
Heliyon 10 (2024) e24872

Available online 18 January 2024
2405-8440/© 2024 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Research article 

Bioinformatics reveals the pathophysiological relationship 
between diabetic nephropathy and periodontitis in the context 
of aging 

Peng Yan , Ben Ke , Xiangdong Fang * 

Department of Nephrology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China   

A R T I C L E  I N F O   

Keywords: 
Diabetic nephropathy 
Periodontitis 
Diabetes 
Aging 
Machine learning 
Immune 
Mendelian randomization 

A B S T R A C T   

Diabetic nephropathy (DN) is one of the most common microvascular complications of diabetes 
mellitus. Periodontitis (PD) is a microbially-induced chronic inflammatory disease that is thought 
to have a bidirectional relationship with diabetes mellitus. DN and PD are recognized as models 
associated with accelerated aging. This study is divided into two parts, the first of which explores 
the bidirectional causal relationship through Mendelian randomization (MR). The second part 
aims to investigate the relationship between PD and DN in terms of potential crosstalk genes, 
aging-related genes, biological pathways, and processes using bioinformatic methods. MR anal-
ysis showed no evidence to support a causal relationship between DN and PD (P = 0.34) or PD 
and DN (P = 0.77). Using the GEO database, we screened 83 crosstalk genes overlapping in two 
diseases. Twelve paired genes identified by Pearson correlation and the four hub genes in the key 
cluster were jointly evaluated as key crosstalk-aging genes. Using support vector machine 
recursive feature elimination (SVM-RFE) and maximal clique centrality (MCC) algorithms, feature 
selection established five genes as the key crosstalk-aging genes. Based on five key genes, an ANN 
diagnostic model with reliable diagnosis of two diseases was developed. Gene enrichment anal-
ysis indicates that AGE-RAGE pathway signaling, the complement system, and multiple immune 
inflammatory pathways may be involved in common features of both diseases. Immune infil-
tration analysis reveals that most immune cells are differentially expressed in PD and DN, with 
dendritic cells and T cells assuming vital roles in both diseases. Overall, although there is no 
causal link, CSF1R, CXCL6, VCAM1, JUN and IL1B may be potential crosstalk-aging genes linking 
PD and DN. The common pathways and markers explored in this study could contribute to a 
deeper understanding of the common pathogenesis of both diseases in the context of aging and 
provide a theoretical basis for future research.   

1. Introduction 

Diabetic nephropathy (DN) is one of the most prevalent microvascular complications of type 1 and type 2 diabetes. Its diagnostic 
criteria encompass an elevated urinary microalbumin, diabetic retinopathy, a reduced estimated glomerular filtration rate (GFR), and 
distinct histological features [1]. Statistically, about 40 % of patients requiring renal replacement therapy are attributed to DN [2]. DN 
can rapidly progress to end-stage kidney disease without timely treatment due to the absence of symptoms in its early phase, which 
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seriously threatens patients’ health. Periodontitis (PD) is a chronic multifactorial inflammatory disease that leads to the destruction of 
periodontal supporting tissues and is usually associated with dysbiosis of the oral microflora [3]. Both DN and PD have significantly 
contributed to the global public health and economic burden. 

Previous studies have emphasized the bidirectional effect between diabetes and PD. In this relationship, diabetes serves as a sig-
nificant risk factor for the progression of PD, while PD, in turn, influences glycemic control and worsens the development of diabetic 
complications [4]. A recent meta-analysis indicates a connection between PD and an increased risk of diabetic microangiopathy, 
including DN, particularly in older patients [5]. Studies have shown that PD is an important risk factor for renal insufficiency in 
diabetic patients [6], and is strongly linked to the progression of chronic kidney disease (CKD) [7]. Additionally, epidemiological 
research has supported that PD not only predicts overt nephropathy, defined as massive albuminuria, and end-stage renal disease in 
type 2 diabetes in a dose-dependent manner [8], but also serves as a robust predictor of DN mortality [9]. To some extent, despite 
mounting evidence substantiating their independent correlation, little is known about the shared features underlying gene regulatory 
mechanisms. 

Chronic inflammation is a well-known risk factor for DN, affecting its various stages of development. Pro-inflammatory cytokines, 
such as IL-6, TNF-α, IL18 and IL-1, play a significant role in promoting vascular inflammation and fibrosis, contributing to the 
development and progression of DN [10]. These cytokines are also implicated in PD, driving an immune response in periodontal tissues 
that leads to tissue destruction [11]. PD, as a chronic oral infection, triggers a systemic inflammatory response that impacts overall 
health. This response involves periodontal pathogenic bacteria, their byproducts, and local production of inflammatory mediators 
[12]. Additionally, individuals with CKD are more susceptible to or experience worsened periodontal disease due to systemic in-
flammatory load and immune deficiency [13]. These findings suggest that the activation of the inflammatory response may be a key 
link between DN and PD. 

