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Childhood leukemia (CL) is undoubtedly caused by a multifactorial process with genetic

as well as environmental factors playing a role. But in spite of several efforts in a variety

of scientific fields, the causes of the disease and the interplay of possible risk factors are

still poorly understood. To push forward the research on the causes of CL, the German

Federal Office for Radiation Protection has been organizing recurring international

workshops since 2008 every two to three years. In November 2019 the 6th International

Workshop on the Causes of CL was held in Freising and brought together experts from

diverse disciplines. The workshop was divided into two main parts focusing on genetic

and environmental risk factors, respectively. Two additional special sessions addressed

the influence of natural background radiation on the risk of CL and the progress in the

development of mouse models used for experimental studies on acute lymphoblastic

leukemia, the most common form of leukemia worldwide. The workshop presentations

highlighted the role of infections as environmental risk factor for CL, specifically for acute

lymphoblastic leukemia. Major support comes from twomousemodels, the Pax5+/− and

Sca1-ETV6-RUNX1mousemodel, one of the major achievements made in the last years.

Mice of both predisposed models only develop leukemia when exposed to common

infections. These results emphasize the impact of gene-environment-interactions on the

development of CL and warrant further investigation of such interactions — especially

because genetic predisposition is detected with increasing frequency in CL. This article

summarizes the workshop presentations and discusses the results in the context of the

international literature.

Keywords: magnetic fields, genetic susceptibility, environmental exposure, acute lymphoblastic leukemia,

childhood leukemia, risk factors, radiation

INTRODUCTION

Leukemia is the most frequent cancer in children, with a proportion of about 30% of all cancers
diagnosed in children before the age of 15 years (1). The most common form, lymphoid leukemia,
makes up one fourth of all cancers. Almost 98% of childhood lymphoid leukemias are precursor
cell leukemias with precursor B-cell acute lymphoblastic leukemia (pB-ALL) being the most
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common form (1). Over the past decades, advances in
diagnostics, risk grouping, pharmacology, and treatment
combinations have led to remarkable enhancements in treatment
of and survival from childhood leukemia (CL), with an overall
survival for acute lymphoblastic leukemia (ALL) exceeding 90%
in high-income countries nowadays (2). However, knowledge of
the complex causes of the disease that may help implementing
preventative measures, is still lacking. A growing body of
research has targeted a wide range of potential risk factors for
childhood ALL, including genetic and environmental ones (3).
Environmental risk factors, as defined in this review, include
exposure to environmental pollutants, such as air pollution,
life style factors, such as parental tobacco smoking or alcohol
consumption, microorganisms and viruses, and natural as well
as man-made exposures like radiation. Two observations in
particular attracted the attention of the German Federal Office
for Radiation Protection (Bundesamt für Strahlenschutz, BfS): a
moderately increased risk of CL (including ALL) from exposure
to extremely low-frequency magnetic fields (ELF-MF) (4), like
from power lines, and an increased incidence of CL (including
ALL) near German nuclear power plants (NPPs) (5). Both
findings are difficult to explain given the current knowledge
of the biological mechanisms. Non-ionizing radiation deposits
too little energy in cellular DNA and other likely targets to be
considered directly causative. While ionizing radiation is an
established cause of CL, exposures in the vicinity of NPPs are
too low to recognize a direct causal relationship. Motivated
by these observations the BfS set up a research agenda and
corresponding research recommendations on the basis of two
international workshops held in 2008 and 2010 that brought
together an interdisciplinary group of experts (6). The research
recommendations were last updated on a third workshop in 2012
(7), and two follow-up meetings were organized subsequently in
2016 and 2019. In some research areas the increasing research
efforts made some particular progress and new results appear to
answer at least some of the open questions that were addressed
in the research recommendations set up in 2012. This article
summarizes the latest evidence and new findings that were
presented at the 2019 International Workshop on the Causes of
CL held in Freising, embedded in a discussion in the context of
the international literature.

INCIDENCE AND TIME TRENDS

In 2018, the International Agency for Research on Cancer
(IARC) in collaboration with the International Association of
Cancer Registries (IACR) coordinated a huge effort to assess
the most recent incidence of childhood cancer worldwide
based on quality-assured data collected from cancer registries:
International Incidence of Childhood Cancer volume 3 (IICC-3),
which is at the present time the most comprehensive and most
up-to date source of data on global childhood cancer incidence
(8, 9). Results of IICC-3 and a comparison of the data with
incidence rates from 1980s were presented at the workshop.
The IICC-3 study included data from 2001–2010 on cancer in
children and adolescents diagnosed before 20 years of age in

