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Abstract

Anticipating intensive care unit (ICU) occupancy is critical in supporting decision makers to

impose (or relax) measures that mitigate COVID-19 transmission. Mechanistic approaches

such as Susceptible-Infected-Recovered (SIR) models have traditionally been used to

achieve this objective. However, formulating such models is challenged by the necessity to

formulate equations for plausible causal mechanisms between the intensity of COVID-19

transmission and external epidemic drivers such as temperature, and the stringency of non-

pharmaceutical interventions. Here, we combined a neural network model (NN) with a Sus-

ceptible-Exposed-Infected-Recovered model (SEIR) in a hybrid model and attempted to

increase the prediction accuracy of existing models used to forecast ICU occupancy.

Between 1st of October, 2020 - 1st of July, 2021, the hybrid model improved performances

of the SEIR model at different geographical levels. At a national level, the hybrid model

improved, prediction accuracy (i.e., mean absolute error) by 74%. At the cantonal and hospi-

tal levels, the reduction on the forecast’s mean absolute error were 46% and 50%, respec-

tively. Our findings illustrate those predictions from hybrid model can be used to anticipate

occupancy in ICU, and support the decision-making for lifesaving actions such as the trans-

fer of patients and dispatching of medical personnel and ventilators.

1. Introduction

On March 11th, 2020, the World Health Organization (WHO) declared the COVID-19 pan-

demic an international health emergency [1]. Since then, COVID-19 has caused infections in

millions of people [2], with a substantial proportion of infections (e.g. 9–11% [3]) requiring

hospitalization in intensive care units (ICU). In multiple countries, demand of ICU beds

exceeded bed availability [4–6], leading to excess mortality of COVID-19 patients as well as

backlogs of patients for other pathologies that require hospitalization in ICU [7–9]. Monitor-

ing and anticipating ICU occupancy has become critical to support decision-makers to impose

(or relax) non-pharmaceutical interventions that can help mitigate the transmission of

COVID-19, and thereby reduce its impact on healthcare systems.

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0263789 March 3, 2022 1 / 15

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Delli Compagni R, Cheng Z, Russo S, Van

Boeckel TP (2022) A hybrid Neural Network-SEIR

model for forecasting intensive care occupancy in

Switzerland during COVID-19 epidemics. PLoS

ONE 17(3): e0263789. https://doi.org/10.1371/

journal.pone.0263789

Editor: Sriparna Saha, Indian Institute of

Technology Patna, INDIA

Received: July 13, 2021

Accepted: January 26, 2022

Published: March 3, 2022

Copyright: © 2022 Delli Compagni et al. This is an

open access article distributed under the terms of

the Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All data regarding

intensive care units at national and cantonal level

are available from the Data as.csv database

(accessible at the following url: https://www.

covid19.admin.ch/en/overview). All the data

regarding intensive care units at hospital level

belong to the Coordinated Sanitary Service of the

Swiss Armed Forces and cannot be shared

publicly. Requests to access the data regarding

intensive care units at hospital level can be sent to

ksd-info.astab@vtg.admin.ch.

https://orcid.org/0000-0002-3176-0593
https://doi.org/10.1371/journal.pone.0263789
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0263789&domain=pdf&date_stamp=2022-03-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0263789&domain=pdf&date_stamp=2022-03-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0263789&domain=pdf&date_stamp=2022-03-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0263789&domain=pdf&date_stamp=2022-03-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0263789&domain=pdf&date_stamp=2022-03-03
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0263789&domain=pdf&date_stamp=2022-03-03
https://doi.org/10.1371/journal.pone.0263789
https://doi.org/10.1371/journal.pone.0263789
http://creativecommons.org/licenses/by/4.0/
https://www.covid19.admin.ch/en/overview
https://www.covid19.admin.ch/en/overview
mailto:ksd-info.astab@vtg.admin.ch


Mathematical models have been used extensively to anticipate the evolution of epidemic

indicators, including the occupancy of ICU [10–13]. In particular, two families of mathemati-

cal models have been predominantly used: 1) mechanistic models (MMs), including Suscepti-

ble-Infected-Recovered (SIR) models [14] and their extensions into agent-based models [15],

as well as, 2) statistical approaches [16], including machine learning (ML) models [17]. Each

family of model present advantages and disadvantages: MMs typically consist of differential

equation systems that reflect biological mechanisms that govern the dynamic of infections.

