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Abstract: The objective of the study was to develop a transdermal nanoformulation of hesperidin
(HSP) against Proteus vulgaris (P. vulgaris). Based on the low water solubility of HSP, we prepared
HSP-enabled AuNPs stabilized with xanthan gum (XA), referred to as HSP@XA@AuNPs. The
HSP@XA@AuNP formulation was evaluated for particle size (43.16 nm), PDI (0.565), zeta potential
(−31.9 mV), and entrapment efficiency (56.7%). The HSP@XA@AuNPs gel was developed by in-
corporating selected formulation grades into a 1% Carbopol gel base and characterized by physical
evaluation and rheological studies. The color of the HSP@XA@AuNP gel was light pink, and the
texture was very smooth and non-greasy. The gel was shown to be odorless. A field emission
scanning electron microscope (FESEM) was used to investigate the shape of HSP@XA@AuNPs fur-
ther. The drug release was 73.08% for the HSP@XA@AuNPs and 86.26% for the HSP@XA@AuNPs
gel in 500 min. The prepared gel showed antimicrobial activity against P. vulgaris with an MIC of
1.78 µg/mL. In conclusion, the HSP@XA@AuNPs gel could be an advanced modality for treating
P. vulgaris.

Keywords: hesperidin; Proteus vulgaris; antibacterial; xanthan gum; gold nanoparticles

1. Introduction

Proteus is a Gram-negative bacterium that thrives in the soil, water, and digestive tract
of mammals and can swarm or flounder on solid surfaces. As a Gram-negative, motile, and
non-spore-forming bacterium, Proteus vulgaris (P. vulgaris) belongs to the genus Proteus of
the family Enterobacteriaceae [1,2]. Several Proteus bacteria have colonized and infected
human hosts, but the most common are associated with causing human disease. P. vulgaris
is closely associated with clinical practice and is the most important causative agent of
urinary tract infections (UTIs), which pose a serious threat of community and hospital
infections [3]. Previously, P. vulgaris was considered a biogroup that causes wounds, burns,
bloodstream infections, and respiratory infections [4–6].

The consumption of herbs is being performed more consciously because the natural
compounds are effective against various microorganisms. The industry involved in the
treatment of antimicrobial diseases has welcomed the increasing use of drugs based on

Gels 2022, 8, 655. https://doi.org/10.3390/gels8100655 https://www.mdpi.com/journal/gels

https://doi.org/10.3390/gels8100655
https://doi.org/10.3390/gels8100655
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/gels
https://www.mdpi.com
https://orcid.org/0000-0001-6733-8311
https://orcid.org/0000-0003-2250-0914
https://orcid.org/0000-0002-3585-0828
https://orcid.org/0000-0002-7632-3426
https://doi.org/10.3390/gels8100655
https://www.mdpi.com/journal/gels
https://www.mdpi.com/article/10.3390/gels8100655?type=check_update&version=1


Gels 2022, 8, 655 2 of 12

plants and plant components [7–9]. In line with this philosophy, hesperidin (HSP) is widely
used in herbal therapies. HSP is a flavanone glycoside formed from hesperetin aglycone
and the disaccharide rutinose. Citrus fruits contain the plant pigment HSP. In addition to
citrus, HRP has been found in several other plant families, including Fabaceae, Betulaceae,
Laminaseae, and Papilionaceae [10]. It has been described as having a variety of biological
activities, including antioxidant, anti-inflammatory, antiallergic, antihypertensive, antimi-
crobial, anticarcinogenic, and vasodilator properties [11–13]. Long-term epidemiological
studies have shown that people who regularly eat a flavonoid-rich diet have a lower risk of
cancer and other chronic diseases. This has increased interest in using these compounds as
dietary supplements for treating diseases [14].

