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Mexico is experiencing an epidemiological and nutritional transition period, and Mexican
children are often affected by the double burden of malnutrition, which includes
undernutrition (13.6% of children) and obesity (15.3%). The gut microbiome is a
complex and metabolically active community of organisms that influences the host
phenotype. Although previous studies have shown alterations in the gut microbiota
in undernourished children, the affected bacterial communities remain unknown. The
present study investigated and compared the bacterial richness and diversity of the fecal
microbiota in groups of undernourished (n = 12), obese (n = 12), and normalweight
(control) (n = 12) Mexican school-age children. We used next-generation sequencing
to analyze the V3–V4 region of the bacterial 16S rRNA gene, and we also investigated
whether there were correlations between diet and relevant bacteria. The undernourished
and obese groups showed lower bacterial richness and diversity than the normal-
weight group. Enterotype 1 correlated positively with dietary fat intake in the obese
group and with carbohydrate intake in the undernourished group. The results showed
that undernourished children had significantly higher levels of bacteria in the Firmicutes
phylum and in the Lachnospiraceae family than obese children, while the Proteobacteria
phylum was overrepresented in the obese group. The level of Lachnospiraceae
correlated negatively with energy consumption and positively with leptin level. This is
the first study to examine the gut microbial community structure in undernourished
and obese Mexican children living in low-income neighborhoods. Our analysis revealed
distinct taxonomic profiles for undernourished and obese children.
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INTRODUCTION

The human gut microbiome is considered a metabolic organ
due to its myriad benefits (O’Hara and Shanahan, 2006), which
include the degradation of indigestible dietary polysaccharides
into short-chain fatty acids (SCFAs) by fermentative enzymes
in the microbiome (Flint et al., 2008; den Besten et al., 2013).
Furthermore, several types of bacteria in the distal intestine can
synthesize vitamins and essential amino acids (Metges, 2000;
Martens et al., 2002; Morowitz et al., 2011). The gut microbiota
matures around 3 years after birth. At that time, it is characterized
by the presence of anaerobic microorganisms and is dominated
by two bacterial phyla, Firmicutes and Bacteroidetes, which
account for more than 90% of the gut microbiota population
(Matamoros et al., 2013; Meehan and Beiko, 2014). When the
bacterial ecosystem is disrupted (dysbiosis), some of the benefits
of this metabolic organ may be reduced, and the microbiome
may even harm the host (Hawrelak and Myers, 2004; Larsen
and Dai, 2015). Early-life exposures, including those known
to impact the composition of the gut microbiome, have been
associated with an increased risk of childhood obesity, which can
impact the subsequent development of obesity, type 2 diabetes,
hypertension, and dyslipidemia in adulthood (Munyaka et al.,
2014; Wallace et al., 2016). The gut microbiome also regulates
obesity by increasing the energy harvest from the diet and by
regulating peripheral metabolism (Yamashiro et al., 2015). In
fact, the gut microbiota of individuals who are obese seem to
have less bacterial richness, an increased level of Firmicutes,
and a reduced level of Bacteroidetes (Turnbaugh et al., 2006;
Le Chatelier et al., 2013). Notably, elevated fat consumption
stimulates a bloom of Proteobacteria. The abundance of these
bacterial lineages has been suggested as a potential diagnostic
criterion for dysbiosis (Hildebrandt et al., 2009). Children
with moderate and severe undernutrition have gut microbiota
that are less mature and less diverse than those of healthy
controls (Subramanian et al., 2014). Consequently, dysbiosis
of gut microbiota is linked to undernutrition (Ghosh et al.,
2014). Notably, gnotobiotic mice who received fecal microbiota
transplants from children with kwashiorkor showed marked
weight loss and metabolic abnormalities, including disturbances
in amino acid, carbohydrate, and intermediary metabolism.
This finding supports the idea that the gut microbiome is
implicated in this type of severe undernutrition (Smith et al.,
2013; Kane et al., 2015). Stunting, or low height-for-age, is the
most common form of undernutrition and is very prevalent in
resource-limited areas of the world. Stunting is considered the
main indicator of childhood undernutrition, and the etiology
of stunting is poorly understood (Ahmed et al., 2014; Dinh
et al., 2016). Several studies have reported associations between
stunting and altered body composition and fat distribution that
predispose individuals to excess adiposity and abdominal fat
distribution, which is strongly associated with the development
of obesity, insulin resistance, and diabetes (Lear et al., 2009;
Wilson et al., 2012; Pomeroy et al., 2014; Hardikar et al.,
2015).