populations covered by cancer registries that met predefined
data quality criteria. Leukemia was the most common cancer
worldwide representing 36.1% of all cases in children aged 0–
14 years and 15.4% in adolescents aged 15–19 years (8). The
latest internationally comparable data on incidence patterns of
childhood cancer have been published in IICC-2 in 1998 (10)
covering (approximately) the decade of the 1980’s. Regarding all
childhood cancers combined, the assessment of time trends in
the incidence rates between the two time periods, 1980’s and
2001–2010, revealed an overall increase in registered childhood
neoplasms, from 124.0 to 140.6 per million person-years since
the 1980’s. The increase was seen worldwide except for the sub-
Saharan Africa region, where in fact a decrease in registered
childhood cancers was observed. Looking specifically on time
trends for lymphoid leukemia, a similar picture was evident
with increasing incidence rates across regions. The increase was
particularly pronounced in sub-Saharan Africa (in contrast to
the decrease in all childhood cancers combined) and North
Africa where the age-standardized incidence rates had doubled.
An increase in lymphoid leukemias was also seen in South,
Southeast, and West Asia as well as in Eastern Europe, albeit
less pronounced (11). Improvement in diagnosis and registration
might likely explain some of the increase of incidence rates
since the 1980’s. Notably, the IICC-2 and IICC-3 studies were
restricted to cases diagnosed and treated within the national
health care system, naturally missing undetected cases and those
without a verified diagnosis (12). Major under-ascertainment in
cancer registries was identified for childhood cancer, particularly
in low- but also middle-income countries, because a significant
fraction of suspected cases never reaches complete diagnosis
and treatment. The latter is mainly due to related costs or
lack of infrastructure (12). This is why two independent studies
projecting the more realistic true childhood cancer incidence
came up with numbers 70–80% higher than those collected by the
cancer registries (13, 14). CL appeared to be among the childhood
cancer types even more underestimated than many solid cancers
with more visible symptoms (15).

At this stage, it is impossible to disentangle the different
factors contributing to geographical differences and differences in
time trends. Completeness of ascertainment is certainly a major
factor. However, it might also reflect differences in susceptibility
to leukemia in different racial or ethnic groups as seen in the
IICC-3 data, where the highest leukemia rates in the USA were
seen in White Hispanic children whereas it was less common in
US Black children (8). Exposure to environmental factors may
also differ between low-, middle- and high-income countries. To
solve these issues global research efforts are essential.

GENETIC RISK FACTORS

Preleukemic Clones
pB-ALL shows several biologically distinct subtypes defined
by chromosomal alterations of which the most frequent
are aneuploidy and chromosomal translocations (16). Strong
evidence for a prenatal origin of aneuploidy and of several
chromosomal translocations came from studies of concordant
leukemia in monozygotic twins and from screening of Guthrie
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cards (17–19). Subsequent studies examined if the most frequent
translocation that leads to the formation of the ETV6-RUNX1
fusion gene can also be found in healthy newborns. These
studies were summarized and discussed at the workshop. Using
cord blood samples from healthy newborns the presence of
ETV6-RUNX1 gene fusions was previously revealed in around
1–2% of samples employing RNA as a specimen and RNA-
based detection methods such as RT-PCR (20–23). Using a novel
detection method called GIPFEL (“Genomic inverse PCR for
exploration of ligated breakpoints”) that utilizes DNA as starting
material (24), Schäfer et al. (25) found a frequency of 5% for the
ETV6-RUNX1 fusion gene in cord blood of healthy newborns
in a Danish cohort. The use of a more reliable DNA-based
approach, instead of the previously used RNA-based approaches,
is a likely cause for the different results regarding ETV6-RUNX1
frequency in newborns (26). Recently, the TCF3-PBX1 fusion,
present in around 5–10% of B-ALL patients and assumed to arise
postnatally, has been detected in 0.6% of umbilical cord blood
samples of healthy newborns by GIPFEL, confirming that this
translocation can likewise occur prenatally (27).

The frequency of fusion genes in healthy newborns exceeds
by large (≥100 times) the incidence of the corresponding
leukemia subtypes and might still be underestimated because
the detection rate of GIPFEL is <100% (24, 27). An alternative
explanation for this high frequency of fusion genes in healthy
newborns might be that the ETV6-RUNX1 fusion gene detected
in healthy individuals is only present in non-self-renewing
differentiated cells, and not in hematopoietic stem cells or early
progenitors, which are known to be more capable of developing
malignant clones (28). Therefore, second hits are clearly needed
for progression of these preleukemic clones into full-blown
leukemia. However, it is currently not known how much the
frequency of the ETV6-RUNX1 fusion genes differs across infant
populations around the world, and future studies have to show
how the presence and frequency of preleukemic clones in blood
at birth affects the risk of the newborn for developing ALL
later in life. Revealing the changes caused by chromosomal
translocations, such as ETV6-RUNX1, and leading to progression
of the disease, could then potentially allow to prevent pB-ALL
development in preleukemic carriers (29).