However, the water solubility of HSP is very low, resulting in limited transmembrane
permeability and insufficient bioavailability. Regardless, its water solubility is negligible, a
critical problem in formulation development. It is poorly absorbed in the small intestine,
which significantly reduces the bioavailability of the drug [15]. Therefore, applications
in functional foods, beverages, dietary supplements, pharmaceuticals, etc., are severely
limited [16]. These specific solubility limitations also affect various diseases’ bioavailability
and treatment benefits. To achieve a better pharmacological effect, HSP’s solubility in solu-
tions needs to be increased. It has been claimed that different carrier systems improve the
solubility of HSP drugs. Nanotechnology makes it possible to provide traditional natural
phytocomponents with low solubility. By combining traditional natural products with
nanometer-sized entities, we can overcome many problems—such as stability, solubility,
and toxicity—often associated with traditional compounds and also provide a platform for
targeted delivery to disease sites. For example, to improve solubility, stability, and bioactive
potential, Ali et al. prepared a formulation based on hesperidin–PLGA–poloxamer 407 [17].
This will allow researchers to solve the existing limitations of the formulation by applying
various nanotechnology/nanomaterial-based approaches [18,19]. Various nanocarriers
such as lipid-based nanocarriers [20], solid lipids [21], liposomes [22], niosomes [23], and
metal nanoparticles [24] have been reported to solve the problems related to low water
solubility and bioavailability of therapeutic compounds.

Among these various nanomaterials mentioned above, metal nanoparticles are used
in biomedical applications [25]. In particular, gold nanoparticles (AuNPs) have been
the focus of interest due to their apparent advantages. The advantages of multi-surface
functionality reinforce their wide application in nanotechnology. Similarly, a slight change
in the dimensions, appearance, surface framework, and interparticle spacing leads to well-
controlled changes in the physical and chemical properties of the above nanostructured
materials, especially for drug delivery [26]. AuNPs are inherently biocompatible and
exhibit higher drug loading and improved pharmacological response [27]. In the synthesis
of AuNPs, countless scientists have found that the physical and chemical character of
nanoparticles changes [28,29]. Stabilizing AuNPs with biodegradable polymers and gums
is an innovative field of study for synthesizing more suitable nanomaterials. Recently,
several researchers have synthesized various natural polymers and gums to produce
hybrid AuNPs with higher stability and better disease targets [30,31].

In this context, we selected xanthan gum (XA) as a stabilizing agent for AuNPs loaded
with HSP. Inorganic NPs of iron [32], silver [33], silicon [33], palladium [34] and gold [35,36]
were recently prepared and stabilized with XA.

In addition, many researchers have experimented with Carbopol-based inorganic
metal/metal oxide nanoparticles and hybrid delivery systems with organic additives in
various disease states. Carbopols are polymers of acrylic acid linked to polyalkyl ethers
and dimethyl glycols. Due to their hydrophilic properties, the cross-linked structure of
Carbopols is a potential candidate for use as a gel-like formulation for current use in
transdermal drug delivery. For example, Jana et al. used Carbopol gel with chitosan–egg
albumin nanoparticles for transdermal delivery of aceclofenac [37]. Similarly, Martínez-
Higuera et al. formulated a Carbopol-based hydrogel as a matrix for the dispersion of
Mimosa tenuifora extract and Ag nanoparticles to improve the healing of burn wounds and
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prevent infections [38]. Transdermal application of drugs has many advantages over oral
and intravenous methods. These include the lack of first-pass metabolism and widespread
toxicity. In addition, these systems have been shown to improve patient compliance due to
ease of use and the ability to discontinue treatment if needed [39].

To prove this hypothesis, a simple approach to synthesize Au nanoparticles loaded
with HSP and stabilized with XA (HSP@XA@AuNPs) was adopted in this study. In the
present study, we attempted to develop a transdermal Carbopol gel containing
HSP@XA@AuNPs. After preparation and characterization, we tested the antibacterial
activity of the HSP@XA@AuNPs gels against P. vulgaris.