Aging is an inevitable, time-dependent decline in physiological function that affects numerous organ systems and cellular pro-
cesses, often negatively impacting health [14]. Aging is usually followed by alterations in the immune system, including immune 
aging, deterioration of the immune response, and an accompanying chronic low-grade inflammatory state [15]. Many age-related 
phenotypes and diseases share common features of immune aging, namely increased susceptibility to disease and persistent sys-
temic inflammation. Diminished immune response capacity and persistent inflammatory adverse reactions increase the risk of early 
age-related disease and hinder intrinsic tissue regeneration, thereby expediting disease progression [16]. Extensive research has 
established connections between aging and chronic age-related conditions such as cardiovascular diseases, neurodegenerative dis-
orders, and metabolic diseases [17–19]. Aging, a common risk factor for DN and PD, affects their progression. It has been argued that 
the accumulated effects of prolonged exposure of periodontal tissues to microorganisms are, in part, a result of aging-related effects 
[20]. The aging process alters oral mucosal immunity, increases inflammation, affects tissue healing, and thus accelerates the 
advancement of PD [21]. Aging is more closely related to DN, and various potential mechanisms, including hyperglycemia, hyper-
tension, chronic inflammation, oxidative stress, lipid metabolism disorders, down-regulation of anti-aging proteins, and the accu-
mulation of advanced glycosylation end-products (AGEs), lead to nephron loss and disease progression in DN [22,23]. Therefore, it is 
of interest to explore the biological relationship between PD and DN in the context of aging, which can help to access the relevant 
pathological mechanisms and better guide clinical interdisciplinary management. 

Mendelian randomization (MR) employs genetic variation as an instrument to assess the causal impact of specific risk factors on 
observed outcomes [24]. This study comprised two parts: first, it investigated the bidirectional causality between PD and DN using MR. 
The second part aimed to reveal the potential interconnections of the two diseases at the transcriptome level with aging-related genes 
and the linkage with immune cell action through bioinformatics analysis. In this part, dysregulated crosstalk genes in PD and DN were 
assessed and their correlation with aging-related gene pairs was examined by correlation analysis and PPI networks to determine the 
role of aging in DN and PD. Next, we analyzed the biological processes (BPs) and pathways by which the two diseases interact to gain 
more insight into the common genetic mechanisms between PD and DN. Finally, we utilized machine learning methods to build 
diagnostic models and explore the relationship between immune infiltration of the two diseases, aiming to better guide the clinic and 
provide new insights into pathological mechanisms. 

2. Methods and materials 

2.1. MR analysis 

Summary statistics for periodontitis were obtained from the Gene-Lifestyle Interactions in Dentistry Endpoints (GLIDE) consortium, 
including 17,353 cases and 28,210 controls [25]. Periodontitis cases were classified according to the Centers for Disease Control and 
Prevention/American Academy of Periodontology definitions, using consistent criteria for detailed evaluation or self-reporting. Data 
for diabetic nephropathy (DN) included 3283 cases and 210,463 controls, and were sourced from the FinnGen consortium. These data 
are accessible on the GWAS project website hosted by the IEU (https://gwas.mrcieu.ac.uk) under the ID: finn-b-DM_NEPHROPATHY. 
All participants included in the original GWAS were of European descent. 

MR analysis relies on three crucial assumptions: (1) instrumental variables (IVs) must be strongly correlated with the exposure of 
interest; (2) they must not be associated with confounding factors between each exposure and outcome; and (3) only pass-through 
exposures affect outcome [26]. We performed linkage disequilibrium (LD) aggregation to ensure the independence of SNPs (with 
LD R2 < 0.001, LD distance >10000 kb). Considering the limited number of SNPs that reached genome-wide significance (P-value <5 
× 10− 8) and to obtain more SNPs, we expanded the threshold to 5 × 10− 6 and obtained thirteen SNPs associated with DN and eight 
SNPs associated with PD, respectively. The strength of the IVs was assessed using the F-statistic, calculated as F = [(n - k - 1)/k]/[R2/(1 
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- R2)]. SNPs with F-statistic thresholds less than 10 were removed. Notably, all F-statistic values for the detected SNPs in this study 
exceeded 10. 

MR estimates were calculated using the inverse variance weighting (IVW) method (random effects) [27] and supplemented by the 
weighted median [28] and MR-Egger methods [29], which are relatively robust to horizontal pleiotropy. To test for horizontal 
pleiotropy, we calculated the intercept of the MR Egger regression line. We tested for heterogeneity between MR estimates using the 
Cochran’s Q statistic for IVW and MR Egger methods. MR-PRESSO (Multiplicity Residuals and Outliers) to detect any level of mul-
tiplicity abnormality [30]. MR estimates are reported as an odds ratio (OR). MR statistical analyses were performed in R (version 
4.3.0), including the software packages “TwoSampleMR” (version 0.5.7), and “MRPRESSO” (version 1.0). 

2.2. Data collection of GEO database 

The study cohorts for publicly available datasets related to DN and PD were derived from the Gene Expression Omnibus (GEO) 
database. We searched for relevant data included in the GEO database until September 9, 2022. For the DN dataset, the keywords used 
in the search included “diabetic nephropathy,” “human genome,” and “glomerulus.” Meanwhile, for the PD dataset, the search terms 
consisted of “periodontitis,” “gingival tissue,” and “human genome. The sample tissues were consistent between the two datasets and 
contained case and control groups. Raw data were obtained from the GEO database, and the experiment type was microarray. The 
datasets selected for PD included GSE10334 (platform: GPL570) and GSE23586 (GPL570), with 67 controls and 186 cases. For DN, the 
chosen datasets were GSE30528 (GPL571) and GSE96804 (GPL17586), comprising 33 controls and 50 cases. 

Based on the dataset information, we identified common genes among the disease datasets. Specifically, for DN, we determined 
overlapping genes between the GSE30528 and GSE96804 datasets. The same approach was applied to PD datasets. These intersecting 

Fig. 1. The work flowchart of the study.  
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genes’ expression profiles from each dataset were separately obtained and subsequently integrated with the clinical data. We utilized 
the ComBat method in the R package “sva” (version 3.36.0) to remove batch bias, which was then normalized by the “limma” package 
(version 3.44.3) before further analysis. PCA analysis was applied to determine the effect of ComBat before and after correction. The 
general workflow graph of our study is presented in Fig. 1. 