The parameters of these equations usually have a biological meaning (i.e., an infectious period)

and therefore can be used for predictions outside of their calibration space (i.e., scenario analy-

sis). However, for MM, accounting for the causal mechanisms between ICU occupancy and

environmental covariates (e.g. changes in environmental conditions [18,19]) comes at the cost

of additional parameters to be estimated in a differential equations system. In contrast, ML

models seek to establish statistical associations between response variables and potential covar-

iates without making assumptions about potential biological mechanisms [20]; however,

because ML models are based on statistical associations and not causation, their validity is

bound to their calibration space, and every prediction outside such a space can lead to incon-

sistent results [21,22]. Therefore, the combination of MMs and ML models in “hybrid models”

has been explored in a variety of fields [21–23] (e.g., earth systems, climate science, biology,

hydrology, etc.), and have showed promising results for improving prediction accuracy [20]

from MM models. One of the most common configurations for a hybrid model is known as

“residuals modelling”, and is of particular interest when the MM formulation may be too lim-

ited to capture complex associations between a response variable and its covariates [23]. Con-

cretely, this configuration consists of using a MM to capture the overall temporal trend of a

temporally autocorrelated process while letting the ML model compensate for any residual

error that is potentially associated with external drivers of the process of interest. Neural Net-

works (NN) are one of the most commonly used ML models in this framework due to their

ability to implicitly capture nonlinearities and interactions [24]. MMs have been coupled with

NNs in different fields, thereby improving performances of the corresponding MMs: for exam-

ple, Chu et al. [25] improved prediction accuracy of a MM to simulates performances of a cen-

trifugal compressor; Lee et al. [26] also improved prediction accuracy of a MM to simulate the

operations of a waste-water treatment plant; Thompson and Kramer [22] used a NN to model

a fed-batch penicillin fermentation reaction. Thus far, multiple works have shown how hybrid

models can be used to predict the evolution of the COVID-19 epidemic [27–29]; however, to

the best of our knowledge, these works did not implement the configuration of residual model-

ling using a NNs as a ML model.

In this study, we developed a hybrid model based on the residual modelling configuration

aimed at increasing the prediction accuracy of an SEIR model (Susceptible-Exposed-Infected-

Recovered) across spatial scales for producing short-term (3- and 7-days ahead) predictions of

ICU occupancy. The accuracy of the modelling framework was tested in Switzerland, where

data on ICU occupancy were available at different geographical levels (i.e., national, cantonal,

hospital). Finally, we also downscale predictions of the hybrid model at the hospital-level to

support hospital management actions.

2. Materials and methods

2.1. Mechanistic model (MM)

We used the SEIR model described in Zhao et al. [30]. to simulate the dynamics of occupancy

of ICU from the 6th of November 2020 until 1st of July 2021. This model was expanded to

include the impact of vaccination campaigns [31]. This period included three epidemic phases:
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phase 1, from the lockdown (19th of October, 2020) until the start of second-dose vaccinations

(15th of January, 2021); phase 2, from the start of second-dose vaccinations until the relaxation

(14th of April, 2021); and phase 3, from the relaxation until 1st of July, 2021. The phases are

reported in S1 Fig in the Supplementary Information (SI).