2. Results and Discussion
2.1. Solubility Study

We carried out the solubility study of HSP in water, buffer solution, and XA-stabilized
AuNPs, as given in Table 1. From the table, it is clear that the solubility of HSP is re-
ported to be low in water (4.09 ± 0.20 µg/mL), pH 1.2 (2.44 ± 0.12 µg/mL), pH 5.0
(3.42 ± 0.17 µg/mL), and pH 6.8 (6.19 ± 0.30 µg/mL). On the other hand, we find that
the solubility is increased by 15-fold by the addition of XA-stabilized AuNPs compared
to water. This indicates the enhancement of solubility by adding XA-stabilized AuNPs.
The data of the solubility study are given in Table 1. In this study, hesperidin’s aqueous
solubility was improved in the presence of XA-stabilized AuNPs. Here, we observed a
sharp increase in the HSP’s solubility mainly due to the influence of the particle size of
the incorporated XA-stabilized AuNPs. The reduction in particle size generally leads to a
faster dissolution rate as the surface area increases [40]. An increase in surface area with
a reduction in NP size promotes dissolution due to an increase in surface area that can
participate in the dissolution process.

Table 1. Solubility study of HSP.

Solvent Hesperidin Solubility (µg/mL)

Water 4.09 ± 0.20
pH 1.2 2.44 ± 0.12
pH 5.0 3.42 ± 0.17
pH 6.8 6.19 ± 0.30

XA-stabilized AuNPs 62.23 ± 3.1

2.2. Drug Capping, Particle Size, and Zeta Potential Measurements

The percentage of drug capped was found to be 56.7 ± 2.835%. The drug loading
calculated was 34.27 ± 0.23%. The high drug load in HSP@XA@AuNPs suggests that
XA@AuNPs are more effective than HSP. The particle size of XA@AuNPs was reported
to be 18.3 ± 30 nm, with PDI of 0.502 ± 0.076 and −29.2 mV. In this study, the particles
were smaller than those reported previously [41], i.e., 43.16 ± 2.158 nm, with a PDI of
0.565 ± 0.028 (Figure 1a). The zeta potential of the surface charge was −31.9 ± 1.595 mV.
The corresponding method shows that the charged nanoparticles are stable in solution [42].
The surface charge of the particles and the binding properties of the drug NP are the main
factors that determine the absorption rate of the drug in the NP and the loading efficiency.
The ZP values can also indicate whether the loaded material is encapsulated in the NP
center or on the surface [43]. These results are consistent with the previously published
work of Sulaiman et al. [19].
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Figure 1. Characterization of HSP@XA@AuNPs: (a) particle size, PDI, and zeta potential; (b) mor-
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2.3. Organoleptic, Morphological, and Rheological Study of HSP@XA@AuNPs Gel

The organoleptic observation was made by examining changes in the gel preparation’s
shape, color, and odor. The color of the HSP@XA@AuNPs gel was light pink, and the
texture was very smooth and non-greasy. The gel was found to be odorless. A field
emission scanning electron microscope (FESEM) was used to investigate the shape of the
HSP@XA@AuNPs gel further. FESEM analysis of the HSP@XA@AuNPs gel showed an
irregular shape (Figure 1b). From the FESEM images, it can be seen that the particles have an
irregular shape or no particular morphology. During the quality control test, the prepared
gel formulations were examined for their physical appearance, pH, viscosity, spreadability,
and extrudability (Table 2). Acidity (pH) is an essential parameter in gel preparations
because the gel is a topical preparation applied to the skin. Therefore, gel preparations
must have a pH equivalent to human skin (4.5–6.5) to avoid skin irritation or redness. This
test shows that the pH of the gel preparation is 6.34 ± 1.56, which is still within the pH
range of human skin [44]. The spreadability of gel preparations is defined as the ability of
the gel to spread on the skin surface. The spreadability of the HSP@XA@AuNPs gel was
determined to be 4.19 ± 1.78 cm. Viscosity is a measure of the thickness of a liquid; a gel
preparation refers to liquids with high viscosity of 2000–4000 cps [45]. The viscosity was
determined to be 3031 cps. Viscosity is inversely proportional to spreadability; the higher
the viscosity, the lower the spreadability.