2.3. Identification of DEGs 

The “limma” package was used to perform differential expression analysis on the batch-corrected DN and PD datasets. We 
determined differentially expressed genes (DEGs) in both the DN and PD datasets as those with P-values <0.05 and | log 2(fold change) 
| > 0.6. To visualize the expression of these DEGs, volcano plots and heatmaps were generated using the “heatmaps” package (version 
1.0.12) and the “ggplot2” package (version 3.3.2), respectively. 

2.4. Functional enrichment analysis and crosstalk gene 

GO annotation analysis and KEGG pathway enrichment analysis of DEGs and crosstalk genes were conducted using the “Clus-
terProfiler” package (version 4.4.4) for R, and a false discovery rate threshold of <0.05 was considered statistically significant. Bar and 
bubble charts are utilized to visualize the results. The crossover between DN-associated DEGs and PD-associated DEGs was identified as 
potential crosstalk genes. These crosstalk genes are likely to play a crucial role in bridging the pathogenesis of DN and PD. 

2.5. Correlation between crosstalk and aging-related genes 

The literature search was carried out on PubMed for articles related to aging-related genes, resulting in the discovery of several 
pertinent datasets. Notably, due to variances in the composition of “senescence gene sets” in current literature, a recent paper proposes 
the existence of “SenMayo” as a 125-gene aging genome validated in human datasets and experiments. Its performance encompasses 
adaptability to aging in various tissues and species, along with superior responsiveness for clearing senescent cells compared to the 
existing six genomes [31] (Table S1). To explore the potential role of aging in linking DN and PD, the expression values of crosstalk and 
aging-related genes were acquired in DN and PD datasets, separately. Using the “corrplot” R package (version 0.92), the Pearson 
correlation coefficient was computed to determine the correlation between crosstalk genes and age-related genes. We treated P-values 
<0.05 and |r| > 0.7 as thresholds for screening paired genes in DN and PD. These shared paired genes in both diseases may be worth 
investigating. 

2.6. Pathway relationships between crosstalk genes and aging genes 

By applying the Cytoscape tool (version 3.9.0), the crosstalk genes and aging-related genes were displayed as a gene-pathway 
network. In addition, we applied the ggplot2 tool to create a circular bar chart to show the number of shared pathways found in 
each category (R code in Table S5). 

2.7. Identification of key modules and genes 

The genes associated with crosstalk genes and their interaction pairs were extracted from the PINA database (v3.0). We refer to 
those extracted genes associated with aging genes as bridging genes, since some crosstalk genes can be indirectly linked to aging genes, 
and studying gene interactions allows for a more accurate and profound investigation of the mechanisms. The Louvain algorithm, an 
iterative community identification algorithm that maximizes the modularity of the network by combining different modules while 
clustering the vertices, is one of the best ways to explore modules in human PPI networks [32]. Here, we use the Louvain detection 
algorithm in the “igraph” R package (version 1.3.5) to extract key modules from all these associated gene PPI networks. The weight 
was set to |r |, and modules with fewer than 30 genes were removed. 

To understand the biological relationships involved in key cluster genes, GO and KEGG enrichment analyses were carried out using 
the Metascape reference library. 3 for minimal overlap, 1.5 for minimum enrichment, and P value < 0.01 were used as threshold 
conditions. Subsequently, we introduced all key clusters of genes into the Cytoscape program and selected the top 15 key genes using 
the cytohubba plugin. 

2.8. In-depth investigation of key genes 

Based on machine learning algorithms, we further explored the potential key genes of crosstalk and aging. SVM-RFE is a sequential 
backward selection method that removes superfluous features by ranking each feature with a score according to the maximum interval 
law of SVM [33]. The SVM-RFE analysis based on the R package “e1071” was used to filter the DN and PD datasets individually, and the 
thresholds were set as follows: halve. above = 100 and k = 10. The MCC plugin of the Cytoscape program was also used for screening. 
Ultimately, genes that overlapped between these algorithms were defined as key genes. 

Additionally, by employing the “neuralnet” (version 1.44.2) R package, we built artificial neural network (ANN) models in DN and 
PD, respectively, for the key genes acquired from the mentioned methods. ANN is an essential section of deep learning, which can infer 
a collection of classification rules from a jumble of data to achieve accurate classification and build an efficient and reliable diagnostic 
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model [34]. The ANN model is based on the input features, hidden layer, and output layer as a framework, and set the maximum 
number of iterations to 200. The test set and training set are divided based on 1:4 ratio. The receiver operating characteristic (ROC) 
curve was applied to assess the ANN model’s precision in both the training and testing sets. Finally, the expression patterns of these five 
genes in the DN and PD datasets were evaluated. Moreover, to assess the predictive efficacy of these key genes, ROC curves were 
created with “pROC” (version 1.18.0) in the R program. 