b ¼
R0

N
� k� g;

dSðtÞ
dt
¼ � SbI � c;

dEðtÞ
dt
¼ þSbI � sE;

dIðtÞ
dt
¼ þsE � gI;

dPðtÞ
dt
¼ þε1gI � o1P

dH1ðtÞ
dt

¼ þo1P � o2H1;

dH2ðtÞ
dt

¼ þð1 � ε2Þo2H1 � o3ICU;

dICUðtÞ
dt

¼ ε2o2H1 � ð1 � ε4Þo4ICU � ε4o5ICU;

dRðtÞ
dt
¼ þð1 � ε1ÞgI þ ð1 � ε3Þo3H2 þ ð1 � ε4Þo4ICU;

dDðtÞ
dt
¼ þε3o3H2 þ ε4o5ICU;

dCðtÞ
dt
¼ þgI:

Where S (Susceptible), E (Exposed), I (Infected), P (infected but not yet hospitalized), H (=

H1 + H2, Hospitalized), ICU, D (Death), R (Recovered), and C (Cumulative Infected) are the

model variables; R0 the basic reproduction number, c the vaccination rate, and k the reduc-

tion/increase in transmission rate after a non-pharmaceutical intervention is introduced/

relaxed. Parameter values and their meanings are reported in Table 1. Daily vaccination rates

were obtained from the public dashboard of the Swiss Federal Office of Public Health [32].

2.2. Machine learning model

2.2.1. Model structure. We used a feed-forward NN with a single hidden layer [37,38] to

predict the residuals (bεtþDtÞ) of the SEIR model (Fig 1). This choice was based on two proper-

ties that make this type of NN suitable for our purpose: first the ability to account for nonline-

arities and interactions between response variables and covariates [24,39]. Second, ability of
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NN models to be trained on relatively small datasets that is comparatively higher than for

other ML models such as deep neural networks [40].

Covariates (section 2.2.2.) were introduced in the NN with a lag corresponding to the maxi-

mum correlation with the response variable via cross-correlation. In particular, the lag of t—
Δt,. . ., t– 42 was explored among the possibilities, with 42 days as the minimum value. An

additional covariate, εt, was also added to account for the autoregressive nature of process.

The NN formulation was:

bεtþDt ¼ T o0 þ
XJ

j¼1

oj � T ðo0j þ wT
j xÞ

 !

ð1Þ

Table 1. Model parameters of the SEIR model (adapted from Zhao et al. [30]).

Parameter Description Value

R0 Basic reproduction number Estimated

κ Percentage of R0 Estimated

c Vaccination rate Estimated

σ, γ Serial interval 1/2.6 days [33]

ω1 Duration from onset of symptoms to hospitalization 1/5 days [34]

ω2 Initial hospitalization 1/6 days [34]

ω3 Additional days of hospitalization until recovery/death 1/10 days [34]

ω4 Additional days in ICU until recovery 1/13.1 days �

ω5 Additional days in ICU until death 1/12.7 days �

ε1 Rate of H admission of infected 0.0161 [35]

ε2 Hospitalized cases requiring critical care in ICU 30% [34]

ε3 Death outside of ICU 35% [36]

ε4 Death rate from ICU 22%�

� Obtained for patients (n = 382) included in the RISC-19-ICU registry supported by Swiss Society of Intensive Care

Medicine (https://www.sgi-ssmi.ch).

https://doi.org/10.1371/journal.pone.0263789.t001

Fig 1. Configuration of the hybrid model. The hybrid model combines a mechanistic model (SEIR) with a machine

learning model (Neural Network).

https://doi.org/10.1371/journal.pone.0263789.g001
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Where Δt was set to 3 or 7 days; ω0 is the intercept of the output layer, and ω0j the intercept

of jth hidden node; ωj is the weight (also known as parameter) associated with the connection

from the jth hidden node to the output layer, and wj
T is the vector of weights associated with

the connection to the jth hidden node; Γ is the Rectified Linear Unit (ReLU) activation func-

tion; x is the vector of covariates. The size of the of the hidden layer, determined by the number

of hidden nodes, was optimized together with other hyperparameters. Specifically, hyperpara-

meters are different from parameters: parameters are learned during model training, while

hyperparameters need to be optimized externally to model training (see section 2.3.).