Inherited Genetic Susceptibility
The current state of knowledge on inherited genetic
susceptibilities was summarized in a talk making clear that
germline predisposition is more and more recognized as
an important risk factor for the development of childhood
ALL (30). Genome-wide association studies have identified
susceptibility loci in ARID5B, CEBPE, BMI1, CDKN2A/2B and
others that are associated with an increased risk to develop
childhood ALL [for a summary see (31)]. Some of these are
more frequently associated with certain racial and/or ethnic
groups; e.g., ARID5B is more frequently found in Hispanics (32)
and might be a possible explanation for the higher incidence
rates seen in this ethnic group (see section Incidence and
Time Trends). Rare germline mutations in developmental
hematopoietic genes, like ETV6, PAX5 or IKZF1, have also been
shown to predispose children to ALL (30). Rare syndromes,

like Cornelia de Lange and Rubinstein-Taybi syndrome that
have been associated with childhood ALL, further point to a
connection between variants in cohesin complex genes and
CREBBP/EP300 pathway, respectively, and ALL susceptibility
(33, 34). Other syndromes connected to a higher risk of ALL
and AML include Down syndrome (35), Noonan syndrome
(36), constitutional mismatch repair deficiency syndrome (37),
Fanconi anemia, and others summarized in (30, 38). The total
prevalence of pathogenic germline mutations in known cancer
predisposing genes in children and adolescents with leukemia is
4.4%, but this is probably only the tip of the iceberg (39). Novel
techniques used for testing for hereditary cancer predisposition
syndromes (CPSs), in particular whole-exome sequencing
of parent-child trios, lead to the discovery of new germline
risk variants (40–42). Trio sequencing can also identify new
inheritance patterns in children with cancer where the family
history is unremarkable and does not point to an underlying
CPS. This is the case with a so called digenic inheritance pattern,
when two germline variants in two different genes are needed for
causing the clinical cancer phenotype. One mutation is inherited
by each of the unaffected parent, or, alternatively, one occurs de
novo (43). Thus, such di- or oligogenic inheritance patterns could
be accountable for a substantial number of childhood cancers
(44). The use of trio sequencing can therefore give important
insights into the mutational landscape of CPSs as well as into the
mechanisms of cancer development in children (43). Expanding
this knowledge is a crucial step toward targeted treatments as
well as precision-prevention programs (42). Nevertheless, testing
for CPSs can provoke emotional and relational challenges in the
families in addition to the distress of the child’s cancer diagnosis
and treatment (45).

Epigenetics
Global epigenetic changes are a hallmark of cancer, and genetic
as well as metabolic and environmental stimuli can cause
such changes (46, 47). As epigenetic modifications are also
characteristic for childhood ALL (48), one session focused
specifically on this topic. A summary of the evidence of
epigenetic priming in cancer cells was presented. Epigenetic
priming is based on the suggestion made by several studies
that oncogenic lesions in human cancers contribute to cancer
development by (epi-)genetically modifying the cancer-initiating
cell but are dispensable for tumor progression (49, 50). In
hematologic malignancies such epigenetic reprogramming has
been linked to hematopoietic stem/progenitor cells (51, 52).
The epigenetic modifications are preserved throughout tumor
development, even if the oncogene is no longer present or
expressed, and may remain latent until triggered by either
endogenous or environmental stimuli (49). These stimuli, or
second hits, can arise randomly. However, the epigenetically
primed cell may also bemore sensitive to a certain environmental
exposure that will favor the emergence of a second hit. In
other cases, exposure to an environmental factor could cause
epigenetic changes that increase the susceptibility for secondary
genetic alterations. This is described as a gene-environment-
interaction (49). A good example is pB-ALL. Here it was
assumed that, e.g., the frequent chimeric transcription factor
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ETV6-RUNX1 epigenetically primes an uncommitted cell subset
thereby inducing an aberrant B cell differentiation program
that is later on susceptible to transformation (53). Evidence
for this came from a transgenic ETV6-RUNX1 mouse model,
described in more detail in section ‘Epidemiological Evidence
for an Infection-Mediated Childhood Leukemogenesis’, where
predisposed mice only developed leukemia after exposure to
infections (54).

Inducing DNAmethylation changes may also be a mechanism
of action for at least some of the environmental risk factors
that have been associated with CL (see section Environmental
Risk Factors). For example, given the current knowledge of
the mechanism of action of ELF-MF, this type of exposure
cannot damage the DNA directly but might induce epigenetic
changes that could affect the child’s risk for CL later in life
(55). Several large-scale epigenome-wide association studies
have reported associations of relevant maternal exposures
during pregnancy, including tobacco smoking, air pollution,
and body mass index, with DNA methylation in offspring
neonatal blood. For instance, decreased methylation at aryl-
hydrocarbon receptor repressor (AHRR) CpG cg05575921 has
been associated with exposure to maternal smoking during
pregnancy (57). Such methylation changes could affect health
later in life (56). If this would be the case for ALL,
common DNA methylation changes should be associated
with both a given exposure and leukemia. This hypothesis,
formulated and investigated by Timms et al. (58) using
a “meet in the middle” approach, was discussed at the
workshop. Briefly, genome wide DNA methylation changes after
exposure to environmental risk factors associated with CL were
compared to ALL-specific methylation changes. Overlapping
gene loci were found for several risk-associated exposures,
including maternal radiation exposure, alcohol intake, sugary
caffeinated drink intake during pregnancy, and smoking. For
radiation exposure, alcohol intake, sugary caffeinated drinks,
and attended day nursery, more than 70% of the gene loci
that overlapped with ALL-specific gene loci also had the same
direction of methylation change, i.e. were hypo- or hyper-
methylated (58).