Mexico is going through a nutritional transition that affects
school-age children, who bear the double burden of malnutrition,

which includes undernutrition and obesity (13.6% and 15.3%,
respectively) (Shamah-Levy et al., 2017). An undernourished
population often moves from undernutrition to overnutrition,
resulting in weight gain and central adiposity (Barquera et al.,
2007). There is a risk of obesity in populations who move
from famine early in life to abundance or even to excessive
nutrition in adulthood (Martorell et al., 2001; Tzioumis and
Adair, 2014). The mechanisms underlying these alterations
remain unknown. However, low-income families may have an
obesogenic environment due to the enrichment of sugar and
edible oils in inexpensive food, resulting in a diet that is
energy dense but micronutrient-poor that could alter their gut
microbiome (Sawaya et al., 2003; David et al., 2014; Doak et al.,
2016).

Considering this context, describing the gut microbiota in
nutrition-related diseases may provide insights into the roles
of microbiota in the pathogenesis of undernutrition and in
obesity risk over time (Gordon et al., 2012). Thus, the aim of
the present study was to describe and compare the richness
and diversity of the intestinal microbiota in undernourished
and obese Mexican school-age children living in low-income
(marginal) and vulnerable communities (Vite-Pérez and Pérez-
Zamorano, 2010; Moreno-Sánchez and Espejel-Mena, 2013).

MATERIALS AND METHODS

Subjects
The children recruited in this study were selected from a
cohort of 1,000 children attending to public schools located
in Chimalhuacán, State of México. Thirty-six children aged
between 9 and 11 years old belonging to low-income families,
were selected and assigned to the study groups. Weight and
length/height were measured and nutritional status was defined
by height-for-age (HAZ) score, using the 2009 WHO child
growth standards as a reference (World Health Organization
United Nations Children’s Fund, 2009).

Children were classified as stunted if their HAZ score
was more than two standard deviations below the median
of the WHO reference standard. Obesity was considered as
z-score ≥ +2 standard deviations, according to the cut-offs
determined by WHO (de Onis et al., 2007). Normal weight group
was defined according to BMI z-score as well. Children with any
of the exclusion criteria below were not eligible for entry for
the present study: antibiotic therapy or hospitalization history
(>24 h) anytime 6 months prior to the study, any gastrointestinal
or underlying pathology, any chronic illness, any infection
requiring antibiotic therapy, diarrheal disease (World Health
Organization definition) during the month prior to the study and
gastro-intestinal-related medication (antibiotics prescription).
The parents or legal guardians were interviewed in order to
obtain socioeconomic and demographic information. The study
was performed according to the latest version of the Declaration
of Helsinki and was approved by the Human Research Ethical
Committee of Hospital Juarez de México. All parents or legal
guardians and children provided written informed consent.
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Anthropometric and Biochemical
Measurements
The following anthropometric measurements were obtained:
weight, height, waist circumference, tricipital and subscapular
skinfolds using standardized techniques applied by trained
personnel. All measurements were obtained with children
wearing light clothing and no shoes. Height was measured with
the child standing up and barefoot, using a stadiometer with
a support and an inextensible ruler. The participants stood up
erect, with arms along the body and head on the Frankfurt plane.

The tricipital skinfold was measured in the posterior midpoint
of the arm between the acromion and olecranon and the
subscapular skinfold was measured 2 cm below the margin of
the lower angle of the scapula using a caliper (Lange Skinfold
Caliper, Beta Technology, Santa Cruz, CA, United States) with
a limit measurement of 40 mm. Body fat percent evaluation for
girls and boys was derived from triceps and subscapular skinfold
using prepubescent Slaughter equation (Kavak, 2006).