2.2.2. Covariates. These covariates were used to predict ICU occupancy (Table 2): i) the

number of COVID-19 cases; ii) the number of COVID-19 cases associated with the Alpha vari-

ant (better known as UK variant); iii) the level of non-pharmaceutical interventions (e.g.,

school closures, workplace closures, and travel bans) as identified by the Containment and

Health Index (i.e., a subindex of the Stringency Index [41]); and iv) the mean daily air

temperature.

2.3. Model training and performance evaluation

We adopted a temporal cross-validation scheme [46] similar to the one used by Vollmer et al

[29]. This scheme (Fig 2) allowed us to train and evaluate the performance of the hybrid model

multiple times (n = 85 for the prediction at 3-days and n = 36 for the prediction at 7-days)

over the simulated period.

The scheme works as follows:

First, the time series is divided in three successive time windows: the training set, validation

set, and test set (Fig 2). The training and the validation sets are used for the optimization of

Table 2. List of covariates.

Name Source Reference

COVID-19 cases Open Swiss Government data set [42]

Proportion of COVID-19 cases associated to the Alpha variant Github repository [43]

Index of Containment and Health Github repository [44]

Mean environmental temperature opendata.swiss [45]

https://doi.org/10.1371/journal.pone.0263789.t002

Fig 2. Temporal cross-validation scheme. Δt was set to 3 and 7 days for the predictions at 3 and 7 days ahead, respectively.

https://doi.org/10.1371/journal.pone.0263789.g002
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the parameters of the SEIR model (one κ, the reduction applied to R0, estimated separately

for of the 3 phases), as well as the optimization of hyperparameters of the NN (i.e., the num-

ber of nodes in the hidden layer, learning rate, and dropout rate). A training-validation

split of 90%/10% is adopted. The initial training and validation set included data from the

8th of October, 2020 until the 6th of November, 2020, in order to meet a minimum amount

of data for model training.

Second, the performance of the trained model is evaluated on the test set using the mean

absolute error. The test set consisted of n = Δt values, with Δt equals to 3 and 7 for the pre-

dictions at 3- and 7-days ahead, respectively.

Third, the training-validation set is expanded to include the test set of the previous

iteration.

At the end of the iterative validation scheme, the overall performance of each model is esti-

mated using the average MAE across iterations on the successive test sets (average MAE on

red block for iteration 1 to n Fig 2).

In step 2, the optimization of the SEIR model was performed using maximum likelihood

(Nelder and Mead algorithm [47]) on the complete training-validation set; residuals of the

SEIR model are then calculated. The optimization of the hyperparameters of the NN was done

as follows: a sampling space of 100 combinations of hyperparameters was generated using a

Latin Hypercube [48]. A back-propagation algorithm (based on gradient descent) was used as

a learning algorithm to modify the values of the weights and obtain the best matches possible

between the true and estimated values of the residuals of the SEIR model in the training set.

The mean absolute error (MAE) was used as fitting criteria on the validation set, and an early

stopping mechanism was applied to stop the learning algorithm if the MAE did not achieve a

decrease of 5 units within 100 epochs (i.e., number of iterations that the learning algorithm

worked through the training set). The largest number of possible epochs was set to 4,000. We

accounted for the stochastic nature of the optimization by repeating the simulation 10 times

for each combination of hyperparameters. For each set of 10 simulations, we calculated the

mean and standard deviation of the MAE in the validation set. The combination of hyperpara-

meters that generated the minimum mean MAE in the validation set was selected as optimal

for the NN.

Performance evaluation was evaluated on the test set as follows: i) predictions of the SEIR

model (dICUtþDtÞ) were based on the parameters inferred in the training-validation set (extrapo-

lation); ii) predictions of the NN (bεtþDtÞ) were obtained after training a NN with the optimal

combination of hyperparameters on both the training and validation set; iii) the sum of the

two contributions (dICUtþDtÞ þ bεtþDtÞ) was compared with the observed ICU occupancy. Confi-

dence intervals for the NN were generated using the standard deviation calculated on the vali-

dation set, while they were obtained as described in Zhao et al. for the SEIR model [30], with

the 2.5% and 97.5% quantiles of the 10,000 predictions.