Table 2. Rheological characteristics of HSP@XA@AuNPs gels and HSP@XA@AuNPs.

Formulation Clarity Homogeneity pH Viscosity (cps) Spreadability (cm)

Carbopol gel Clear Homogeneous 5.5 ± 1.24 3000 3.76 ± 2.13
HSP@XA@AuNPs gel Clear Homogeneous 6.34 ± 1.56 3031 4.19 ± 1.78

HSP@XA@AuNPs Transparent Homogeneous 7.0 ± 0.64 100 NA

2.4. In Vitro Cell Viability Assay

Biosafety is an essential criterion for determining nontoxic dosage formulations for
biomedical applications. Cytotoxicity testing is widely regarded as a rapid and efficient
method for evaluating the biocompatibility of biomaterials. A cytotoxicity study based on
the MTT assay was used to evaluate and quantify the cytotoxicity of HSP@XA@AuNPs and
the HSP@XA@AuNPs gel formulation. Cell viability results using the MTT assay explain
how cells respond to a toxic agent. In the present study, the synthesized HSP@XA@AuNPs
and HSP@XA@AuNPs gel showed cell viability of more than 75% (Tables 3 and 4) and
Figure 2a. This shows that the material is not toxic to mammalian cells. These results show
that the HSP@XA@AuNPs and the HSP@XA@AuNPs gel can be considered a nontoxic and
safe drug delivery system.
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Table 3. Observation of cell viability study of HSP@XA@AuNPs gel.

Concentration (µg) Absorbance at 570 nm % Viability

25 0.564 90.757
50 0.546 87.822
75 0.538 86.572

100 0.524 84.262
125 0.478 79.909

Untreated 0.622 100
Blank 0 0

Table 4. Observation of cell viability study of HSP@XA@AuNPs.

Concentration (µg) Absorbance at 570 nm % Viability

25 0.511 82.17
50 0.498 80.12
75 0.492 79.12

100 0.485 78.12
125 0.467 75.234

Untreated 0.622 100
Blank 0 0
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2.5. In Vitro Hemolysis Assay

For preclinical safety testing of the HSP@XA@AuNPs gel, we performed an in vitro
hemolysis study, as shown in Figure 2b. The result of the hemolysis study shows that
the HSP@XA@AuNPs gel is biocompatible up to a concentration of 160 µg/mL, which is
less than 5%. After this concentration, the hemolysis percentage increases with increasing
concentration from 180 µg/mL, indicating an incompatibility problem. This is based on the
rules of the ASTM E2524-08 standard, according to which a hemolysis value higher than
5% indicates that the tested nanoparticles damage erythrocytes [40]. The same standard
states that AuNPs and HSP–AuNPs are hemocompatible, which means that can be used in
the body, but only in low concentrations.

2.6. Drug Release Studies

The relationships between the cumulative release rate and contact time for
HSP@XA@AuNPs gel and HSP@XA@AuNPs are shown in Figure 3. It can be seen that the
HSP@XA@AuNPs gel has a better release performance compared to HSP@XA@AuNPs. It
was observed that initially, the drug release was higher in HSP@XA@AuNPs (50.43 ± 2.52)
and HSP@XA@AuNPs gel (47.19 ± 2.35) within 240 min. After 240 min, the drug release
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gradually increased in the case of HSP@XA@AuNPs gel. The drug release was 73.08 ± 3.65
and 86.26 ± 4.31 for HSP@XA@AuNPs and HSP@XA@AuNPs gel in 500 min, respectively.
The drug release pattern showed a biphasic release pattern, an initial explosive release fol-
lowed by a sustained release of HSP in the case of HSP@XA@AuNPs gel. The inconsistent
release of HSP at the beginning of dissolution indicates a delay in the transition to the gel.
The continued sustained release of the drug indicates slower drug diffusion from the gel
matrix.
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2.7. Minimum Inhibitory Concentration

