasing public concern over the pandemic
and announcements of shelter-in-place orders back in March
and April. For example, Fulton County, one of the counties
with the highest number of cases, closed its school as early
as March 10, about 1 mo before the shelter-in-place order
on April 3. As activities outside of homes (e.g., gatherings at
pubs) may tend to facilitate clusters of transmissions and super-
spreading, our model may have thus underestimated both the
infectiousness of younger adults who are more socially active
and the degree of superspreading. Third, we only consider mod-
eling age-specific infectiousness in two age groups (<60 y and
≥60 y). The model would tend to be overparameterized if we
further break down the age groups that we have considered (e.g.,
by having a group for younger than 15 y), mainly due to an
imbalance of the reported number of cases between age groups
(particularly, markedly low reported numbers in the very young
population). And, given the very few cases among younger chil-
dren, our results are mostly relevant for younger adults and the
elderly. Our current binning of age is still useful, as the first group
tends to be more socially active and is useful for informing the
design of social distancing measures. Finally, although our anal-
ysis reveals the importance of age as a demographic risk factor
of superspreading, future work in linking infectiousness directly
with biological factors (e.g., age-specific viral loads) may shed
further light.

Materials and Methods
Spatiotemporal Transmission Process Model. We formulate an age-specific
spatiotemporal transmission modeling framework that allows us to infer
the unobserved infection times and transmission tree among cases, inte-
grating detailed individual-level surveillance data, geospatial location data,
and highly resolved population density (grid) data, and aggregate mobil-
ity data. This approach also allows us to infer explicitly the distribution
of the offspring (i.e., number of secondary cases generated) of each case.
Our framework represents an extension of the models we developed (8, 9),
which were validated generally and applied successfully to dissect the trans-
mission dynamics of the Ebola outbreak in western Africa between 2014 and
2016. Fig. 5 gives a schematic overview of the model.

More specifically, we model the occurrence of a new infection as a first
event in a nonhomogeneous Poisson process with a time-varying rate r(t) =
n(t)× β(t), where n(t) is the number of infectious individuals at time t and
β(t) is the time-dependent infectiousness of a case. We consider that β(t)
remained constant (i.e., the baseline infectiousness) before the statewide
shelter-in-place order was announced, and declined exponentially after the
order according to a rate ω. We also allow a primary infection rate α which
may account for infections that are not explicitly modeled (e.g., noise or
imported cases). We further assume that the two age groups (<60 y and
≥60 y) have their own (free) baseline infectiousness parameters to allow
for age-specific infectiousness.

Spatially, it is assumed that the probability of the new infection being
at a certain position (polar coordinates measured by distance r and direc-
tion θ) away from the source of infection is determined by the movement
patterns of infectious individuals and the population density. Specifically,
r and θ are drawn from an appropriate density function g(r, θ; η, ŝ) (9).
Details of g(r, θ; η, ŝ) are also given in SI Appendix, SI Text. Recall that
ŝ is the population density (within many 100 m × 100 m grids) across a
county, and η is the mean of the spatial kernel f . The mean of movement
distance η, after the issuing of the shelter-in-place order, is assumed to
change according to the county-wise percentage change of movement dis-
tance (which is computed from the Facebook mobility data; see below). We
calculated the average distance of all trips per day occurring in a county
from March 23 to April 2, 2020, to establish baseline mobility in distance
prior to implementation of statewide social distancing measures. We com-
pared baseline mobility with mobility during the period from April 3 to
May 5, after implementation of social distancing measures. Mobility data
from Fulton, DeKalb, Gwinnett, and Cobb counties was readily available;
data from Dougherty County was not. As a proxy for mobility in Dougherty

Fig. 5. Schematic description of our model. We model individual-level
transmission of SARS-CoV-2, in continuous time and space and over a het-
erogeneous landscape with varying population density over 100 m× 100 m
grids. Disease status of an individual is assumed to follow the susceptible–
exposed–infectious–recovered framework. Infectiousness of an infectious
individual β(t) is time dependent and decreases due to social distancing.
Likelihood of transmission from the infectious individual to a susceptible
individual, at distance r and angle θ measured from the infectious source,
is determined by 1) a spatial movement kernel (density) function f with
mean η, 2) change of the mean movement distance due to a shelter-in-place
order (informed by the aggregate mobility data), and 3) spatial distribu-
tion of population denoted by ŝ (i.e., detailed grid-level population density
shown in the figure), which, all together, could more realistically account
for heterogeneous mixing of individuals in the population (9).

County, we used data from Liberty and Glynn counties, which are also clas-
sified as “Small Metro” according to the 2010 US Census Bureau urbanicity
classifications (21).

A new infection would go through an exponentially distributed incu-
bation period with a mean parameter µ, before showing symptoms and
becoming infectious. It is assumed that patients <60 y and ≥60 y old have,
respectively, probabilities 0.06 and 0.17 of being hospitalized (22). The older
age group is also assumed to be twice as susceptible as the younger group
(<60 y) (3). The sojourn time between symptom onset and hospitalization
follows Exp(c). A nonhospitalized case is assumed to follow an exponential
distribution with a mean of 14 d before recovery.

We estimate Θ (i.e., the parameter vector) in the Bayesian framework by
sampling it from the posterior distribution P(Θ|z), where z are the data (8,
9, 23, 24). Denoting the likelihood by L(θ; z), the posterior distribution of
Θ is P(Θ|z)∝ L(Θ; z)π(Θ), where π(Θ) is prior distribution for Θ. Noninfor-
mative uniform priors for parameters in Θ are used (SI Appendix). MCMC
techniques are used to obtain the posterior distribution. The unobserved
infection times and transmission network and missing symptom onset dates
are also imputed in the MCMC procedure. Details of the inferential algo-
rithm are given in SI Appendix, SI Text. Posterior distributions of parameters
are given in SI Appendix, Table S1.

Methods for Sensitivity Analysis. The number of total underreported cases
m for a particular age group during a particular period is calculated as
m = n/p− n, where n is the reported number of cases and p is the prob-
ability of being reported. We consider these probable scenarios: In March,
probabilities of being reported for younger cases (<60 y) and older cases
are, respectively, 0.1 and 0.2; to account for increased testing capacity, these
probabilities in April increase to 0.3 and 0.6, respectively. The m cases are
then assigned infection times and spatial locations according to the tem-
poral and spatial distributions of observed cases in the time period, before
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merging with the observed data. The infection times and sources of infec-
tions of the m cases are also treated as unknown and are inferred in the data
augmentation procedure. Our main focus is to test how the potential dis-
crepancy in reporting rate between age groups may impact our estimation
of age-specific infectiousness.

Data Availability. The authors are not given permission to share the
individual-level COVID-19 data. Data requests should be formally submitted
to Public Health Information Portal (PHIP) of GDPH at https://dph.georgia.
gov/phip-data-request. Computer code is available at https://github.com/
msylau.
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