Investigating DNA methylation changes in response to
environmental risk factors seems to be an appealing method
for studying the contribution and mechanism of action of
these factors in promoting disease development (59). Using
epigenetic biomarkers for maternal smoking during pregnancy,
i.e., DNA methylation at AHRR and a recently established
polyepigenetic smoking score, two recent studies provided
evidence that prenatal tobacco smoke exposure was associated
with a higher frequency of somatic gene deletions among
childhood B-ALL cases (60, 61). However, these results are
inconsistent to epidemiological findings because those studies
did not show an association between maternal smoking and
childhood ALL risk (62). Epidemiological evidence for other
parental exposures, like maternal caffeine intake or alcohol
intake, is likewise inconsistent (55). More studies are therefore
needed to understand the induction of epigenetic changes by
environmental exposures and especially their contribution to
CL development.

ENVIRONMENTAL RISK FACTORS

Infections
In the context of infections and leukemia there are two
hypotheses that have to be mentioned shortly. The first one is the
“population mixing” hypothesis by Kinlen (63). The second one
is Greaves “delayed infection” hypothesis (64). Both hypotheses
propose that ALL is a consequence of an abnormal response to
common infections. Currently, three additional models of ALL
evolution exist, which also point to infection-induced immune
disturbances as being responsible for leukemia evolution as
recently summarized by Hauer et al. (65). A more detailed view
into the role of infections is given elsewhere (17, 66, 67).

Epidemiological Evidence for an Infection-Mediated

Childhood Leukemogenesis
Indications for an infectious etiology of CL came from
observations of leukemia cases occurring in closer spatial and
temporal proximity than would be expected if they occurred
independent from one another. The first systematic review
and pooled analysis of such space-time clustering studies was
presented and discussed at the workshop. This study showed
strong evidence of clustering of CL at time of diagnosis for
children aged 0–5 years, an age range including the peak
incidence for leukemia at 2–4 years (68). Results were similar
for ALL. Such clustering in space and time could be explained
by “mini-epidemics” of a single infection leading to local clusters
of leukemia cases (68), which are observed from time to time
(69–72). For children aged 5 to 15 years no clustering at both
birth and diagnosis was observed, and results for lymphoma
and CNS tumors provided only weak evidence for space-time
clustering (68). Nevertheless, the systematic review was restricted
to studies using a certain methodology only and there have
been other approaches showing no evidence for clustering, e.g.,
in Germany (73, 74). Studies on population mixing showed
evidence for an excess risk of CL in studies of extreme population
mixing rather than in studies with modest one (75). On
balance, there is some evidence for clustering but it is not
fully understood to what extent and under which circumstances
it occurs.

A critical time window for infections and risk of leukemia

is not only postnatally in early childhood but includes also the
time during pregnancy. Maternal infections during pregnancy

have long been studied as potential risk factors for CL and the

epidemiological evidence was lastly summarized by Maia Rda
and Wünsch Filho in 2013 in a narrative review (76). Only

recently, He et al. (77) published the first systematic review

and meta-analysis on this topic including 15 studies on ALL
and 14 on CL and the results were discussed at the workshop.

The most frequently studied infection variables for ALL as
well as CL were viral or virus-associated infections, followed

by systemic symptoms (e.g., urinary tract infection), bacterial

infections, and fungal infections. Most of the studies reported
a positive association of CL and ALL with infection. When

looking for specific types of infection a higher risk for ALL was

associated with influenza infections, whereas CL in general was
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associated with influenza, rubella, and varicella infections during

pregnancy. Nevertheless, the authors report high heterogeneity
across the studies and an insufficient number of studies, which
is why the results should be handled with caution. A major
limitation relates to the self-reported information assessed years
after the pregnancy that most studies rely on (77). The same
group very recently published a pooled analysis of six population-
based birth cohorts using prospective data (78). Birth cohorts are
less prone to recall and selection bias than case-control studies
that were predominantly included in the previous meta-analysis.
Results of the pooled analysis showed a higher risk for any
leukemia (including ALL) in association with maternal urinary
tract infections as well as respiratory tract infections during
pregnancy; in contrast to the meta-analysis that did not find
such an association. The association with influenza infections was
again observed but the effect size was lower compared to the
meta-analysis (78).