P. vulgaris (MTCC 7299) was selected for the MIC study. Based on the obtained results,
the HSP@XA@AuNPs gel loaded with HSP showed higher MIC values for the selected
bacterial species than the nanoparticles. This indicates that the XA@AuNPs solution
was less effective as an antibacterial agent than the HSP@XA@AuNPs gel, as shown in
Table 5. For instance, metal NPs are pivotal bases of ions toxic to bacterial cells and
constantly discharge ions after interrelating through the bacterial cell wall [46]. Notably,
HSP@XA@AuNPs gel showed more excellent antibacterial activity than XA@AuNPs and
HSP. These results showed that incorporating HSP@XA@AuNPs into gel had synergistic
antibacterial properties. Results suggested that HSP@XA@AuNPs gel was the most potent
combination against P. vulgaris. Consequently, targeting the P. vulgaris by considering
XA@AuNPs gel as a drug carrier could be a good alternative.

Table 5. Comparative MIC determination of the different compounds.

Compound MIC (µg/mL)

XA@AuNPs 3.12
HSP@XA@AuNPs 1.95

HSP@XA@AuNPs gel 1.78
HSP powder 9.2

Ofloxacin (standard) 0.19
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3. Conclusions

In summary, XA-stabilized AuNPs loaded with HSP were prepared and evaluated. The
formulation has a suitable shape and size and the highest encapsulation efficiency. Finally,
the HSP@XA@AuNPs gel formulation was mixed into a Carbopol gel and thoroughly
evaluated for homogeneity, spreadability, pH, viscosity, in vitro release, and minimum
inhibitory concentration. The results indicate that the HSP@XA@AuNPs gel is a promising
antibacterial drug carrier for the treatment of Proteus vulgaris.

4. Materials and Methods

HSP, HAuCl4·3H2O, XA, and di-sodium hydrogen phosphate dihydrate were pur-
chased from Sigma-Aldrich. Dimethyl sulfoxide (DMSO), MTT, trypsin, ethanol, EDTA,
and phosphate-buffered saline (PBS) were purchased from Sigma Chemicals. All water
solutions were prepared from high-purity water filtered with Milli-Q Plus equipment
(Millipore Co.). The solvents and analytical chemicals used were highly pure and were
not further processed. Cells are purchased from National Centre for Cell Science (NCCS,
Pune, India).

4.1. Preparation of XA Solution

The XA stock solution was prepared by mixing 500 mg of XA with 50 mL water
and 50 mL ethanol. It was shaken overnight at room temperature. The solution was
centrifuged to remove insoluble material, and the supernatant was lyophilized. The
dry freeze-dried powder was dissolved in water to obtain the desired XA concentration
whenever necessary [36].

4.2. Preparation of Gold Chloride Solution

To obtain gold chloride solutions, 3.96 mg of gold chloride was dissolved in 0.5 mL
Milli-Q water and 0.5 mL ethanol. It was kept in a magnetic stirrer for 25 min to dissolve it.

4.3. Synthesis of Gold Nanoparticles (AuNPs)

Using previous methods, the stabilized colloidal AuNPs were synthesized by sliding
modifications [30]. In the synthesis, 100 µL of HAuCl4 solution (10 mM) was added to 5 mL
of XA solution (0.5%). Then, the temperature was maintained at 80 ± 5 ◦C for 30 min and
stirring was continued for 1 h. One hour after starting the experiment, the color was found
to change from white to ruby red. This was used to demonstrate the synthesis of AuNPs.

4.4. Capping of HSP into XA-Stabilized AuNPs

To cap the XA@AuNPs with HSP, the required mixture was prepared by adding
10.0 mg of HSP to 10 mL of XA@AuNP solution and stirring the mixture at a speed of
1000 rpm for 60 min. After the solution was prepared, it was placed in an incubator
at room temperature for 24 h to load the HSP onto the XA@AuNPs. The solution was
centrifuged at 15,000 rpm for half an hour. HSP@XA@AuNPs were separated from the
supernatant solution, and the collected pellet was redistributed in Milli-Q water before use.
The HSP concentration of the supernatant was estimated from the λmax value at 286 nm
and measured using a UV-Vis spectrophotometer (Shimadzu). The entrapment efficiency
and loading capacity of hesperidin were calculated according to the following Formula (1):

% Drug capping =
(Total amount of HSP added − Amount of free HSP in supernatent)

Total amount of HSP added
× 100 (1)

The final nanosolutions were freeze-dried and stored in airtight containers at 4 ◦C.
The formulation of the experiment was performed in triplicates.

The drug loading (DL) was determined by measuring the amount of drug released
when the known HSP@XA@AuNPs were completely dissolved in the PBS. The concentra-
tion of freeze-dried HSP@XA@AuNPs was determined following redispersion in deionized
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water. The drug percentage loading was determined by UV spectrophotometry using
Equation (2):

Drug loading ==
Weight of HSP in XA@AuNPs

Weight of XA@AuNPs
× 100 (2)

4.5. Solubility Study

The solubility of HSP was determined by adopting the standard shake flask technique
according to the method described by Majumdar and colleagues [47]. The screening of the
solution was performed by evaluating the solubility of HSP (10% (w/v) with respect to pH
solution. To perform this experiment, 10% w/v of HSP was added to a glass vial containing
5 mL of the chosen solvent and tightly sealed. To ensure homogeneous mixing, the samples
were shaken continuously for 24 h in a water bath at room temperature and 50 rpm. After
24 h, samples were centrifuged at 4500 rpm and HSP was assayed in the supernatant.
Solubility was determined in water and in buffers with pH values ranging from 1.2 to 6.8.
In addition, the effect of XA-stabilized AuNPs on the solubility of hesperidin was examined
to determine by how much the solubility was increased.

4.6. Particle Size and Size Distribution Measurements

Particle size, polydispersity index (PDI), and zeta potential were measured at 25 ◦C
using a Malvern Zetasizer Nano ZS (Malvern Instruments, UK). After diluting the disper-
sion of HSP@XA@AuNPs to a sufficient amount with deionized water, the diameter was
determined. All samples were analyzed in triplicate [31].

4.7. Gel Formulations of HSP@XA@AuNPs

First, we prepared the dispersion of Carbopol 940. For this, 100 mL of distilled water
was placed in a beaker, and 1 g of Carbopol 940 was added to it. This mixture of water–
Carbopol 940 was stirred continuously to form a dispersion. After the dispersion was
complete, the triethanolamine was added dropwise to produce a clear gel formulation.
Then, 100 mg of HSP@XA@AuNPs gel was observed for several parameters [41]. After this,
the prepared HSP@XA@AuNPs were incorporated into Carbopol 940 dispersion. It was
stirred for 15 min, and further characterization was carried out.

4.8. Rheological Study of HSP@XA@AuNPs Gel

Viscosity: HSP@XA@AuNPs gels were stored at room temperature before each mea-
surement. Viscosity was measured using a Brookfield viscosity monitor. The gel formula-
tion was cut at relatively low speeds (0-3-6 rpm), which did not damage the gel structure.
The viscosity was read directly from the viscometer display.

pH: The pH meter uses standard buffer solutions (pH 4.0–7.0). After 0.5 g of gel was
weighed and dissolved in 50 mL of distilled water, the pH was measured.

Spreadability: The 0.5 g sample of gel was weighed and pressed between two hori-
zontal plates (20 × 20 cm). Then a 500 g weight was placed on the upper plate and left
for about 5 min. The diameter of the dispersion circle was measured in centimeters. The
results obtained were the average of three determinations.