Fasting blood samples were collected and kept at 2–
8◦C, centrifuged within the first 15 min and stored at
−80◦C, until their processing in the Molecular Endocrinology
Laboratory of Hospital Juárez de México. Glucose, triglycerides,
total cholesterol, LDL-cholesterol and HDL-cholesterol, hepatic
transaminases, prealbumin and transferrin serum levels were
determined by automatic chemistry analyzer (Advia 1800
Siemens, Atlanta, EEUU). Insulin serum levels were determined
by electrochemiluminescence using an Elecsys 2010 equipment
(Roche R© Diagnostics Corp., Indianapolis, IN, United States).
Both leptin and adiponectin serum levels were measured by
a commercial ELISA kit, following manufacturer’s instructions
(Human Leptin Quantikine and Adiponectin/Acrp30, R&D
Systems, respectively).

Dietary Assessment
Dietary intake data were obtained by using unannounced 24-h
dietary recalls. The assessment of energy intake, macronutrients
and micronutrients were examined through NutriKcal R© VO
software (Consinfo, S.C., Mexico) validated for Mexican
population.

DNA Extraction and Preparation of 16S
rRNA Gene Amplicon Libraries
The parent of each child was instructed to collect the first bowel
movement of the day. After collection, fecal samples, placed in a
sterile polypropylene container and immediately transported to
the laboratory facilities in ice-filled coolers. Aliquots with 200 mg
were made and stored at −80◦C until processing. Bacterial
DNA was extracted by using QIAamp DNA stool kit (QIAGEN,
Hilden, Germany) following manufacturer’s instructions. DNA
concentrations were measured by using Nano Drop V3.8.1
spectrophotometer. The V3–V4 hypervariable region of bacterial
16S rRNA gene was amplified by GeneAmp PCR system 9700
(Applied Biosystems). The First PCR conditions were as follows:
5 min at 95◦C, followed by 30 cycles of 1 min at 95◦C, 1 min
at 45◦C, and 30 s at 72◦C; and a final 5 min extension at
72◦C. Each 50 µL PCR reaction contained 10 ng DNA, 1 µL

of each universal primers (319F/806R), 13 µL DNAse free
water and 25 µL Platinum Super Mix (Invitrogen, Carlsbad,
CA, United States). PCR products were purified by using
magnetic AMPure XP Beads (Beckman Coulter, Danvers, MA,
United States), and then quantified using the Qubit system
(Invitrogen, United States) according to the manufacturer’s
specifications. A second PCR was applied to the resulting
products in which dual indices (containing a 6-nt unique
sequence to identify samples when pooled for sequencing) and
sequencing adapters were incorporated using the Nextera XT
Index kit (Illumina, United States), in order to generate complete
libraries. The cycling conditions were 95◦C for 5 min, followed by
five cycles at 95◦C for 1 min, 50◦C for 1 min, 72◦C for 1 min and
a final 5 min extension at 72◦C. Thereafter, AMPure XP beads
were repeated to clean up the library. Finally, the resulting library
in each sample was qualified and quantified using an Agilent 4200
TapeStation (Agilent, Santa Clara, CA, United States).

Sequencing and Data Analysis
The 36 libraries were mixed in equimolar concentrations to
generate a 4 nM library pool using 10 mM Tris (pH 8.5)
as diluent. In addition, libraries were denatured with 0.2 N
NaOH and diluted to a final concentration of 10 pM, including
a 10% PhiX Control v3 (Illumina, Cat. No. FC-110-3001).
DNA library was sequenced at Sequencing Unit in National
Institute of Genomic Medicine (INMEGEN) by Illumina Miseq
platform (Illumina, San Diego, CA, United States) as described
by Caporaso et al. (2012). Illumina fastq reads were processed
using the QIIME (quantitative insights into microbial ecology)
software package (Caporaso et al., 2010). Forward and reverse
reads were first merged using join_paired_ends.py script. The
resulting sequences were filtered using split_libraries.py script
with the following parameters: (r = 3, p = 0.75 total read length;
q = 3; n = 0) as recommended by Bokulich et al. (2013).
UCHIME algorithm was implemented to safely detect and
remove chimeric sequences (Edgar et al., 2011). Briefly, sequences
were clustered into operational taxonomic units (OTUs) using
a 97% identity threshold with UCLUST tool, wrapped within
QIIME (Edgar, 2010). Representative sequences were aligned
against the Greengenes database (DeSantis et al., 2006), and
taxonomy was assigned using the Ribosomal Database Project
(RDP) classifier with a minimum support threshold of 80%
(Wang et al., 2007). The taxonomic composition of the gut
microbiota was assessed using METAGENassist (Arndt et al.,
2012).