Experimental Evidence for an Infection-Mediated

Childhood Leukemogenesis
Experimental evidence that infections promote pB-ALL
development comes from a new pB-ALL mouse model that was
presented in a special session on mouse models (see also section
Experimental Findings): Transgenic Sca1-ETV6-RUNX1 mice
only developed pB-ALL when exposed to common pathogens
(conventional facility, CF conditions) but not when kept in a
specific pathogen-free (SPF) environment (54). In the Sca1-
ETV6-RUNX1 mouse model, human ETV6-RUNX1 is expressed
within hematopoietic stem/progenitor cells thereby mimicking
human ETV6-RUNX1 preleukemic biology. After exposure to an
infectious environment these mice show a significant increase
in pro/pre-B cells, although differentiation to mature peripheral
blood B-cells is not impaired. Furthermore, when housed
under CF conditions, these mice showed a distinct expression
pattern, compared with healthy age-matched wild type mice,
with significantly higher expression of recombination activating
gene 1 (Rag1) and Rag2 and differential regulation of epigenetic
regulator genes of the lysine demethlyase (KDM) family (54).
Similar observations were made with the Pax5 heterozygous
knock out mouse model where mice only developed pB-ALL
under CF conditions (79). Susceptibility to infections in
Pax5+/− mice was suggested to be due to a higher sensitivity of
Pax5+/− pro-B cells to interleukin 7 (IL-7) withdrawal, favoring
the accumulation of secondary Jak3 mutations as a rescue
mechanism in these mice (54, 79).

It has been suggested that infections trigger pB-ALL
development by induction of the mutagenic enzyme activation-
induced cytidine deaminase (AID), which is normally involved
in producing antibody diversity. AID may promote secondary
genetic changes in preleukemic B-cell precursor cells but
evidence for this view mainly came from ex vivo studies (80, 81).
To overcome this restriction, the role of AID was examined
in crossed Pax5+/− mice by a gain- and loss-of-function
experiment, respectively (80). The presented results of this study
clearly showed that genetic deletion of AID does not affect the
latency and penetrance of pB-ALL and premature expression
of AID in earliest pro-B-cell stages does not promote pB-ALL

development. Additionally, AID expression was not observed in
preleukemic precursor B-cells of Sca1-ETV6-RUNX1 or Pax5+/−

mice held in SPF or CF conditions, respectively. These results
confirm that infectious stimuli can promote malignant B-cell
leukemogenesis through AID-independent mechanisms (80).

Another talk provided new hints that might explain how
genetic predispositions affect the susceptibility to infections
and in turn promote leukemia. This involves namely the gut
microbiome which was shown to differ between Pax5+/− mice
and WT mice under SPF and CF housing conditions (82).
It is well known that microbes colonizing the gastrointestinal
tract are integral in shaping the development and function of
the immune system and alterations in the composition of the
microbiota have been linked with several human diseases (83). To
determine its role in pB-ALL development, the gut microbiome
of Pax5+/− mice was depleted with antibiotics by a short-term
treatment (for 8 weeks) starting when mice reached adulthood.
When kept constantly under SPF conditions, i.e. without an
infectious stimulus, 50% of treated Pax5+/− mice developed
pB-ALL whereas untreated mice did not. It was further shown
that the composition of the gut microbiome varied between
Pax5+/− mice, which stayed healthy, and Pax5+/− mice, which
developed leukemia, but a specific microbe connected with the
development of pB-ALL could not be identified. The observation
that predisposed mice with a depleted gut microbiota developed
leukemia, even without infectious stimuli, suggests that an intact
gut microbiome protects genetically predisposed mice from
developing pB-ALL (82). This protective effect is likely mediated
through the release of microbial components or metabolites, or
direct microbial binding to Toll-like receptors on innate immune
cells (65, 67).

Further insights into how infections could promote leukemia
development came from a presented co-culture study of murine
ETV6-RUNX1-positive Ba/F3 pro-B cells and bone-marrow
mesenchymal stromal cells (BM-MSCs). In a competitive growth
assay, ETV6-RUNX1-positive and control Ba/F3 cells were mixed
and plated on murine BM-MSCs with or without IL-6/IL-
1β/tumor necrosis factor-alpha pro-inflammatory cytokines,
which are normally secreted by pathogen receptors expressing
cells in response to several types of infections (84). This
mesenchymal inflammatory environment or “niche” favored
the emergence of ETV6-RUNX1-positive Ba/F3 clones by
differentially affecting their proliferation and survival. Moreover,
this inflammatory niche preferentially attracted ETV6-RUNX1-
positive Ba/F3 clones through the CXCR2 receptor and increased
the extent of DNA double strand breaks as judged by the levels
of histone AX phosphorylation (γH2AX), thereby providing a
chance for transformation of the pre-leukemic clone (84).

Taken together, the role of infections as risk factor in
the etiology of ALL, specifically pB-ALL, has strengthened
considerably since the last research recommendations in 2014 (7),
with the strongest support coming from the Pax5+/− and Sca1-
ETV6-RUNX1 mouse models. Therefore, training the immune
system early in life could potentially help to prevent leukemia
development and several epidemiological studies demonstrate
that proxies for infectious agents or immune challenges early in
life reduce the risk of ALL (65). Questions remain to be clarified
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regarding the time window in which infections are relevant,
the specific infectious pathogen or pathogens that are involved
(if any single given microbe could in fact be responsible) as
well as the mechanism(s) and pathway(s) by which infections
drive – or protect against – ALL development. The ongoing
coronavirus disease 2019 (COVID-19) pandemic is affording an
opportunity to answer some of the open questions, and is putting
Greaves delayed infection hypothesis to the proof: Children
all over the world did not encounter SARS-Cov-2 (severe
acute respiratory syndrome coronavirus type 2) before, and the
lockdown measures might have led to far fewer encounters with
pathogens in infancy than usual (85). In the next years, it should
be thoroughly investigated if this will lead to a higher risk of ALL
in children who experienced lockdown measures.

Ionizing Radiation
High and moderate doses of IR have been well recognized as
environmental risk factor for CL for several decades. Exposure
during young ages seems to be particularly critical, as study
findings are consistent with a higher risk of radiation-induced
cancer after exposure during childhood, compared to exposure
later in life (86–90). The dose response for leukemia after IR
exposure is described as linear-quadratic, slowly changing at low
doses, but rapidly at high doses (91). So far, generally, the linear
no-threshold model for radiation effects is widely accepted by
national and international bodies for assessing the risks resulting
from exposures to IR (92), but this means that effects in the low
dose range - defined as doses <100 mGy absorbed dose (93)
- are often extrapolated. This is also true for leukemia models.
This low dose range is most relevant for the general population.
However, low-dose studies are a challenge due to the need of
large cohorts and high individual variation. Therefore, evidence
for leukemia in the range of low doses is still sparse. Strongest
support for the risk of CL comes from pooled analyses from
exposure for diagnostic or therapeutic reason. Cumulative active
bone marrow (ABM) doses between 100 and 20 mSv (effective
dose) in childhood/adolescence increased the risk significantly
(94). A recent study of six pooled studies assessing cancer risks
associated with computed tomography (CT) with available ABM
between 5.9 and 10.1 mGy found a significant increased risk for
CL (95). To date, no increased risk was found for single X-ray
examinations (95, 96).

Sources of low doses of IR not only include exposure by
medical radiation but also man-made environmental exposure
(e.g., nuclear weapons testing). Attention was drawn on
several statistical associations of CL in the vicinity of nuclear
installations. On a previous workshop in 2012, the consistent
findings and trends in European studies about CL risk near NPPs
were discussed in the context of previous findings, leukemia
etiology, and other risk factors (7). It was concluded that there
was no elevated risk of CL globally near NPPs in children <15
years old. However, there might be some elevated risk of CL when
considering the 0–4-year age category within 5 km from a NPP,
even though the associations were not statistically significant.
Recent data from Belgium could link the leukemia risk of young
children only to one specific site (97).

By far the greatest contribution to exposure received by
the general world population comes from natural background
radiation (NBR) (98). Numerous epidemiological studies
investigated the association of NBR exposure (including radon
and gamma radiation exposure) and cancer risk (including CL),
but results are mostly inconsistent (99). In a special workshop
session dedicated to NBR, a recent study from Switzerland was
discussed that used data from a census-based cohort study to
check for an association between cancer in children <16 years
of age and exposure to terrestrial gamma and cosmic radiation.
The study found evidence of associations for leukemia and CNS
tumors with a hazard ratio of about 1.04 per mSv cumulative
whole-body dose for both groups (100). However, biases due
to inaccurate exposure assessment could not be excluded and
statistical power was limited due to small sample sizes. A
very recent study considered more accurate measurements of
terrestrial radiation based on a new map of terrestrial radiation
in Switzerland and an extended cohort. The authors confirmed
the recent results that NBR contributes to the risk of leukemia
in children (101). However, studies in France do not support an
association between NBR and a higher risk of childhood acute
leukemia (including ALL and AML) (102, 103).

Another talk of the special session on NBR discussed the
results of a registry-based case-control study undertaken in Great
Britain. This study found an excess relative risk for CL of 1.12
per mSv of cumulative red-bone-marrow dose from gamma
radiation, but results for CL and radon and other childhood
cancers were not significant (104). The main shortcoming of
this study was the lack of individual dose assessment. As a
consequence, about half of the cases and controls had the same
dose-rate estimates because these were based on themean gamma
ray doses of their birth registration district. To overcome these
limitations, a new study is ongoing which includes a larger
number of cases and controls using an extended calendar period
and an extended set of indoor gamma-ray measurements from
the United Kingdom Childhood Cancer Study [UKCCS (105)].
For a better estimation of indoor gamma ray dose rates, several ad
hoc models were explored and the results were published (106–
108).

Some of the most recent studies have been summarized
by Mazzei-Abba et al. (99) in 2019 and their review includes
a comprehensive discussion about methodological differences,
limitations, and challenges that have to be faced when evaluating
the findings of these studies. They point out that larger
study populations or pooled studies are needed to investigate
cytogenetic subgroups of diseases, while the main challenge is
to accurately assess children’s individual exposure to NBR. In
the latest review, Kendall et al. (109) conclude that at present
no firm conclusions about NBR and childhood cancer can be
reliably drawn.