Furthermore, the predictions (and accuracy evaluated via the MAE) of the hybrid model

were compared to that of the SEIR and NN model independently.

2.4. Downscaling at hospital level

Model predictions were obtained at the national- and cantonal-level, and from the cantonal-

level downscaled to the hospital-level. Particularly, cantonal-level predictions were downscaled
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based on the percentage of occupancy of ICU beds in each hospital, calculated as moving aver-

age of the past Δt days. The ICU occupancy data of Swiss hospitals were provided daily by the

Coordinated Sanitary Service of the Swiss Armed Forces, and refer to the number of ICU beds

occupied by COVID-19 patients. The canton of Zurich was selected for model testing, since it

is the most populated Canton in Switzerland with 15 hospitals with ICU.

2.5. Importance of covariates

We determined the relative importance of each covariate in making predictions for the hybrid

model. Concretely, we computed a Deviation metric (2) between the MAE of the full model

including n = 5 covariates with that of a reduced model with n = 1 covariates [49]. The Devia-

tion was calculated on the test set at the end of each epidemic phase. The procedure was

repeated n = 5 times excluding one covariate at a time. The Deviation (%) was calculated as fol-

lows:

Deviation ¼
MAEReduced Model � MAEFull Model

MAEFull Model
x 100 ð2Þ

A positive Deviation signifies that the excluded covariate was important for the model. Spe-

cifically, a positive Deviation corresponds to a decreased accuracy of the reduced model com-

pared to the accuracy of the full model that included all covariates.

3. Results

3.1. Model comparison

We compared 3 types of epidemic models (i.e., SEIR, NN and hybrid,) to predict short-term (3

and 7 days ahead) ICU occupancy at the national- and cantonal-level. Fig 3 shows the 3-day

predictions at the national-level from the three models (a), and with its associated MAE calcu-

lated on the test set (b).

During phase 1 (19th of October, 2020 - 15th of January, 2021) the hybrid model (average

MAE = 19 beds) outperformed both the NN (average MAE = 27 beds) and the SEIR model

(average MAE = 78 beds). During phase 2 (15th of January, 2021 - 14th of April, 2021), the

hybrid model remained the most accurate model (average MAE = 16 beds), although the per-

formance of the NN (average MAE = 21 beds) and the SEIR model (average MAE = 59 beds)

improved in comparison with phase 1.

During phase 3 (14th of April, 2021 - 1st of July, 2021), the hybrid model (average MAE = 19

beds) was slightly outcompeted by the NN (average MAE = 13 beds); while the SEIR model

was associated with the worse performances (average MAE = 125 beds). S1 Fig in Supporting

Information (SI) showed predictions at 7-days ahead and its corresponding MAE.

Predictions 3-days ahead (S2 Fig) were then downscaled from the cantonal-level to the hos-

pital-level. Results for a medium-sized hospital, as well as the biggest hospital in the canton of

Zurich are shown in Fig 4. At the hospital-level, the hybrid model outperformed the SEIR

model for both the medium-sized hospital (average MAEhybrid = 1.2 beds, average MAESEIR =

2.2 beds) and largest hospital (average MAEhybrid = 3.1 beds, average MAESEIR = 6.2 beds) in

the canton of Zurich. In comparison, the NN model performed on average as good as the

hybrid model for both hospitals. Similar to the national-level scenario, the highest average

MAE for the SEIR model was observed during phase 3, during which the SEIR model was not

capable of capturing the occupancy increase of ICU that occurred two months after the start of

vaccination (15th of January, 2021).
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3.2. Relative importance of covariates

The relative importance of covariates during each of the three phases is reported in Fig 5. In

phase 1, a negative Deviation (marked with an asterisk in the Figure) was observed for a major-

ity of the covariates (i.e., COVID-19 cases, proportion of COVID-19 cases associated to the

alpha variant, Index of Containment and Health, and mean environmental temperature),

meaning that their exclusion from the full model improved prediction accuracy. Conversely,

the autoregressive covariate was important for making predictions, with Deviations equal to

92% and 66% for the hybrid and NN model, respectively. In phase 3, all of the covariates were

informative; in this last phase, the NN predictions were more affected by the exclusion of

covariates in comparison to the hybrid model. The average Deviation was 230% and 53%, for

the NN and hybrid model, respectively.

4. Discussion

4.1. Prediction accuracy

In this study, we showed increased prediction accuracy of ICU occupancy using a hybrid

model combining a SEIR and a NN model. The model developed here could help guide inter-

ventions against future COVID-19 epidemics. At a national-level, during phase 1 (19th of

Fig 3. Model predictions of intensive care bed occupancy at the national-level. a) Predictions 3-days ahead of intensive occupancy at the national-level for

the three models (shaded areas represent 95% confident intervals); b) corresponding Mean Absolute Error (MAE) calculated on test data.

https://doi.org/10.1371/journal.pone.0263789.g003
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October, 2020 - 15th of January, 2021) the overestimation of ICU occupancy by the SEIR

model could be associated with its intrinsic nature to predict exponential growth at the begin-

ning of a new wave. In contrast, the SEIR model underestimated the ICU occupancy during

phase 3 (14th of April, 2021 - 1st of July, 2021). This could be explained by the fact that the

model lacks important covariates such as temperature, which may have been responsible of an

increase of cases during the winter and thus for an increased ICU occupancy. For the NN

model, its worst performance was observed during phase 1, where abrupt oscillations

occurred. These oscillations could be attributed to the short time series available for

model training at that stage, thereby compromising model training and limiting predictive

performance. This interpretation is supported by the fact that the prediction accuracy of

the NN model improved during phase 2 (15th of January, 2021 - 14th of April, 2021) and 3

(14th of April, 2021 - 1st of July, 2021), when longer time series became available for model

training.

At the national- and cantonal-levels, the SEIR model was unable to capture the increase in

ICU occupancy that occurred two months after the beginning of the second-dose vaccination

campaign. The causal mechanisms behind this trend remains unclear, but may be associated

with other drivers such new variants (e.g., Delta variant) that are not incorporated in the SEIR

Fig 4. Model predictions of intensive care bed occupancy at the hospital-level. Prediction at the hospital-level for a medium-sized hospital (a) and the largest

hospital (b) in the canton of Zurich.

https://doi.org/10.1371/journal.pone.0263789.g004
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model. In contrast, the hybrid and NN model could capture this trend, suggesting that both

models succeeded in learning potential non-linear relationships between covariates and occu-

pancy of ICU.

4.2. Relative importance of covariates

The fact that the relative importance of each covariate for our models changed between phases

has multiple possible interpretations. The first is that a covariate is important for making pre-

dictions during one phase, while it is not important for another phase. For example, the pro-

portion of the Alpha variant was not informative during phase 1 when its prevalence

was< 10% of the total confirmed COVID-19 cases, while it was informative during phase 3,

when its prevalence was > 50% of the total confirmed Covid-19 cases. The second reason

could be associated to the length of the time series. For example, the model had limited data

for training during phase 1, while the amount of data tripled for phase 3. This could have

caused the full model (i.e., with 5 covariates) to perform worse than the reduced model (i.e.,

with 1–5 covariates) [50,51], leading to negative Deviation.

During phase 1, the autoregressive term was the only informative covariate, meaning that

the models behaved similarly to an Automatic Regressive Integrated Moving Average

Fig 5. Covariance importance for each phase. An asterisk represents a negative deviation.

https://doi.org/10.1371/journal.pone.0263789.g005
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(ARIMA) model. Furthermore, on average, the Deviation associated with the hybrid model

was always lower than the one associated to the NN. This means that the hybrid model was

more robust in the exclusion of a specific covariate compared to the NN.

4.3. Possible applications and limitations

In Switzerland, a number of studies have focussed on providing long-term (>2 weeks) [52–54]

and short-term (<2 weeks) [36] predictions using MMs. Predictions have predominantly on

the national scale; while many of the lifesaving actions (e.g., transfer of patients) need to be

planned at the cantonal- (provincial-level) or hospital-level. In this study, we attempted to

increase the prediction accuracy of a SEIR model by coupling it with a NN, generating a so-

called hybrid model. Among all the possible ways to combine a MM with a ML model, we

opted for a configuration called residual modelling. In particular, we used a SEIR model for

predicting occupancy of ICU beds under future scenarios at different geographical levels

(national, cantonal, and hospital) in Switzerland; we trained a NN to supplement these predic-

tions using the information embedded in covariates (temperature, etc. . .). This modelling

framework could be applied in other geographic regions for which a MM (e.g., of the SIR fam-

ily), and spatially explicit covariates are available. Specifically, different extension of the SIR

model [14] can be used, from simple examples (like the SEIR used in this study), to increas-

ingly complex frameworks such as SIDARTHE [12]. As for the ML model, we used a feed-for-

ward NN with a single hidden (see section 2.2.1.). However, alternative formulations could

have been chosen. For example, Maher Ala’raj et al. [27] coupled an ARIMA model, a very

popular ML model for time series forecasting with a SEIRD model; Watson et al. [17] embed-

ded a Bayesian time series model and a random forest algorithm within a SIRD model; Rahma-

dani and Lee [28] combined a deep-learning algorithm with a SEIR model.

As with any modelling study, our analysis also comes with limitations. For example, training of

the NN is often computationally intensive and the selection of optimal hyperparameters is based

on empirical rules such as try-and-error approaches [46]. In this study, the optimization of hyper-

parameters required a significant effort in terms of computational cost. Specifically, all simulations

were run in parallel on ETH High Performance Computing facilities (Euler cluster) [55], requir-

ing, on average, 1 minute per simulation on one CPU, and thus 15 CPU minutes for each iteration

running simultaneously on 15 CPU cores. We optimized three hyperparameters, namely the

number of nodes in the hidden layer, learning rate, and dropout rate; however, other hyperpara-

meters such as the type of activation function, the number of batches, the number of epochs, etc.,

could also have been subjected to optimization. Furthermore, other type of search algorithms

such as the sequential model-based optimization (SMBO, also known as Bayesian optimization)

[56] could have been explored. Another drawback of the residual modelling configuration is the

inability to enforce real-world constraints (e.g., ICU beds� 0), since the residuals are modelled

instead of based on the actual ICU occupancy. One possible alternative could be to combine the

SEIR model and the NN in series. In this case, the NN estimates intermediate variables to be used

in the SEIR model, although it would impose structural changes on the SEIR model based on the

variables selected, which may be challenging to implement.

As for the downscaling at the hospital-level, we used a simple method based on the moving

average to downscale predictions at the cantonal-level (see section 2.4.), demonstrating a satis-

factory degree of accuracy in hospitals in the Canton of Zurich. However, this method requires

the availability of ICU beds at the hospital-level, which is not always the case. Consequently,

more complex methods could be tested. In particular, Zhao et al. [30] presented a method to

distribute ICU patients based on travel time from the location of the patient to the hospital. In

the future, our modelling framework can be updated as growing knowledge is gained on the
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covariates associated with the spread of COVID-19. For example, new covariates such as other

virus variants and mobility patterns in different regions (e.g., people coming in and out of

Switzerland) could be included to improve predictions. Lastly, the framework could be applied

to improve predictions of other infectious diseases, for which a MM already exists.
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