Community diversity was calculated by using the
alpha_rarefaction.py script including estimator Chao1 (species
richness), Shannon index (species diversity) and species metrics
(Chao et al., 2006).

Statistical Analysis
Statistical analyses of biochemical, anthropometrical, hormonal,
and nutrients variables were performed using the IBM SPSS
statistic version 22 (SPSS, Inc., Chicago, IL, United States) and
R software1 (R Core Team, 2013). Parameters with normal

1https://www.r-project.org/
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distribution were compared by one-way ANOVA followed by
Bonferroni post hoc. The non-parametric Kruskall–Wallis test
and subsequent Tukey’s multiple comparison were used to
determine which specific variables were significantly different
among groups. Data were expressed as mean ± SD and
median (25th–75th percentiles) and a P-value < 0.05 was
considered statistically significant (Supplementary Tables S1,
S2). Principal components analysis (PCA) was applied to
biochemical, anthropometrical, hormonal, and nutrimental data.
In order to standardize variables, a log-transformation using the
prcomp function from the stats package was done (R Core Team,
2015).

Plots were generated using the ggplot2 package (Wickham,
2009). Parametric one-way ANOVA with Tukey test was
used in order to detect significant differences on OTU and
phylum, species richness or diversity indices. Correspondence
analysis (CA) between bacterial communities (Lachnospiraceae,
Proteobacteria, and Prevotella) and specific variables of diet
intake (Energy and fat intake and beans consumption) was
applied using FactoMineR (Lê and Husson, 2008) and factoextra
(Kassambara and Mundt, 2016) packages. We used the
partitioning around medoids (PAM) clustering algorithm and
Jensen-Shannon divergence (JSD) to determine the genus-level

relative abundance in the three groups and to cluster the gut
microbial enterotypes.

The analysis among enterotypes and important diet
parameters derived from the variables factor map (PCA),
was carried out by a correlation matrix (Spearman’s rank
correlation) constructed using the hmisc, and corrplot packages
(Harrell and Dupont, 2016; Wei and Simko, 2016). The Lineal
Discriminant Analysis (LDA) Effect Size (LEfSe) method was
used to evaluate differences in microbial communities with an
LDA score of at least 2 (Segata et al., 2011).

RESULTS

Significant differences (P < 0.05) in the groups of
undernourished, obese, and normal-weight Mexican school-age
children in anthropometrical characteristics, such as BMI,
waist circumference, tricipital and subscapular skinfolds, and
body fat percentage. Regarding biochemical parameters, there
were significant differences (P < 0.05) in glucose, triglycerides,
insulin, ALT, and leptin levels (Supplementary Table S1).
Division and discrimination achieved between the groups are
shown in the Principal Component Analysis (Figure 1). The first

FIGURE 1 | Principal component biplot of biochemical, anthropometric, and hormonal variables. The first principal component accounted for 53.1% while the
second principal component accounted for 18.1% variance of the performance measures data. Arrows show the contribution and correlation of each variable on the
PC1 and PC2. The central circle indicates the theoretical maximum extent of the arrows. The ellipses indicate 68% confidence intervals for the study groups.
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principal component (PC1) accounted for 53.1% of the variance
of the performance measures data, while the second principal
component (PC2) accounted for 18.1%. The correlations between
variables and the contribution of each variable to PC1 and PC2
are shown in Supplementary Figure S1.

Inadequate Nutritional Intake Among the
Obese and Undernutrition Groups
The obese group diet was characterized by high total fat intake,
which comprised 36.1% of the total energy intake. The mean
daily intake of saturated fatty acids (25.6 g), monounsaturated
fatty acids (31.0 g), and polyunsaturated fatty acids (13.6 g)
was notably higher than in the other groups (Supplementary
Table S2). Carbohydrate intake accounted for about 66% of
the total daily energy of undernourished children, due mainly
to sugar consumption. However, the obese group consumed
more kcal per kg per day than the other groups kcal per kg
per day. Supplementary Table S2 shows the daily intake of

micronutrients (nine vitamins and six minerals). Obese children
had higher sodium intake than the other two groups. We
generated a variable factor map that shows the projection,
contribution, and correlations between the dietary variables
(Supplementary Figures S2A,B)

Decrease in Alpha Diversity in
Malnutrition Groups
From the Illumina 250 bp paired-end sequencing of the
amplicon targeting the V3–V4 region of 16S rRNA gene, we
generated a total of 9,935,304 sequences, with a mean = 275,981
reads per sample. The three “non-phylogeny-based” metrics
(the observed species, Chao1 and Shannon index) were used
to describe alpha diversity (Figures 2A–C). The normal-
weight group had more richness and observed species than
the undernourished and obese groups (P = 0.007, P = 0.02,
respectively). Regarding the Shannon diversity index, there
was a significant difference between the normal-weight

FIGURE 2 | (A) Alpha rarefaction curves representing the observed number of species in the three study groups. The y-axis indicates the average number of OTUs
per sample in each group. The error bars denote standard deviation. (B) Boxplots for comparison of species diversity (Shannon index) between the three study
groups. (C) Boxplots for comparison of species richness (Chao1 index) between the three study groups. Diamonds indicate means and horizontal lines indicate
medians ∗denotes P < 0.05 compared to the control group; ∗∗denotes P < 0.01 compared to the control group.
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group and the undernourished (P = 0.02) and obese groups
(P < 0.01), with the normal-weight group showing greater
diversity.

Characterization of Intestinal Microbiota
A total of eight phyla were detected. The predominant phyla
were Firmicutes and Bacteroidetes, followed by Proteobacteria,
Actinobacteria, Tenericutes, Actinobacteria, and Lentisphaerae,
which were less abundant. In regard to phyla, Firmicutes
showed greater abundance in the undernourished group (57.9%)
than in the normal-weight group (43.2%) (P = 0.028). The
intestinal microbiota of children in the undernourished and
obese groups had lower proportions of Bacteroidetes (38.3% and
33%, respectively) compared to the normal-weight group (48.3%)
(Figures 3A–C).

The ratio of Firmicutes to Bacteroidetes (F/B) was greater in the
malnourished group than in the normal-weight group. However,
these differences were not significant (Figure 3D). Proteobacteria
were substantially more abundant in the obese group (15.1%)
than in the undernourished group (3.1%) (P = 0.002). The most
abundant genera belonged to the three dominant phyla: three
genera belonged to Bacteroidetes, Ruminococcus, and Roseburia
belonged to Firmicutes, and Sutterella and Succinivibrio belonged
to Proteobacteria (Supplementary Figure S3).

We used the LEfSe algorithm to determine whether any taxa
at different taxonomic levels were enriched in the undernutrition
and obese groups (Figure 4A). Proteobacteria and Bilophila
were overrepresented in the obese group (LDA score ≥ 4
and LDA score ≥ 2, respectively), while Lachnospiraceae was
enriched in the undernourished group (LDA score ≥ 4.5).

Proteobacteria correlated positively with total fat intake (ρ = 0.48,
P = 0.01), whereas Lachnospiraceae correlated negatively with
energy intake (ρ = −0.77, P = 0.02) (Figure 4B) and correlated
positively with leptin (ρ = 0.24, P = 0.001) (Supplementary
Figure S5). There was also a positive correlation between
Prevotella and bean consumption (ρ = 0.52, P = 0.03)
(Figures 4B,C).

Association of Enterotypes 1 and 2 With
Dietary Intake
Bacteroides (enterotype 1) showed a higher relative abundance
in the control group compared to the undernourished and obese
groups, while the relative abundance of Prevotella (enterotype 2)
was higher in the undernourished group than in the control and
obese groups (Supplementary Figure S3).

A total of 19 (52.7%) of the 36 samples were assigned
to enterotype 1, and 17 (47.2%) were assigned to enterotype
2 (Figure 5). These enterotypes did not show significant
correlations with any of the biochemical, hormonal, or
anthropometric parameters (Supplementary Figure S4). We also
investigated the correlations between enterotypes 1 and 2 and the
dietary patterns of each group. Bacteroides correlated positively
with fat intake and with carbohydrate consumption (Figure 6).

DISCUSSION

Previous studies have shown that obesity is associated with
changes in gut microbiota (Ridaura et al., 2013), but few studies
have investigated the microbiota composition in undernourished

FIGURE 3 | (A) Comparison of microbial composition at phylum-level among the three groups [Control (A), Undernutrition (B), Obese (C)]. The pie charts show the
relative proportion of each phylum detected by METAGENassist analysis. n = 12 in each group. (D) Ratio F/B of the three study groups. Error bars indicate standard
error of the mean.
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FIGURE 4 | (A) Bacterial taxa differentially represented between the undernutrition and obesity groups identified by linear discriminant analysis (LDA) effect size
(LEfSe). Only taxa with an alpha value of 0.05 and with an LDA score of at least 2 are shown. (B) Biplot of correspondence analysis (between important bacterial
lineages and relevant dietary parameters). Arrows pointing to the same position indicate a positive correlation and arrows pointing to an opposite position indicate a
negative correlation. (C) Correlation between beans consumption and Prevotella. The graph shows a positive correlation between the two variables (ρ = 0.52,
P = 0.03) including a regression line and a 95% confidence interval represented by the shaded area.

children, including those affected by poverty in developing
countries. The undernourished population tends to shift from
undernutrition to overnutrition, but the mechanisms underlying
the associated alterations remain unknown (Barquera et al.,
2007). However, they may involve dysbiosis in the gut microbiota.

The present study categorized children into normal-
weight, obese, and undernourished groups. Independent of
nutrition status, the gut microbiota of the children were
dominated by Bacteroidetes (including Bacteroides and Prevotella
genera) and Firmicutes (including Clostridium, Enterococcus,
Lactobacillus, and Ruminococcus), which account for more
than 90% of the phylogenetic lineages (Sagheddu et al.,
2016).

Microbiota diversity and richness was lower in the
undernourished and obese groups than in the normal-weight
group. Interestingly, this pattern has also been reported in
undernourished mice (Preidis et al., 2015). Studies indicate that
individuals with low intestinal bacterial richness have more
overall adiposity and insulin resistance and gain more weight
over time (Le Chatelier et al., 2013). Indeed, significant decreases
in diversity and phylum-level changes have been associated

with obesity (Turnbaugh et al., 2009a). Ley et al. (2006) found
a higher F/B ratio in obese people than in thin people. In the
present study, the F/B ratio was higher in the undernutrition
group than in the other groups; however, this difference was not
significant.

Bacteroidetes have a very large repertoire of genes that are
involved in the acquisition and metabolism of polysaccharides
(Mahowald et al., 2009). Bacteroidetes can easily adapt to any
environmental niche, owing in part to the plasticity of their
genomes, which undergo continuous genetic rearrangements,
duplications, and lateral gene transfers between species (Thomas
et al., 2011). The relative abundance of Bacteroidetes was
lowest in the obese group and was higher in the normal-
weight group compared to the undernourished group.
This is in accordance with data from undernourished
neonatal mice, who have a relatively lower proportion of
Bacteroidetes compared to controls and are deficient in multiple
microbial pathways, including the N-glycan pathway. This
deficiency may result in less efficient energy extraction from
non-digestible polysaccharides or diet fiber (Preidis et al.,
2015).
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FIGURE 5 | Identification of enterotypes in Mexican children using Principal
Coordinate Analysis. Samples colored by enterotype: orange color
corresponds to enterotype 1 (Bacteroides) and pink color corresponds to
enterotype 2 (Prevotella).

In addition, we found that the F/B ratio in the gut
microbiota of the undernourished group was higher than in the
obese and normal-weight groups. This might be because the
undernourished group had a diet high in sugar and low in fiber,
which could predispose them to future obesity. There is evidence
that high-glucose or -sucrose consumption induces changes in
gut microbiota, increasing the F/B ratio (Magnusson et al., 2015;
Do et al., 2018). On the other hand, a so-called Western diet,
which is high in sugar and fat, has been associated with an
overgrowth of Firmicutes and a parallel decrease in Bacteroidetes

(Turnbaugh et al., 2009b). The Western lifestyle, including the
diet, is associated with high incidences of chronic diseases, such
as cardiovascular disease and type II diabetes, which individually
and collectively have a hefty socioeconomic burden (Turnbaugh
et al., 2009b). Most Western populations have omnivorous diets
that are rich in refined food and of poor nutritional quality
(Conlon and Bird, 2015).

We found that the Lachnospiraceae family within the phylum
Firmicutes was significantly overrepresented in undernourished
children and correlated negatively with energy intake. Early
blooms of this family have been associated with adiposity, weight
gain, and diabetes (Cho et al., 2012; Kameyama and Itoh, 2014).
According to Turnbaugh et al. (2006), the gut microbiomes
of obese people with the lowest levels of microbiota diversity
and richness had higher energy harvesting. The mechanisms
involved in this phenomenon are not yet clear, but a recent
study showed that Lachnospiraceae, which was detected in the
microbiomes of animals with more efficient energy harvesting,
could be a contributing factor (Shabat et al., 2016). Considering
these data, we hypothesize that having high Lachnospiraceae
levels contributes to a process of adaptation that protects against
poor nutrition. In this context, although the microbial alpha
diversity was low in undernourished children, this type of
bacteria helps improve the energy balance, suggesting that the
Lachnospiraceae family might serve as a metabolic regulator in
individuals with an undernourished phenotype. As mentioned
above, we found that Firmicutes, particularly Lachnospiraceae,
was enriched in the undernourished group. Notably, the
presence of Lachnospiraceae is closely related to obesity.
Hence, we hypothesize that an expansion of Firmicutes could
improve energy homeostasis and protect against undernutrition,
but it could also have negative cumulative effects on the
children’s health in the future. Interestingly, Lachnospiraceae
abundance correlated with leptin levels; moreover, malnourished
children had higher concentrations of leptin than normal-
weight children. Studies indicate that independent of body fat,
high serum leptin levels may be an indicator of increased
leptin resistance, which predisposes children who are at high

FIGURE 6 | Spearman (rank) correlation matrix between enterotypes and dietary intakes in fecal samples of selected groups of children. Control (A), Undernutrition
(B), Obese (C). Strong correlations are indicated by big circles, whereas weak correlations are indicated by small circles. Colors in scale bar denote the type of
correlation: 1 indicates perfect positive correlation (dark purple) and –1 indicates perfect negative correlation (dark yellow).
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risk of adult obesity to weigh more and to have more body fat
during childhood (Fleisch et al., 2007). According to the nutrition
transition theory, populations tend to shift from undernutrition
to overnutrition as they experience the dietary and demographic
changes associated with socioeconomic development (Barquera
et al., 2007). Undernutrition in early life results in an increased
risk of hyperinsulinemia, high blood pressure, obesity, diabetes,
and cardiovascular diseases in adulthood (Guerrant et al., 2013).
In Mexico, child stunting is one of the biggest nutritional public
health problems, particularly in underserved groups, including
those in rural areas (Kroker-Lobos et al., 2014). Interestingly
the prevalence of stunting in Mexico has decreased in recent
decades, but this has been coupled to a dramatic change in the
prevalence of overweight and obesity in children (Shamah-Levy
et al., 2017). Thus, our data suggest that Lachnospiraceae may be
linked to increased energy harvest by gut microbiota. Additional
studies are needed to determine whether the abundance
of Lachnospiraceae early in life predisposes undernourished
children to obesity later in life.

Our results showed that the obese group had higher
levels of Proteobacteria, and we also found a positive
correlation between Proteobacteria and fat intake. Preliminary
investigation showed that an increase in Proteobacteria
represents a risk factor for human health, including dysbiosis,
and therefore the abnormal growth of Proteobacteria may
represent an imbalance in the gut microbial community
and be a potential marker of disease risk (Shin et al.,
2015). Moreover, the combination of low alpha diversity and
Proteobacteria expansion may reflect intestinal dysbiosis in
obese children. A recent study in mice found an association
between increased abundance of Bilophila and fat feeding,
inflammation, and colitis (Devkota et al., 2012). In the present
study, the Bilophila level was increased in the obese group of
children.

To determine whether the enterotypes of the human gut
microbiome are linked to the Western diet, we analyzed possible
correlations between Bacteroides and Prevotella and energy and
macronutrient intake. The Bacteroides enterotype was positively
associated with energy intake and fat intake, including the
intake of monounsaturated, polyunsaturated, and saturated fat.
Bacteroides are associated with consumption of a long-term fat-
enriched diet (Lim et al., 2014). These results indicate that, despite
the alterations of the gut microbiota in undernourished and obese
children, enterotype 1 (Bacteroides) can be considered a potential
bacterial marker of a Western diet that predisposes them to
chronic diseases. A recent study showed that Prevotella was
associated with long-term consumption of dietary fiber. Likewise,
we found a strong, positive correlation between Prevotella
and bean consumption. Beans are one of the most widely
consumed foods in the Mexican population (Mojica and de
Mejia, 2015).

This is the first study to examine the gut microbial community
structure in undernourished and obese Mexican children living
in low-income neighborhoods. Our analysis revealed distinct
taxonomic profiles for undernourished and obese children.
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FIGURE S1 | Scree plot graphs derived from principal components analysis.
Purple bars show the first selected variables that explain 95% of the total variance.
The x-axis contains the principal components. The y-axis contains the fraction of
the explained total variance, indicated by bold horizontal red lines that define the
most important parameters and relegates the variables without relevance in the
PCA.

FIGURE S2 | (A) PCA variables factor map representing projection of variables on
the plane defined by the first two dimensions based on 28 variables. (B) Variable
contribution for Dimensions 1 and 2 with the most variance percentage (57%).

FIGURE S3 | Comparison of taxonomic composition at genus-level among the
three groups. The pie charts show the overall microbiota structure for each group
at the genus level. (A) Control; (B) Under nutrition and (C) Obese. n = 12 in each
group.

FIGURE S4 | Spearman (rank) correlation matrix between enterotypes and
anthropometrical, hormonal, and biochemical variables which derived from PCA
(Figure 1). Strong correlations are indicated by big circles whereas weak
correlations are indicated by small circles.

FIGURE S5 | Correlation between serum leptin concentration and
Lachnospiraceae. The graph shows a positive correlation between the two
variables (ρ = 0.2403, P = 0.001) including a regression line and a 95% confidence
interval represented by the shaded area.

TABLE S1 | Anthropometric, biochemical, and hormonal characteristics in
malnutrition and normal-weight groups. Data are mean ± SD and median
(25th–75th percentiles). aStatistically significant difference compared with the
normal-weight group at p < 0.05. bStatistically significant difference compared
with the undernutrition group at p < 0.05. ∗Raw data; †z (standard) score vs.
normal-weight, (p < 0.001).

TABLE S2 | Daily energy and dietary assessment in malnutrition and
normal-weight groups. Data are mean ± SD and median (25th – 75th percentile).
aStatistically significant difference compared with the normal-weight group at
p < 0.05. bStatistically significant difference compared with the undernutrition
group at p < 0.05.
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