Extremely Low-Frequency Magnetic Fields
(ELF-MF)
Epidemiological Findings
Until today, more than 40 epidemiological studies examined the
relationship between ELF-MF and the risk of CL, including five
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pooled studies since the year 2000 (4, 110–113). A brief summary
and discussion of these epidemiological findings was given in a
talk. The presented study results are relatively consistent in that
they show a higher risk for developing CL and specifically ALL
with MF exposures above 0.3 or 0.4 µT. Based on these findings,
IARC classified ELF-MF as possibly carcinogenic to humans
(Group 2B) in the year 2002 (114). However, how ELF-MF may
cause leukemia is unknown – until today, no plausible biological
mechanism has been found, and experimental in vitro and in vivo
studies do not confirm the results of the epidemiological studies.
Besides, it was shown that newer epidemiological findings point
to a decline in the reported relative risk (RR) since the 1990’s to
now (115): In their analysis, Swanson et al. (115) calculated the
cumulative RR from 32 studies published up to each successive
calendar year, showing that the RR settled around 2 in the mid-
1990s before declining to a current value of 1.44 in 2017, though
the decline is not statistically significant. Improvement of study
quality was not considered an explanation for the decline by the
authors. Other possible explanations for the observed decline
could be a true causal risk that declined over time, as discussed
by the authors, or a confounder that was present in earlier
years but is not present any longer; however, such explanations
would need further investigation. In a pooled analysis of the
fourmost recently published studies, no association was observed
between ELF-MF and CL (116). Combining those with results
from two previous pooled analyses from Kheifets et al. (111)
and Ahlbom et al. (4), attenuates the association at >0.4 µT to
an odds ratio of 1.45 (95% CI: 0.95–2.20) (116). It should be
pointed out that epidemiological studies on the association of
ELF-MF and CL usually report on total leukemia cases and/or
the ALL subtype but do not distinguish between the cytogenetic
subgroups of the disease. This is due to the very small numbers
of exposed cases even in the pooled analyses, but cytogenetic
subgroups might display different susceptibilities to ELF-MF.
Another problem faced by most epidemiological studies is the
extremely low number of cases in the highest exposure category
because only few children are exposed to MF ≥0.2 µT (117).
In case-control studies, however, the key concern is selection
bias. It was shown that non-participating controls tend to have
a lower socio-economic status, which is related to higher ELF-
MF exposure (118). This might have led to an overestimation of
the association of the potential effect of ELF-MF on CL incidence
in studies requiring subject participation (119).

Experimental Findings
Previous hazard identification and risk assessments by IARC,
the World Health Organization (WHO), and the Scientific
Committee on Emerging and Newly Identified Health Risks
(SCENIHR) considered evidence from experimental animal
studies on the association of ELF-MF and leukemia as inadequate
(114, 120, 121), and such studies have been hampered by the
fact that no animal model existed that resembled the human
disease appropriately. Therefore, different mouse models and
their applicability in CL research were discussed in a special
session of the workshop. Presented mouse models included the
Cdkn2a deficient/ETV6-RUNX1 mouse model, the PAX5-ELN
mouse model, and the Sca1-ETV6-RUNX1mouse model already

described in section Experimental Evidence for an Infection-
Mediated Childhood Leukemogenesis, Cdkn2a deficient/ETV6-
RUNX1 as well as PAX5-ELN transgenic mice developed
neoplasms with a high incidence of up to 50-80%, respectively
(122, 123). In case of the Cdkn2a deficient/ETV6-RUNX1 mouse
model also neoplasms other than B-cell lymphomas/leukemias
were developed. The Sca1-ETV6-RUNX1 mouse model was
developed and tested specifically for usefulness in ELF-MF
research during the EU-funded project Advanced Research
on Interaction Mechanisms of electroMagnetic exposures with
Organisms for Risk Assessment (ARIMMORA). As it considers
the two-hit model of leukemogenesis and also shows a low
penetrance, this model is most applicable to test the contribution
of potential environmental risk factors as second hits. One
ARIMMORA pilot project used this mouse model for studying
the effect of 1.5 mT ELF-MF exposure on hematopoietic
compartments of the peripheral blood in a SPF environment.
A small but significant decrease in CD8+ T lymphocytes was
seen in exposed mice at 2 months of age (124). Similarly, in
another ARIMMORA project, CD1 mice exposed to 10 µT, 1 mT
and 10 mT ELF-MF, respectively, showed a decrease in CD8+

T lymphocytes at 4 weeks of age in all exposed groups (125).
If this early decrease is of any functional relevance has yet to
be ascertained. Of special interest is the observation of pB-ALL
development in one out of 30 Sca1-ETV6-RUNX1 mice during
the course of the above mentioned ARIMMORA pilot project
(124). This finding was not statistically significant because of the
small numbers of animals and it is unclear if it is connected
to the decrease in CD8+ T lymphocytes — cells that are
knownmediators of anti-tumor immunity and can recognize and
eliminate tumor cells (126). Future experiments withmuch larger
animal numbers are clearly needed to validate these findings and
to clarify the role of ELF-MF in the development of ALL.

Other Environmental Factors
There are quite a number of environmental factors for leukemia
that have been investigated in epidemiological studies besides
IR and ELF-MF and that were not specifically addressed at the
workshop [for a more detailed overview see review by Schüz and
Erdmann (127)]. Among the recognized risk factors are high and
low birth weight (128) and sex, with boys more often affected
than girls (129). Pesticide exposure (130, 131), air pollution
(132–134), paint (135), paternal tobacco smoking (136, 137),
and prelabour cesarean delivery (138) have been associated with
an increased risk for ALL or AML but to date none of them
is regarded as an established risk factor. There are also some
factors that have been associated with a reduced risk for leukemia
in the child, including maternal supplementation with folic
acid or vitamins (139), or breastfeeding (140). Two consortia,
the Childhood Leukemia International Consortium (CLIC) and
the International Childhood Cancer Cohort Consortium (I4C),
are putting much effort into clarifying the relevance of the
environmental risk factors in question. Nevertheless, the child’s
risk to develop CL can be modified by genetic susceptibility, and
novel predisposition syndromes are being reported constantly.
One hypothesis states that the first oncogenic hit primes the
cell through epigenetic modification and such preleukemic
cells could be more sensitive to environmental risk factors
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FIGURE 1 | Risk factors (potential and established) for childhood acute

lymphoblastic leukemia (ALL). A large body of research has targeted a wide

range of possible risk factors for childhood ALL, including genetic risk factors

(indicated in blue) and environmental risk factors (indicated in green). The

interaction of genetic and environmental risk factors

(gene-environment-interaction) may have an impact on ALL development.

Inherited genetic susceptibility is detected with increasing frequency in

childhood leukemia as well as preleukemic fusion genes as predisposing

factors. The impact of epigenetic alterations (possibly induced by oncogenes

or environmental exposures) on ALL development is yet unclear. Among the

recognized environmental risk factors are high and low birth weight and sex as

well as high to moderate doses of ionizing radiation. The relevance of

infections as risk factor for ALL has strengthened considerably in the last

decade. In contrast, evidence for an association between a higher risk for ALL

and exposure to low/very low doses of ionizing radiation, extremely low

frequency magnetic fields (e.g., from power lines), and other environmental risk

factors (like pesticides or air pollution), respectively, has yet to be verified.

(49). Therefore, a multidisciplinary approach is needed in the
future that considers this likely association between genetic and
environmental risk factors.

DISCUSSION

Research efforts on the causes of CL have made some progress
in the past years (Figure 1). Due to new screening methods,
like GIPFEL and trio sequencing, genetic predisposition is
detected with increasing frequency in CL. Whereas inherited
or de novo germline CPS are rare but highly penetrant, the
presence of a somatically acquired fusion gene, like ETV6-
RUNX1, or of a germline susceptibility locus confers only a very
low or reduced disease penetrance. Regarding environmental
risk factors, birth weight, sex and high to moderate doses of
IR are among the recognized ones. Despite a growing body of
research, results for an association between other environmental
risk factors (including environmental pollutants and parental life
style factors) and a higher risk for CL are largely inconsistent

and overall inconclusive. One noticeable exception are infections,
as evidence of a causal relationship with CL has strengthened
considerably in the last years. Not only epidemiological analyses
underline an association between maternal infections during
pregnancy and a higher risk for CL in the offspring (77,
78). Especially two predisposed mouse models, Pax5+/− and
Sca1-ETV6-RUNX1, highlighted the role of infections in the
development of pB-ALL (54, 79, 82). Mice of both genotypes
only develop leukemia in conjunction with exposure to common
pathogens and closely resemble human pB-ALL in penetrance,
pathology, and genomic lesions (29, 79). These models further
underscore the role of gene-environment-interactions in this
disease. Such interactions may also occur through epigenetic
changes induced by the environmental exposure and leading
to the reprogramming of the cancer cell of origin (49). These
mouse models can now be used to investigate whether and how
environmental exposures other than infections affect leukemia
development in vivo, as biological evidence is sparse. Especially
in the case of ELF-MF, experimental studies are clearly needed
to validate if the consistent epidemiological observation of
an increased leukemia risk is real, and to identify a possible
biological mechanism that could explain these findings. One
promising approach may be to look for epigenetic changes after
exposure to ELF-MF, as this is regarded as a potential mediating
mechanism between environmental risk factors and CL.

Many other questions still remain unanswered, starting
with the basic one of whether and how much geographical
variation in the true incidence rates of CL there really is.
Notably, within high-income countries, the incidence rates of
CL vary substantially less than lifestyle- and environmentally-
related cancers in adults. A multidisciplinary and global
approach will be needed to bring together the existing evidence
from epidemiological, experimental and mechanistic studies,
to improve exposure assessment and consistency between
countries, and for a better understanding of the incidence
and distribution of CL worldwide. The Global Acute Leukemia
network (GALnet1), initiated in 2010 by the BfS and coordinated
by IARC, has already established an international network for
a multidisciplinary study of CL, and together with the work
of CLIC and I4C these international associations will hopefully
provide new insights into this most common type of childhood
cancer worldwide.
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