4.9. Morphology

A field emission scanning electron microscope (FESEM; JEOL JSM-6490LV) was used
to study the morphology or shape of the HSP@XA@AuNPs gels. For this purpose, the
sample was placed on a copper stub with double-sided adhesive tape. Then the sample
was sputtered with gold at 20 mA for 120 s and analyzed in the FESEM (JEOL JSM-6700F,
Japan) at an excitation voltage of 5 kV [48].
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4.10. In Vitro Cell Viability Assay

The MTT assay for cell viability was performed using HSP@XA@AuNPs and
HSP@XA@AuNPs gels in a human epidermal keratinocyte line, i.e., HaCaT cells, by
following the technique reported in [49,50]. Cells were grown in Dulbecco’s modified Eagle
medium (DMEM) supplemented with 10% (v/v) heat-activated fetal bovine serum. Cells
were maintained at 37 ◦C in a humidified incubator with 5% CO2. For subculture, cells
were harvested by trypsinization when 80% confluence was reached and divided (1:4). The
growth medium was changed every 3 days. Percent cell viability was calculated according
to Equation (3).

%Cell viability =
(A570 nm treated cells)

(A570 nm untreated cells)
× 100 (3)

4.11. Hemolysis Test

The biocompatibility of HSP@XA@AuNPs was verified by blood hemolysis tests. The
procedure of the previously described technique was slightly modified [17]. Briefly, 100 µL
of whole blood was mixed with 700 µL of PBS. A 96-well round bottom plate containing
100 µL of suspension was treated with various concentrations of nanocarriers ranging from
20 to 200 µg/mL. The plate was then gently stirred and incubated at 37 ◦C for 1 h. Finally,
all mixtures were centrifuged at 700 rpm for 5 min and the absorbance rate was read
(541 nm, UV-Vis spectrophotometer). The percentage of hemolysis was calculated using
Equation (4). Here, At is the absorbance of the treated supernatant, Ac is the absorbance of
the negative control, and Ax is the absorbance of the positive control.

%Hemolysis =
(At − Ac)
(Ax − Ac)

× 100 (4)

4.12. Drug Release Studies

The in vitro drug release study was performed according to the USP method. To
perform the HSP release study, we used USP I by holding it at a speed of 50 rpm in 500 mL
of pH 6.0 at 37 ± 0.5 ◦C in 500 min. The selected 2 mL samples of HSP, HSP@XA@AuNPs
gel, and HSP@XA@AuNPs were added to the dialysis tubing (dialysis bag, pore size
14,000 Da) after one end was tightly sealed. Then the other end was sealed and the bag was
placed in the basket immediately. Samples were collected at a specific interval, and HSP
concentration was determined spectrophotometrically at 286 nm.

4.13. Minimum Inhibitory Concentration

Proteus vulgaris (Gram-negative bacteria) (MTCC 7299) was selected, and MIC was
determined in sterile microtiter plates using the method given by Yousef et al. [51]. Briefly,
stock solutions of XA@AuNPs gel and HSP@XA@AuNPs gel were prepared in water to
ensure complete solubilization at a concentration of 1 mg/mL. A total of 100 µL of nutrient
broth and Sabouraud dextrose broth was added to wells 1 to 10. XA@AuNPs gel and
HSP@XA@AuNPs gel samples (100 µL) were added to the first well. The solution was
serially diluted from well 1 to well 10, while 100 µL from well 10 was discarded. Then
100 µL of the bacterial suspension was added to all dilution wells from well 1 to well 10.
The overnight bacterial suspension (100 µL) was added to well 11, and 100 µL of sterile
broth was added to serve as a positive control or growth control, while 200 µL of sterile
nutrient broth and Sabouraud dextrose broth in well 12 served as a negative control or
sterility control. The plate was incubated at 37 ◦C for 24 h. After incubation, absorbance
in each well was measured using an ELISA reader (Erba) at a wavelength of 640 nm. The
procedure described above was performed for each microbial strain. The concentration
of the sample and standard that inhibited 50% of bacterial growth was determined for all
microorganisms. All tests were performed in triplicate to minimize error.
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