2.9. Functional annotation of key genes 

We imported key genes into the PINA database to access the interaction context of key genes. Based on the gene expression data of 
DN and PD case samples, the “GENIE3” package (version 1.18.0) of the R program was used to rank the weight values of the acquired 
genes and key genes in descending order in DN and PD, and the interaction pairs with the top 5 % weight were selected as the 
construction of subsequent PPI networks. The GO and KEGG databases are used as reference libraries for key genes to explore their 
functions and identify the pathogenic mechanisms common to both diseases. ClueGO is employed to fuse and visually present networks 
by function. The shared pathway diagrams were investigated using the KEGG database to identify relationships between key genes and 
pathways. The kappa score for GO term fusion was set to 0.6, and the minimum GO tree and minimum clustered genes were set to 3 and 
2, respectively. 

2.10. Immune infiltration analysis 

Based on 28 immune cell-associated genomes, we performed quantitative analysis with ssGSEA (version 3.15 of the R package 
“GSVA”) to calculate the abundance of immune cells in two diseases [35]. The results are presented using heatmaps. Using the 
“corrplot” package (version 0.92), we observed the correlation between abundant immune cells and various immune cells in both 
diseases. Spearman’s correlation analysis was then applied to understand the connections between immune cells and key genes, 
utilizing the gene expression matrix and immune cell abundance data. Finally, we used the “ggplot2” software package to visualize the 
differences in immune cell infiltration between the two disease groups. These approach helps us understand the relationship between 
immune cells, genes, and the diseases studied. 

3. Result 

3.1. Results of a two-sample MR analysis 

Using an IVW model, we found no evidence of a potential causal effect between DN and PD risk: OR = 0.96, 95 % confidence 
interval (CI): 0.89–1.04, P = 0.34 (Fig. 2). This was confirmed by additional analyses of the MR-Egger model and the weighted median 
model. The MRPRESSO did not detect an outlier. No evidence of directed horizontal pleiotropy was found in the MR-Egger intercept 
test (intercept − 0.007, P = 0.77). Heterogeneity and horizontal pleiotropy were not observed using Cochran’s Q test (P = 0.14). 

In addition, there was little evidence to support reverse causality of DN on PD risk: OR = 1.02, 95 % CI: 0.91–1.14, P = 0.77 (Fig. 2). 
Sensitivity analyses supported this. No evidence of directed horizontal pleiotropy was found in the MR-Egger intercept test (intercept 
− 0.006, P = 0.76). Tests for heterogeneity and pleiotropy were negative. Again, no outliers were detected in MRPRESSO. 

Despite the absence of a causal relationship, it is still necessary to explore the underlying biological mechanisms between the two, 
given their close association. 

3.2. Data pre-processing 

The DN dataset consists of two datasets, GSE30528 and GSE96804, totaling 50 cases and 33 control samples. The PD dataset in-
cludes datasets GSE10334 and GSE23586, with 186 cases and 67 controls. Following the application of the ComBat method to mitigate 
batch bias, the variance between data sets was markedly reduced (Fig. S1). 

Fig. 2. Forest plot representing the association between bidirectional MR estimation of periodontitis and diabetic nephropathy.  
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3.3. Identification of DEGs 

By performing differential analysis, we obtained 240 up-regulated genes and 352 down-regulated genes in DN and 464 up- 
regulated genes and 244 down-regulated genes in PD, respectively. Volcano map and heat map were applied to visualize the 
expression patterns of DEGs in both diseases (Fig. 3A–D). The DEGs of DN are mainly participated in several BPs of GO analysis, such as 
system development and cell chemotaxis (Fig. 4A), while the DEGs of PD are mainly engaged in several BPs of GO analysis, such as 
immune response, B-cell activation (Fig. 4C). Additionally, DN and PD DEGs are jointly involved in the “cytokine-cytokine receptor 
interaction” and “viral protein interaction with cytokines and cytokine receptors” pathways (Fig. 4B–D). One of the hallmarks of aging 
is the acquisition of a secretory phenotype associated with aging, characterized by the release of pro-inflammatory cytokines, che-
mokines [36]. Therefore, aging may potentially underlie the common developmental mechanisms observed in both DN and PD. 

3.4. Identification of crosstalk genes 

After intersecting the DEGs of the two datasets, we eventually obtained 83 crosstalk genes. The Venn diagram of the overlapping 
DEGs is shown in Fig. 5A, of which 46 are jointly up-regulated and 8 are jointly down-regulated in DN and PD. GO analysis results 
showed that crosstalk genes were mainly intimately related to cytokine− mediated signaling pathway, leukocyte migration, humoral 
immune response, response to lipopolysaccharide, and cell chemotaxis (Fig. 5B). Consistent with the previous study, Fig. 5C displays 
that crosstalk genes are primarily enriched in several pathways, including cytokine-cytokine receptor interaction, Staphylococcus 
aureus infection, and viral protein interaction with cytokine and cytokine receptor. 

3.5. Correlation between crosstalk genes and aging-related genes 

Aging-related genes are an important articulated part in our study. The expression profiles of aging-related genes in DN and PD data 
are portrayed through heatmaps (Fig. 6A and B). In the DN group, 62 aging-related genes were significantly differentially expressed 

Fig. 3. Characterization of DEGs (A) Volcano diagram of DN’s DEGs. (B) Heat map of DN’s DEGs. (C) Volcano diagram of PD’s DEGs. (D) Heat map 
of PD’s DEGs. 
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among control and case samples (P < 0.05), 19 of which were identified as DEGs for DN. 88 aging-related genes were significantly 
differentially expressed in the PD group (P < 0.05), 24 of which were PD DEGs. These results suggest that aging plays an important role 
in the pathogenesis of both diseases. Using Pearson correlation coefficients, we investigated the correlation between 83 crosstalk genes 
and 125 aging-associated genes in the DN dataset (Fig. 6C), and the same for the PD dataset (Fig. S2). Together 270 pairs of related 
crosstalk-aging genes were explored in DN, and 212 pairs in PD (P < 0.05, |r|> 0.7). By analysis, 14 pairs of related genes were 
common in both diseases, including 12 crosstalk genes and 4 aging-related genes (Table S2). 

To better understand the relationship between these two groups of genes, the KEGG database was used to determine the pathways 
through which crosstalk genes interact with aging-related genes. Using Cytoscape software, we built a gene-common pathway network 
composed of 49 crosstalk genes, 98 aging-related genes, 111 common pathways, and 1088 edges linking pathways and genes (Fig. 7A). 
The cytokine-cytokine receptor interaction pathway is the most enriched pathway for genes. According to Fig. 7B, “signal trans-
duction” and “immune system” are the main areas implicated in aggregation pathways, with additional infectious disease-related 
pathways also occupying a part. 

3.6. Identification of key crosstalk-aging networks and genes 

By importing crosstalk genes into the PINA database, 2551 bridge genes closely related to crosstalk genes were obtained. According 

Fig. 4. Enrichment analysis of DN and PD. (A) GO analysis terms of DN DEGs. (B) KEGG analysis terms for DN DEGs. (C) GO analysis terms of PD 
DEGs. (D) KEGG analysis terms for PD DEGs. 
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to the STRING database, a PPI network of crosstalk, bridge and aging-related genes was developed, consisting of 2576 nodes and 40855 
edges. Subsequently, we divided all genes into 11 clusters using the Louvain community algorithm, and after removing gene modules 
with fewer than 10 genes, the PPI network was finally classified into six clusters. The different densities have a measured significance 
for the assessment of connectivity in the network. The densities of the different modules are recorded in Table S3 and it is observed that 
the densities of all six clusters are higher than the density before clustering (0.02636438), demonstrating the reliability of this clus-
tering algorithm. In addition, it can be clearly observed that cluster 4 has the highest number of crosstalk and aging related genes, 
suggesting that the genes in this cluster are important modular genes in the disease (Fig. 8A and B). 

Enrichment analysis revealed that the BPs of cluster 4 were mainly enriched in the inflammatory response, enzyme-linked receptor 
protein signaling pathway, positive regulation of cell migration, regulation of MAPK cascade, and chemotaxis. The KEGG pathway is 
mainly concentrated in the chemokine signaling pathway, pathways in cancer, Rap 1 signaling pathway, AGE-RAGE signaling pathway 
in diabetic complications, and human cytomegalovirus infection (Fig. S3). The top 15 hub genes in cluster 4 were found by using the 
cytohubba algorithm (Fig. 8C). We selected the crosstalk gene VCAM1 and the top 3 aging-related genes IL6, IL1B, and IL10 as hub 

Fig. 5. Analysis of crosstalk genes. (A) Interaction Venn diagram of PD DEGs and DN DEGs and the number of co-expressed genes. (B) Top 15 BPs of 
crosstalk genes. (C) Top 15 KEGG of crosstalk genes. 
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Fig. 6. Expression and correlation of aging-related genes in DN and PD. (A and B) Heatmaps of aging-related gene expression in DN (A) and PD (B). 
(C) Correlation between crosstalk genes and aging-related genes in DN samples. 

P. Yan et al.                                                                                                                                                                                                            



Heliyon 10 (2024) e24872

10

Fig. 7. Gene-pathway analysis (A) Pathway gene network (B) Round bar diagram of secondary classification of common pathways.  
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genes, which may play important roles in the key cluster. 

3.7. Investigation of key crosstalk-aging genes 

By taking the intersection of the genes in cluster 4 with the paired genes, we obtained 12 key crosstalk-aging genes (IL10RA, CD3D, 
RGS4, CSF1R, CXCL6, CD53, CD48, SELPLG, JUN, CXCL1). Combined with the previous 4 hub genes (VCAM1, IL6, IL1B, and IL10), 
these 16 key crosstalk-aging genes have significant relevance to the disease. By applying the SVM-RFE machine algorithm, we obtained 
9 and 15 key crosstalk-aging genes in DN and PD, respectively (Fig. 9A and B). Since the PD dataset has an objective sample imbalance, 
in order to evaluate the SVM-RFE model performance, we found that the model has an accuracy of 0.94, a sensitivity of 0.8125, a 
specificity of 1, and an F1_score of 0.8965517 after 10-fold cross-validation of the PD data. As we used a database expanded with 
networks of key-crosstalk genes, cytoHubba was able to discover the key targets and central elements of complex networks, where MCC 

Fig. 8. Identification of key cluster and genes. (A) Network module for applying community algorithm detection. (B) PPI network for key modules 
(cluster 4). (C) Hub genes determined by cytoHubba in the key modules. 
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was better at predicting key markers in PPI networks [37]. We selected the top 8 genes using the MCC algorithm. The two algorithms 
were taken to intersect and we finally obtained 5 key genes, of which CSF1R, CXCL6, VCAM1 are crosstalk genes and JUN, IL1B are 
aging genes (Fig. 9C). 

Subsequently, according to key features, we built ANN models and classified gene expression data for both cases and controls 
(Fig. 10A and B). The high reliability of our prediction model based on key genes was demonstrated by ROC curves with an AUC of 
0.9991 in the training cohort and 0.9167 in the test cohort for DN, and an AUC of 0.9684 for the PD training cohort and 0.79 in the test 
cohort (Fig. 10C and D). In addition, ROC curves were applied to display the diagnostic properties of five key genes in DN and PD, 
respectively. The results indicated that the five genes had high diagnostic accuracy in predicting both diseases, with AUCs greater than 
0.6 (Fig. 10E and F). To further test the reliability and accuracy of the ANN model, we also performed ANN on the external DN dataset 
GSE104948 (GPL22945, containing 18 controls and 7 cases) and the PD dataset GSE16134 (GPL570, containing 69 controls and 241 
cases), respectively. The results of the tests remain robust (Fig. S4). Fig. S5 displays the expression patterns of the 5 key genes. All five 
of these genes were upregulated in PD and all three crosstalk genes were upregulated in DN. 

3.8. Connection of key genes 

To gain a deeper understanding of the interactions among key genes, we focused on genes that are known to interact with these key 
genes. Using the expression profile data from both DN and PD cases, we predicted the weighted relationships of these genes with rhe 
key genes and constructed PPI networks involving top 5 % weighted genes (Fig. 11). We observed that CSF1R, CXCL6, and VCAM1 can 
interact through EIF4A1, VCAM1 and IL1B can affect each other through MAF, and CSF1R and JUN can affect each other through 
ETS2. 

To better recognize the potential functions of key genes, we incorporated key genes into the Gene Ontology database. As depicted in 
Fig. 12A, we identified 301 BPs involving at least two key genes, and fused these BPs into 64 BPs based on GO terminology by ClueGO 
(Table S4), with regulation of chemokine production and leukocyte proliferation accounting for the vast majority (Fig. 12B). In order 
to investigate the potential mechanisms of key genes in DN and PD, we introduced key genes into the KEGG database and screened 30 
pathways comprising at least two key genes. Among them, 14 of these pathways were associated with aging-related genes alone, and 
the remaining 16 pathways including AGE-RAGE signaling pathway in diabetic complications, NF-kappa B, IL-17, MAPK, and TNF 
signaling pathway were associated with crosstalk genes and crosstalk-aging genes (Fig. 12C). These may be significant pathways for 
our research, offering insights into crucial mechanisms in DN and PD. 

3.9. Analysis of immune characteristics of DN and PD 

After pathway exploration analysis, the immune system appears to have a profound influence on DN and PD. To gain a quantitative 
understanding of immune cell infiltration, we employed the ssGSEA algorithm to calculate the enrichment scores of immune cells in 

Fig. 9. Selection of features. (A–C) Key crosstalk-aging genes selection by SVM-RFE (A and B) and Cytoscape MCC algorithm (C).  
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DN and PD samples, which was shown in a heat map(Fig. 13A). The results revealed that central memory CD4 T cell, plasmacytoid 
dendritic cell, effector memeory CD8 T cell, and immature dendritic cell were highly expressed and clustered together in DN and PD. 
Fig. 13B displays the correlation between high-level immune cells and various immune cells in both diseases. It can be observed that 
central memory CD4 T cells and effector memory CD8 T cells are highly correlated with most immune cells in DN, and in PD, four cells 
are positively correlated with most immune cells. Furthermore, we observed significant differences in most immune cell subsets be-
tween cases and normal samples in DN and PD (Fig. 13C and D). The correlation of the five key genes with individual immune cells can 
be found in Fig. S6. 

4. Discussion 

In this study, we first investigated the bidirectional causal relationship between DN and PD using mendelian randomization. 
Unfortunately, we did not find a bidirectional causal relationship between them. PD is associated with diabetes mellitus, and extensive 
evidence supports PD being placed as the sixth complication of diabetes [38]. As a result, PD and DN are frequently comorbid, sharing 
a common pathogenesis that may mutually influence each other despite significant tissue differences. Therefore, our study explores the 
common mechanisms and correlations between the two diseases in the context of aging through bioinformatics, community algo-
rithms, and machine algorithms with reference to some hypotheses of the periodontal-renal axis. Five genes, namely CSF1R, CXCL6, 
VCAM1, JUN and IL1B, were selected as key genes explaining the link between DN and PD in the context of aging. It was hypothesized 
that pathways such as the AGE-RAGE signaling pathway, the complement system, and multiple immune-inflammatory pathways may 
be the underlying common mechanisms of DN and PD. 

The current discussion is that immune dysregulation may be one of the most prevalent underlying features of both diseases [39,40]. 
Innate immune changes are coupled with increased pro-inflammatory cytokine expression, monocyte infiltration, and decreased 

Fig. 10. Model building. (A–B) ANN models for DN (A) and PD (B). (C and D) ROC curves of ANN models in the DN (C) and PD (D) training and 
testing cohorts. (E and F) Evaluation of the diagnostic effect of DN (E) and PD (F) datasets based on ROC curves. 
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bacterial killing; each of these factors may play a role in aggravated periodontal disease. For instance, elevated cytokine levels and 
inflammation may enhance bone resorption and hinder repair, and reduced bacterial killing may facilitate pathogen growth [41]. 
Furthermore, the activation of the innate immune system contributes to the development of DN by inducing the production of in-
flammatory cytokines that cause tissue damage [42], suggesting that this similar element may lead to its association with both diseases 
is plausible. Our study on DN and PD crosstalk genes confirmed their biological functions primarily revolve around cytokine pathways, 
leukocyte migration, and immune response activation, underscoring a shared basis of immune-inflammatory mechanisms in both 
conditions. 

Recent evidence underscores the pivotal role of aging in the pathogenesis of chronic inflammatory diseases, including PD and DN 
[20,43,44]. There is no doubt that aging contributes to the enhancement of pathological processes that lead to the dysregulation of the 
immune system in response to the harmful challenges of chronic inflammatory states and accelerated bone loss processes [45,46]. It 
exacerbates the morbidity and severity of PD, causing alterations in oral microbial composition, potentially leading to weakened 
immunity and health deterioration [47]. Additionally, aging kidneys are concerned with physiological changes and significantly in-
crease susceptibility to nephrotoxic injury [48]. The relatively high proportion of aging-related genes among the DEGs of PD and DN in 
our study suggests an important link between aging and these two diseases. 

To minimize the effects of overfitting and to improve the quality of performance metrics, as many samples as possible should be 
selected for clinical biomarker discovery experiments [49]. In our study, the PD dataset included a total of 186 gingival tissue samples 
and the DN dataset included 50 kidney tissue samples. Despite the objective sample imbalance in the PD dataset, SVM-RFE achieved 
the best performance after using cross-validation, allowing for reduced intervention of methods such as resampling, cost-sensitive 
learning, and threshold adjustment [50]. The SVM-RFE machine algorithm is able to construct optimal classifiers for each subtype 
while minimizing structural risk, and is well suited as a way to improve learning performance for the differential selection of the two 
diseases [51]. Usually, the root mean square error (RMSE) is evaluated for the difference between the observed and predicted values to 
predict the performance of the model and compare the fitting results of different models [52]. The smaller the RMSE, the better the 
model performance. In our study, we found that the SVM residual distribution (RMSE) was minimal among numerous machine 
learning methods such as random forest, generalized linear model (GLM), gradient boosting machine (GBM) and SVM by the DALEX R 
package (results not attached), indicating the good performance of SVM-RFE model. 

This study focuses on identifying five key genes CSF1R, CXCL6, VCAM1, JUN and IL1B to elucidate the association between DN and 

Fig. 11. PPI networks of important cluster genes associated with key genes (CSF1R, CXCL6, VCAM1,JUN, and IL1B).  
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Fig. 12. Enrichment analysis of key genes. (A) ClueGO fusion results for biological processes implicated in key genes. (B) Pie chart for each GO term 
group scale. (C) Pathway enrichment networks for key genes. 
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Fig. 13. Analysis of immune characteristics of DN and PD. (A) Heatmap displaying the immune abundance of DN and PD. (B) Correlation analysis 
between high-level immune cells and various immune cells. Pie charts in DN and circle charts in PD represent correlations. (C and D) Comparison of 
the levels of distinct groups of immune cells in DN (C) and PD (D). 
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PD, and a diagnostic model consisting of these markers has good predictive power for both diseases. CSF1R is an important trans-
membrane receptor tyrosine kinase that mediates the biological effects of colony stimulating factor-1 (CSF-1) [53]. Regulation of 
CSF-1R stimulation affects the innate immune system and plays a central role in many diseases including cancer, chronic inflammatory 
diseases and fibrosis [54,55]. CXCL6 is a class of small molecular peptides with chemotactic and inducible properties that were first 
identified in osteosarcoma cell lines and play a key role in various types of tumor diseases [56]. As an important inflammatory 
cytokine, CXCL6 can recruit inflammatory cells to sites of inflammation. Combined with crosstalk gene pathway analysis, we can 
boldly speculate that inflammatory chemotaxis is an important factor in the common pathogenesis of DN and PD. Initially identified as 
a membrane protein promoting immune cell recruitment, VCAM1 plays a vital role in endothelial adhesion [57]. Aging is a powerful 
independent predictor of soluble VCAM1 levels [58]. In diabetic nephropathy, VCAM1 emerges a crucial immune-related gene that 
worsens interstitial inflammation by promoting the recruitment of immune cells such as macrophages and T cells into diabetic 
glomeruli [59,60]. Furthermore, VCAM1 gene polymorphisms were associated with the severity of periodontal disease [61]. c-Jun 
(encoded by JUN) is a transcription factor that is activated by various extracellular signals, such as growth factors, pathogenic in-
fections, cytokines, and chemokines, and plays an important role in cell proliferation, differentiation, apoptosis, survival, and immune 
cell immune response [62]. IL-1β is one of the most important pro-inflammatory cytokines that plays a key role in human innate and 
adaptive immunity and acts as a mediator of inflammatory and aging processes [63,64]. Aberrant IL-1β-related signaling pathways 
have been shown to be involved in nephron hyperfiltration, loss of podocytes, and progressive decline in glomerular filtration rate 
(GFR) in DN [65]. IL-1β gene polymorphisms have been found to be significantly associated with DN risk in some regional populations 
[66]. IL-1β is not only a promising option for improving renal prognosis in DN patients [67], but also a potential target for PD [68]. 

In the key gene pathway analysis, the network of pathways operating from the identified five key genes is a major key to our 
mechanistic studies, including AGE-receptor for AGE (RAGE) pathway and immune inflammatory pathways such as NF-kappa B, TNF, 
MAPK, IL-17 signaling pathways and cytokine-cytokine receptor interaction. The receptor for advanced glycation end-products 
(RAGE) is a multiligand transmembrane receptor that can be linked to the pathophysiology of multiple cellular environments such 
as diabetes, inflammation, oxidative stress and aging [69]. The kidney produces abundant AGEs and upregulates RAGE expression 
under diabetic or aging conditions, and activated RAGE promotes reactive oxygen species (ROS) production and amplifies inflam-
mation, thereby enhancing renal tissue damage [69,70]. Additionally, RAGE stimulation is able to regulate different intracellular 
signaling pathways in the kidney, such as NF-κB, a key pro-inflammatory pathway that enhances the expression and production of 
various inflammatory factors, chemokines and adhesion molecules in DN [71], and the MAPK signaling pathway [72]. Similarly, 
increased sugar-fermenting bacteria and hyperglycemia increase AGEs in periodontal tissue, induce the release of pro-inflammatory 
factors by binding to immune cell surface RAGE, thereby promoting periodontal destruction [73], impede bone regeneration and 
remodeling by disrupting the RANKL/osteoprotegerin (OPG) axis [74]. Besides the appeal pathway, the crosstalk gene-enriched 
complement and coagulation cascade pathways also appear to be an important link between PD and DN. Inhibition of complement 
cascade components such as C3 reduces the dysbiosis of oral periodontal microbiota and the inflammatory process of bone destruction 
[75]. Also, abundant studies point to the involvement of the complement system in the pathogenesis of DN and, likewise, as a 
promising target for the treatment of DN [76]. 

Changes in immune cells appear to play a large role in the relationship between DN and PD. Several immune cells such as central 
memory CD4 T cells, plasmacytoid dendritic cells, effector memeory CD8 T cells, immature dendritic cells are highly expressed in DN 
and PD. Dendritic cells (DCs) draw our attention. As the most potent bone marrow-derived antigen-presenting cells, DCs can serve as a 
nexus for coordinating innate and adaptive immunity by inducing T-cell responses, and are critical for immune protection against 
overwhelming pathogens. Porphyromonas gingivalis, the main pathogen of PD, not only enhances the differentiation of monocytes to 
immature DCs, but also induces anti-apoptotic proteins that disrupt immune homeostasis in human dendritic cells [77,78]. Highly 
migratory hematopoietic DCs play a role in carrying periodontal tissue bacteria that spread to distant systems via the body circulation 
[77]. DCs are not only considered as potential contributors to the development of systemic disease associated with periodontitis, but 
are also closely associated with higher inflammatory infiltration [79]. Aging decreases DCs’ recruitment in response to bacterial attack, 
and the mechanism may involve the effect of high glucose or late glycosylation end products on DCs migration [80]. DCs recruitment 
also activates effector T cells, which release toxic mediators that mediate various types of kidney injury. A subpopulation of CD103 DCs 
was found to reduce the activation and proliferation of renal CD8 T cells in DN, which in turn reduced pro-inflammatory cytokine 
release and renal infiltration to protect against renal injury and fibrosis [81]. We also explored immune cell correlations that could lead 
to a better understanding of pathogenesis in the immune context of disease. 

Overall, different hypotheses for the interaction between PD and DN can be drawn from the results: first, potential periodontal 
causative agents and their associated cytokines and chemokines recur in the context of chronic inflammation, triggering periodontitis 
and renal inflammation. Second, common risk factors such as high glucose, aging, obesity, and smoking, involving changes in immune 
responses and immune cells like T cells, dendritic cells, as well as their contents, seem to emphasize the possibility of interconnection. 
Third, aging may affect key genes, involving AGE-RAGE pathway signaling and multiple immune-inflammatory pathways to impact 
PD and DN. Thus, these could be key points linking these two single entities to the pathophysiology of age-related diseases. 

Strengths and limitations: we applied comprehensive bioinformatics analysis methods to explore for the first time the link between 
DN and PD of aging-related genes. The results have potential clinical relevance and reveal new concepts for future research in this field. 
Nevertheless, our study has certain limitations. Firstly, due to the limited availability of RNA-seq data, we merged the transcriptomic 
data of PD and DN using microarray datasets. To strengthen our study, we aspire to acquire additional RNA-seq data for validation in 
the future. Secondly, the study included patients with DN and PD without considering individual patient characteristics, such as age, 
gender, smoking habits, medications, and other health conditions. This made the patient group quite diverse. In a word, it’s important 
to note that finding clear and common mechanisms in a clinical setting is challenging because each patient is unique and influenced by 
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factors like genetics, epigenetics, environment, and lifestyle. Lastly, our study was obtained based on computational predictions from 
published PD and DN-related datasets, and despite integrating scattered literature support, relevant experiments are needed to validate 
the biological functions of the studied markers and the associated signaling pathways. For example, the use of CRISPR knockout or 
overexpression research techniques has helped to validate the role of acquired genes in disease. The science of cell behavior has 
explored the role of these genes in inflammation and aging. Flow cytometry has provided a deeper understanding of the role of im-
munity in disease. Clinically, a more comprehensive treatment and prevention strategy may be required, including consensus between 
the two diseases in dental and nephrology practices, reduction of common risk factors, and an interdisciplinary approach to care for 
these diseases. 

5. Conclusion 

There is little evidence to support a causal relationship between PD and DN. Five key genes, CSF1R, CXCL6, VCAM1, JUN and IL1B, 
were employed to reveal shared mechanisms between PD and DN in the context of aging, supporting a close interconnection between 
PD and DN. It is conceivable that PD and DN are associated with RAGE pathway signaling, the complement system, and multiple 
immune inflammatory pathways, and these findings could act as the foundation for future research and should be assessed in 
experimental and/or clinical studies. 
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oral disease and systemic health, Front Immunol 13 (2022) 1044334, https://doi.org/10.3389/fimmu.2022.1044334. 

[37] C.H. