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Deep transcriptome sequencing of subgenual anterior cingulate
cortex reveals cross-diagnostic and diagnosis-specific RNA
expression changes in major psychiatric disorders
Nirmala Akula1, Stefano Marenco 2, Kory Johnson3, Ningping Feng2, Kevin Zhu1, Anton Schulmann1, Winston Corona1,
Xueying Jiang1, Joanna Cross1, Bryce England1, Aparna Nathan 1, Sevilla Detera-Wadleigh1, Qing Xu2, Pavan K. Auluck2,
Kwangmi An1, Robin Kramer2, Jose Apud2, Brent T. Harris2,4, C. Harker Rhodes2, Barbara K. Lipska2 and Francis J. McMahon 1

Despite strong evidence of heritability and growing discovery of genetic markers for major mental illness, little is known about how
gene expression in the brain differs across psychiatric diagnoses, or how known genetic risk factors shape these differences. Here
we investigate expressed genes and gene transcripts in postmortem subgenual anterior cingulate cortex (sgACC), a key component
of limbic circuits linked to mental illness. RNA obtained postmortem from 200 donors diagnosed with bipolar disorder,
schizophrenia, major depression, or no psychiatric disorder was deeply sequenced to quantify expression of over 85,000 gene
transcripts, many of which were rare. Case–control comparisons detected modest expression differences that were correlated
across disorders. Case–case comparisons revealed greater expression differences, with some transcripts showing opposing patterns
of expression between diagnostic groups, relative to controls. The ~250 rare transcripts that were differentially-expressed in one or
more disorder groups were enriched for genes involved in synapse formation, cell junctions, and heterotrimeric G-protein
complexes. Common genetic variants were associated with transcript expression (eQTL) or relative abundance of alternatively
spliced transcripts (sQTL). Common genetic variants previously associated with disease risk were especially enriched for sQTLs,
which together accounted for disproportionate fractions of diagnosis-specific heritability. Genetic risk factors that shape the brain
transcriptome may contribute to diagnostic differences between broad classes of mental illness.
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INTRODUCTION
Genome-wide association studies (GWAS) have revealed that
major psychiatric disorders share many common genetic variants
that exert small effects on risk [1, 2]. Similarly, gene expression
studies in postmortem brain tissue have found that expression
changes in mental illnesses tend to be small and correlated across
diagnoses. One large postmortem study [3] found small changes
in gene expression in schizophrenia (SCZ) versus controls that
seemed to reflect small differences in frequencies of alleles
associated with SCZ by GWAS [4]. A meta-analysis of postmortem
microarray expression data found that many differentially-
expressed (DE) genes were shared across psychiatric disorders
such as SCZ, autism, and bipolar disorder (BD) [5]. A large follow-
up study that used RNA sequencing to more fully characterize
expression of genes and transcripts—collectively known as the
transcriptome—confirmed substantial overlap in DE genes in SCZ,
BD, and autism spectrum disorder [6].
If genetic risk factors and expression changes in brain are as

similar across different mental illnesses as these studies suggest,
then how do diagnostic differences in onset, symptoms, and
treatment response arise? Diagnostically distinct genetic risk
factors may account for some of these differences (e.g., genetic

correlations as high as the 70% reported between SCZ and BD [1]
are still consistent with up to 50% of risk alleles
differing between disorders). It is also possible that published
gene expression studies have overestimated similarities of gene
expression changes across disorders. Even the largest sample sizes
have been underpowered to detect subtle gene expression
differences [3], and those differences that have been detected
postmortem may not be representative of dynamic expression
changes across the lifespan. Most studies have focused on
prefrontal cortex, even though other brain regions have been
implicated in various mental illnesses [7]. Case–control study
designs limit opportunities to detect true differences between
case groups, and few published postmortem studies have done
direct, case–case comparisons between disorders. Moreover, few if
any human postmortem studies have used methods capable of
revealing the full transcriptional complexity of the brain, where
numerous gene isoforms are generated by alternative splicing and
other mechanisms. How much of the apparent resemblance in
gene expression reported among clinically dissimilar mental
illnesses by earlier studies can be explained by these limitations?
To address these questions, we performed deep sequencing of

the brain transcriptome followed by comparisons of both gene
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and isoform expression in postmortem brain tissue from 200
individuals diagnosed with BD, SCZ, major depressive disorder
(MDD), or no known psychiatric illness. Total RNA was sequenced
at a very high average depth of ~270 million reads per sample,
generating high-quality expression data for ~21K genes and ~85K
transcripts. We believe these data represent the most complete
sampling of the human brain transcriptome published to date.
Tissue was dissected from subgenual anterior cingulate cortex

(sgACC), a key component of limbic circuits involved in reward,
impulse control, and emotion regulation [8–10]. The sgACC, which
lies near the genu of the corpus callosum, has been repeatedly
implicated in mood disorders by neuroimaging, neuropathology,
and antidepressant treatment response studies in both humans
and animals (reviewed in [9]). While one previous study
characterized gene expression in total ACC obtained from people
with BD [11], to our knowledge no previous studies have
examined the sgACC transcriptome in both mood and psychotic
disorders.
Our results demonstrate that subtle differences in gene

expression observed between broad diagnostic classes of mental
illness are actually underlain by more pronounced and diagnosis-
specific expression changes at the transcript level, that rare
transcripts are important, and that transcript-level expression is
influenced by inherited genetic risk factors. We conclude that
genetic risk factors shape the brain transcriptome and may
contribute to diagnostic differences between broad classes of
mental illness.

METHODS
A brief summary of the “Materials and Methods” follows. See
Supplementary Methods for details.

Samples and RNA-sequencing
This study was reviewed and approved by the NIMH Human Brain
Collection Core Oversight Committee. Clinical information on the
200 postmortem brain samples (Controls= 61, SCZ= 46, BD= 39,
and MDD= 54) is presented in Supplementary Table 1. Total RNA
extracted from frozen dissections of sgACC was captured using
the RiboZero protocol, followed by library preparation. Stranded,
paired-end sequencing was peformed on the Illumina HiSeq 2500.
We obtained an average of 270 million reads per sample, totaling
~54 billion reads (Supplementary Table 2). After quality control,
reads were mapped to human genome build 38 using Hisat2 [12].
Gene and transcript counts were obtained using StringTie [12]. At
least 10 read counts/sample were mapped to each of 21,228
genes and 85,295 known transcripts. Pairwise correlation in gene
counts identified 15 outlier samples which were excluded from
further analysis (Supplementary Fig. 1). The downstream analyses
included 185 samples (55 Controls, 44 SCZ, 35 BD, and 51 MDD).

Covariate selection and differential expression analysis
To avoid spurious differences between diagnostic groups
attributable to demographic, technical, or ancestry differences
across samples, we tested all 33 known demographic and
technical variables and 10 genetic ancestry vectors for association
with diagnosis and gene expression. Stepwise logistic regression
found that only antipsychotic exposure was associated with
diagnosis (Supplementary Table 3a). Linear regression found that
RNA integrity number (RIN), self-reported race, and GC content
were associated with one or more principal components of gene
expression (Supplementary Table 3b).
Based on these results, RIN, race, and GC content were included

as covariates in the differential expression analysis, while
antipsychotic exposure, which is strongly associated with SCZ,
was tested in post hoc analyses. DE genes and transcripts
were identified using DESeq2 [13, 14] with lfcShrink option.
Unless noted otherwise, results were deemed significant at an

analysis-wide false-discovery rate (FDR) of 5%. Overlaps of DE
genes/transcripts between this and previous studies were
assessed with the hypergeometric test. The analysis pipeline is
detailed in Supplementary Fig. 2.
Six genes and transcripts with RNAseq read counts >500/

sample were validated using RT qPCR (Supplementary Methods).
The direction of expression changes were concordant and highly
correlated with the RNAseq analyses (R2= 0.81) (Supplementary
Fig. 3).

SNP genotyping and sample verification
All samples were genotyped on Illumina genome-wide SNP arrays.
Common markers (MAF > 5%) were extracted and imputed
against the Haplotype Reference Consortium [15]. PLINK [16]
was used to check for gender discordances. Sample identity was
further verified by comparing SNP genotypes to transcribed
variants called from RNA seq reads using BCFtools [17]. PLINK and
R were used to calculate concordance rates between SNP
genotypes and variants called from the RNAseq data. All
concordance rates exceeded 99%.

Quantitative trait loci (QTLs) associated with gene/transcript
expression or relative transcript abundance
Normalized, covariate-corrected expression values from DESeq2
were combined with SNP array data to identify QTLs. Matrix eQTL
[18] was used to identify SNPs within 1 Mb of a known gene/
transcript that were associated with expression of that gene/
transcript. We designate these as eQTLs in results that follow.
MeCS [19] was used to combine eQTLs called from our sgACC data
with those called independently in GTEx and CMC samples.
SNPs associated with both expression and diagnosis were

identified with Summary-based Mendelian Randomization (SMR)
[20] analysis of eQTLs and summary statistics for SCZ, BD, and
MDD obtained from published GWAS.
SNPs associated with relative abundance of known transcripts

in a gene were detected using sQTLseekeR [21]. We designate
these as sQTLs in the results that follow.

Heritability
Partitioned heritability estimates for eQTLs and sQTLs were
performed with linkage disequilibrium score regression (imple-
mented in LDSC using the standard baseline functional annota-
tions [22, 23]), and summary statistics obtained from published
GWAS of SCZ, BD, MDD, and (as a negative control) Alzheimer’s
disease. See Supplementary Methods for details.

RESULTS
Here we present gene-level and transcript-level results, including
case–control and case–case comparisons, followed by analyses of
the relative contributions of eQTLs and sQTLs to disease
heritability. We conclude with an assessment of the importance
of rare transcripts.

Gene-level, case–control comparisons
Differential expression between cases and controls was modest. A
total of 23, 42, and 7 genes were DE at FDR < 5% in SCZ, BD and
MDD, respectively. No gene displayed absolute log2FC values >0.5
in any diagnostic group. Seven genes were DE in multiple
disorders (Fig. 1a). Genes DE in more than one diagnostic group
are shown in Table 1. All DE genes with nominal p < 0.05 are
shown in Supplementary Tables 4–6. Volcano plots for
case–control comparisons are shown in Supplementary Fig. 4a.
Exploratory analyses of combined diagnostic groups (SCZ and

BD versus Controls; SCZ, BD, and MDD versus controls) yielded
only DE genes that were already detected in individual
case–control comparisons (see Supplementary Tables 4, 5 for
details). This suggests the combined case groups lost signal due to
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heterogeneity or that the individual case–control comparisons
were somehow biased by small sample size. To rule out the latter,
we randomly reduced the combined case sample to approximate
the size of the smallest individual diagnostic group. Comparison
with controls detected only one DE gene, demonstrating
that smaller samples did not paradoxically generate more DE
genes.
Among genes DE within any one diagnostic group, there was a

strong positive correlation in FC values between diagnoses (linear
regression R2= 0.61–0.72) (Fig. 2A), consistent with previous
studies [5, 6]. DE genes detected at FDR < 5% in sgACC
significantly overlapped with previous results from total anterior
cingulate cortex (ACC) [24] carried out in SCZ (hypergeometric p
value= 2.0 × 10−5) or in a combined analysis of all cases
(hypergeometric p value= 3.5 × 10−5). Similarly, we found sig-
nificant overlap with DE genes previously reported [6] in
dorsolateral prefrontal cortex (DLPFC) in SCZ (hypergeometric p
value= 8.0 × 10−6) and BD (hypergeometric p value= 6.8 × 10−5)
(Supplementary Tables 4, 5). Differential expression of several
metallothionein genes was also detected, as reported previously
[25]. Post hoc testing indicated that most DE genes could not be
explained by differences in antipsychotic exposure or death by
suicide (Supplementary Tables 4–9). These results demonstrate
good agreement with previous studies, despite differing brain
regions, samples, and methods.

Gene-level, case–case comparisons
To interrogate differential expression between diagnostic groups,
we conducted analyses in all possible case–case comparisons (BD
versus SCZ, MDD versus SCZ, and MDD versus BD). These revealed
a greater number of DE genes and larger FC values, on average,
than the case–control comparisons (Supplementary Fig. 4b). A
total of 73 genes were DE in BD versus SCZ, 9 genes were DE in
MDD versus SCZ, and 5 genes were DE in MDD versus BD
(Supplementary Tables 7–9).

Gene-level eQTLs
To assess the impact of common genetic variants on gene
expression, a total of 6,071,916 SNPs were tested against
expression of 21,228 genes. Of these 92,081,468 SNP-gene pairs,
290,338 were associated with expression of 5780 genes at FDR <
5% (designated “eGenes,” Supplementary Table 10). Since
common SNPs vary by ancestry, the analyses were repeated in
samples solely from self-described Caucasians, yielding 199,421
cis-eQTLs for 4116 genes at FDR < 5%. The counts of eGenes were
within expected range, given the sample size (https://gtexportal.
org/home/tissueSummaryPage), and bootstrap analysis of 90% of
the sample demonstrated that false-discovery rates were close to
the expected 5%.
eGenes from sgACC were compared to those reported in DLPFC

by Common Mind Consortium (CMC-DLPFC) [3] and those
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reported in anterior cingulate cortex by GTEx (GTEx-ACC) [26].
About 50% of eGenes detected in sgACC overlapped with either
CMC-DLPFC or GTEx-ACC (Supplementary Fig. 5; Supplementary
Table 11). A total of 2,740 eGenes were detected only in sgACC
and 881 of these were not found in the largest postmortem DLPFC
study [6] suggesting that they are either specific to sgACC or not
sufficiently expressed in DLPFC to be detected by previous RNA-
sequencing studies [6]. Consistent with this, 521 eGenes detected
in sgACC were expressed at <100 reads/sample.

Gene-level integrative analyses
To identify SNPs associated jointly with both clinical diagnosis and
gene expression in brain, we integrated published GWAS with
brain eQTLs using SMR, a formal test for significant joint effects
[20]. To increase power, we combined our eQTL results
(Caucasian-only) with GTEx-ACC and CMC-DLPFC, increasing
sample size to over 800.
As reported previously [19], sample size was strongly predictive

of the number of significant SMR “hits.” In SCZ, we detected 20
variants associated with diagnosis and gene expression in sgACC.
This number increased to 36 in the combined sgACC and GTEx-
ACC samples, and increased further to 133 when CMC-DLPFC
samples were added (Supplementary Table 12). This increased
power enabled detection of 69 SCZ-linked genes not found in
previous studies [6, 27], including TSHR, which encodes the thyroid
stimulating hormone receptor. In BD, 4 variants were associated
with both diagnosis and gene expression in sgACC, increasing to
16 when all brain samples were considered (Supplementary
Table 13). These variants were associated with expression of 19
unique genes. These results replicated 10 genes reported
previously [6, 28] and detected 9 novel gene linkages, including
ORMDL3, which regulates endoplasmic reticulum mediated
calcium signaling. MDD analysis yielded 4 significant gene
linkages, 2 of which are novel (Supplementary Table 14).

Transcript-level, case–control comparisons
Transcript-level comparisons between cases and controls showed,
despite a greater multiple-testing burden, 2–3 times more
significant expression differences than the gene-level comparisons
(Fig. 1c). This was due to a larger average expression difference at
the transcript than the gene level (distributions of gene-level vs.
transcript-level absolute log2FC values differed at p < 0.0001,
Kolmogorov–Smirnov test). At FDR < 5% the number of DE
transcripts was 470 in SCZ, 380 in BD, and 286 in MDD, a gradient
rougly paralleling clinical severity (Supplementary Fig. 4c; Supple-
mentary Tables 15–17). Over 90% of DE transcripts were predicted
to be protein coding (Supplementary Table 18). Many DE
transcripts were expressed at <100 reads/sample and have not

Table 1. Genes differentially expressed (FDR < 5%) in >1 diagnostic group.

Diagnostic group Number of
overlap

Ensemble gene ID Gene name Direction of change
same in all disorders

Gene description Significance of
overlap

All three groupsa 4 ENSG00000064300 NGFR Down Nerve growth factor receptor 6.6865E−22

ENSG00000171551 ECEL1 Down Damage induced neuronal
endopeptidase

ENSG00000179869 ABCA13 Down ATP binding cassette subfamily
A member 13

ENSG00000256861 AC048338.1 Down paralog of VPS33A

BD and SCZ Above 4+ 2 ENSG00000172987 HPSE2 Down Heparanase 2 5.17E−12

ENSG00000175793 SFN Up Stratifin, epithelial cell marker
protein

BD and MDD Above 4+ 1 ENSG00000146066 HIGD2A Down HIG1 hypoxia inducible domain
family member 2A

6.064E−13

aThe SCZ-MDD p value is 4.29E−11 but the overlapping genes are not shown because they are the same four genes indicated above in “All three groups”.

Fig. 2 Magnitude of differential expression across disorders. Log2
fold-change values for each disorder (relative to controls) were
calculated for all genes (A) and transcripts (B) that were differen-
tially-expressed in any disorder (FDR < 5%), then plotted against
log2 fold-change values for each of the other disorders. Least-
squares regression lines (dotted) are shown for each pairwise
comparison, along with Pearson correlation coefficients.
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to our knowledge been previously reported (Supplementary
Fig. 6).
In contrast to gene-level analyses, transcript-level analyses

identified substantial diversity in DE transcripts across disorders.
The mean overlap of DE transcripts across disorders was 18%
(Fig. 1b), with a modest correlation in FC values across diagnoses
(R2= 0.43–0.44; Fig. 2B). At least 2 different isoforms of 76 genes
were DE in one or more diagnostic groups (Supplementary Fig. 7).
We also detected 42 instances of alternative isoform usage, where
distinct transcripts of the same gene were DE in different disorders
(e.g., GNAS in Fig. 2C).
Our transcript-level results replicated differential expression of

22 transcripts in SCZ and two transcripts in BD previously reported
by PsychENCODE [6] (Supplementary Tables 15, 16). These results
represent small but significant overlaps between PsychENCODE
and the present study (SCZ: hypergeometric p value= 0.018; BD:
hypergeometric p value= 0.039), despite methodologic
differences.

Transcript-level, case–case comparisons
To further investigate transcript-level differences between diag-
noses, case–case comparisons were performed, in which each
diagnostic group was contrasted with all others, as in the gene-
level comparisons described above. This revealed 841 transcripts
that were DE in one or more comparisons, 542 of which had not
emerged from case–control comparisons alone (Supplementary
Fig. 4d; Supplementary Tables 19–21).
Most of the DE transcripts in the case–case comparisons were

expressed in opposite directions between diagnostic groups,
relative to controls. Among all DE transcripts in the case–case
contrasts, 77% (SCZ versus BD), 83% (SCZ versus MDD), and 77%
(BD versus MDD) displayed this “mirror” expression pattern
(Fig. 3A–C; Supplementary Tables 22–24). Reshuffling of diagnostic
labels dramatically reduced the number of DE transcripts, but the
proportions of DE transcripts with “mirror” expression findings
were similar.
Post hoc testing indicated that most of the DE transcripts could

not be explained by differences in antipsychotic exposure or
death by suicide (Supplementary Tables 15–17, 19–21).

Transcript-level eQTLs
Integration of SNPs with transcript counts detected 208,966 eQTLs
affecting expression of 6008 transcripts (Supplementary Table 25).
These eQTLs significantly overlapped with transcripts that were DE
in SCZ (hypergeometric p value < 10−5) or BD (hypergeometric
p value < 0.01), but not in MDD. Common alleles may thus
contribute to disorder-specific differential transcript expression.

Transcript-level integrative analyses
To quantify how much risk alleles contribute to transcript-level
differences between disorders, transcript-eQTLs were integrated
with summary results from recent GWAS by SMR. This revealed
linkages between transcript expression and disease risk at 18 SCZ
and 4 BD risk loci (Supplementary Table 26). In SCZ and BD,
significantly overlapping sets of transcripts were associated with
both risk allele and diagnosis (hypergeometric p value= 0.03 and
0.04, respectively).

Functional enrichment of DE transcripts
Genes harboring transcripts DE at FDR < 5% in any of
the case–control comparisons were significantly enriched for
functions related to synapse and antigen processing (Supplemen-
tary Table 27), largely driven by the SCZ versus Ctrls compar-
ison (Supplementary Table 28). In case–case comparisons
(Supplementary Table 29), transcripts DE in SCZ versus BD were
enriched for functions related to muscle or motor proteins, while
SCZ versus MDD transcripts were enriched for spectrin repeats
and cell membrane. No significant functional enrichment was

found for the relatively smaller number of BD versus MDD
transcripts.
Functional analysis of “mirror” transcripts showed significant

enrichment for spectrins (Bejamini q < 3.12E−04). Spectrins are
involved in neuronal migration and synaptic plasticity and are
thought to give strength and flexibility to neurons [29, 30].

sQTLs
In addition to changes in gene or transcript-level expression, SNPs
can modify the transcriptome by driving shifts in relative
abundance of transcripts within a gene [31]. These are known as
splicing or sQTLs, due to their putative effect on alternative
splicing [21]. In the total sample we detected 14,054 SNPs
associated with relative transcript abundance within 844 genes at
FDR < 5%; 9773 SNPs in 500 genes at FDR < 5% in Caucasians
(Supplementary Table 30; Supplementary Fig. 8). The larger set of
sQTLs meeting the nominal p-threshold of 0.05 (Supplementary
Table 31) is used in subsequent analyses.
Consistent with their role in alternative splicing [32], most sQTLs

lie near known splice sites or regions of open chromatin
(Supplementary Figs. 9, 10; Supplementary Tables 32, 33) and 63%
of the transcripts in genes harboring sQTLs were predicted to result
from classical alternative splicing events (Supplementary Fig. 11).
Genes associated with an sQTL were significantly enriched for

transcripts that were DE in any case–control (n= 368; OR= 2.2,
hypergeometric p < 10−16) or case–case (n= 335; OR= 2.5,
hypergeometric p < 10−16) comparison. Similar enrichments were
seen across all comparisons, with odds ratios of 1.8 (SCZ versus
controls) to 2.7 (BD versus MDD). “Mirror” transcripts were also
enriched for sQTLs (hypergeometric p < 0.049) but not eQTLs.
Together these results suggest that sQTLs play a disproportionate
role in diagnosis-associated differential expression.

sQTLs within GWAS loci
To test how large a role sQTLs play in disease risk, we examined all
p < 0.05 sQTLs for evidence of association with risk for psychiatric
disorders based on published GWAS [28, 33, 34]. Here we included
only sQTLs that were detected in sgACC from self-reported
Caucasian brain donors, since existing GWAS are mainly based on
samples of European ancestry (Supplementary Methods).
Overall, about 10–25% of GWAS loci we investigated harbored

at least one significant sQTL. In SCZ, of 430 known genome-wide
significant GWAS SNPs, 56 were identified as an sQTL, implicating
44 genes. Of these, 15 distinct genes are linked here for the first
time to changes in transcript expression within a SCZ GWAS locus.
In BD, of 329 known genome-wide significant GWAS SNPs, 47
were identified as sQTLs. In MDD, 10 of 44 known GWAS loci
habored sQTLs. See Supplementary Tables 34–36 for details.

Relative contributions of eQTLs and sQTLs to disease heritability
Previous studies have demonstrated that eQTLs substantially
contribute to heritability for a variety of common disorders [35],
but few studies have investigated the specific contribution of
sQTLs. Thus we estimated the proportion of heritability potentially
explained by sQTLs, relative to eQTLs, in SCZ, BD, and MDD.
We found that sQTLs accounted for disproportionate fractions of

heritability in SCZ and BD, but not MDD (Table 2). Overall, sQTLs
comprised only 4% of all SNPs analyzed but explained 7–8% of
heritability, a 1.7- to 2.0-fold enrichment. In contrast, sQTLs did not
show any significant enrichment of Alzheimer’s disease heritability.

Are rare transcripts important?
We investigated the value of deep RNA-sequencing performed in
the present study by comparing the numbers of known genes and
transcripts identified in this study with those identified in
PsychENCODE [6]. To facilitate this comparison, we recalled our
data at the same threshold that was used in PsychENCODE [6] (0.1
Transcripts Per Million in 25% of samples).
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The results demonstrated that high-depth RNA-sequencing
performed in this study identified larger numbers of known genes
and transcripts than PsychENCODE, despite a sample size only 1/
10th as large. We identified 26,397 distinct genes and 109,932
transcripts, compared to 25,774 genes and 96,042 transcripts
identified in PsychENCODE. In addition, 31,333 known transcripts

detected in the present study were not reported by PsychENCODE
[6] (Supplementary Table 37). Of these, 12,613 represent rare
transcripts with mean counts <100/sample. These rare transcripts
also appear to be disease relevant, since 269 were DE at FDR < 5%
in either SCZ, BD, or MDD. The rare transcripts also appear to be
functionally relevant, representing genes that are significantly

Fig. 3 Transcript-level comparisons between case groups. Direction of expression in each case group relative to controls is shown on right
(A, B, C), grouped by direction of change. Error bars represent standard errors.
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enriched for functions related to synapse formation, cell junctions,
and heterotrimeric G-protein complexes (q values all <5%). These
results illustrate the importance of rare, DE transcripts in
psychiatric disorders.

DISCUSSION
This study highlights transcriptome differences in genetically
similar, but clinically distinct, mental illnesses. The results show
that subtle differences in gene expression are actually underlain
by more pronounced and diagnosis-specific changes at the
transcript level. These changes are most evident in case–case
comparisons, often involve alternative splicing, and are influenced
by common genetic variants known to play a role in the inherited
risk of mental illness.
Several brain transcriptome studies of mental illness have been

published recently, some with larger samples than employed here
[3, 6, 36]. This study complements those in several ways. Previous
genome-wide studies in total ACC represented <50 samples
[37–39] and no previous studies evaluated the sgACC, despite its
importance in mood disorders [9–11]. None of the previous
studies employed RNA-sequencing at a depth comparable to that
used here, which enabled identification of numerous rare
transcripts that were DE in particular case groups and represented
genes involved in important aspects of neurobiology. Some of the
genes and transcripts whose expression was associated with
known risk alleles were detected only in ACC, consistent with the
idea that common risk alleles may regulate expression in a tissue-
specific manner [40]. We also employed case–case comparisons
that revealed unexpectedly large numbers of transcripts that were
DE between diagnostic groups and showed opposite directions of
expression, relative to controls (“mirror transcripts”). This shows
that genetically correlated psychiatric disorders can express
partially contrasting brain transcriptomes that may underlie some
differences in onset, symptoms, or treatment response observed
between diagnoses. This finding also suggests that combining
samples with different diagnoses to increase sample size may also
increase heterogeneity and obscure some true signals, especially
in genes harboring “mirror” transcripts.
Most transcripts whose expression was associated with genetic

variants in this study are predicted to arise from classical

alternative splicing mechanisms, consistent with previous findings
that alternative splicing plays an important role in major
psychiatric and other disorders [32, 40, 41]. Our results further
demonstrate that common genetic variants associated with
relative transcript abundance (sQTLs) account for disproportionate
fractions of disorder-specific heritability, providing support for the
proposition that alternative splicing is a primary mechanism
whereby genetic variants confer risk for disease [32].
This study has several limitations. While this was one of the

larger RNA-sequencing studies performed in human brain tissue
to date, there were <100 individuals in each diagnostic category,
limiting power to detect small expression changes. As in all human
postmortem studies, diverse factors affect expression, not all of
which can be measured or controlled, increasing noise and risk for
bias. We addressed this by stringent quality control, careful
adjustment for key covariates, and testing robustness of the major
findings with alternative analysis approaches. Human postmortem
studies inherently conflate expression changes that cause disease
with those resulting from disease or treatment. While most DE
genes and transcripts were apparently unrelated to antipsychotic
drug exposure or suicide, other confounds cannot be ruled out.
The integrative genomic approaches we used identify genes or
transcripts whose expression is associated with both diagnosis
and inherited risk alleles, which limits findings attributable to
reverse causation but cannot rule out correlated non-causal
events [20]. The degree to which expression levels were similar
across diagnostic groups may have been influenced by use of a
common control group, but this finding is quite consistent with
previous large studies [5, 6] and known overlaps in genetic risk
factors. A portion of the “mirror transcript” findings may reflect the
fact that differential expression analysis favors genes and
transcripts with low expression in one group and higher
expression in another, so that a third group will tend to lie in
between. Finally, sequencing of RNA derived from bulk tissue
means that findings driven by differences in cellular composition
cannot be fully resolved. Nevertheless, these bulk data reflect a
much larger portion of the brain transcriptome than can be
achieved with current single-cell technologies.
We suggest that inherited genetic risk factors shape the

brain transcriptome and contribute to diagnostic differences
between broad classes of mental illness. More work is needed

Table 2. Disorder-specific heritability attributable to common variants, SNP heritability of disorders partitioned across sQTLs and eQTLsa.

Diagnosis Schizophrenia Bipolar disorder Major depression Alzheimer’s disease

N SNPs 10,69,224 9,62,367 10,60,414 10,35,603

Observed h2 (se) 0.4 (0.015) 0.3 (0.018) 0.05 (0.003) 0.046 (0.009)

Proportion sQTLs 0.04 0.04 0.04 0.04

Observed sQTL h2 (se) 0.08 (0.01) 0.07 (0.01) 0.05 (0.01) 0.06 (0.04)

sQTL enrichment (se) 2.1 (0.26) 1.7 (0.31) 1.2 (0.26) 1.5 (0.90)

sQTL enrichment p 3.3E−05 0.02 0.38 0.55

Bonferroni p 9.8E−05 0.06 1 1

Proportion eQTLs 0.06 0.06 0.06 0.06

eQTL h2 (se) 0.11 (0.01) 0.08 (0.01) 0.05 (0.01) 0.12 (0.04)

eQTL enrichment (se) 1.7 (0.18) 1.3 (0.22) 0.8 (0.17) 2.0 (0.71)

eQTL enrichment p 9.00E−05 0.13 0.41 0.14

Proportion eQTLs not sQTLS 0.02 0.02 0.02 0.02

eQTL h2 (se) 0.03 (0.007) 0.02 (0.009) 0.01 (0.008) 0.08 (0.032)

eQTL enrichment (se) 1.16 (0.27) 0.81 (0.38) 0.48 (0.31) 3.33 (1.3)

eQTL enrichment p 0.54 0.62 0.10 0.05

aExcludes eQTLs that are also sQTLs.
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to characterize the functions of alternative transcripts,
developmental timing of alternative splicing events, potential
impact of medications and other environmental exposures,
and transcriptomic differences in specific brain regions or
cell types.
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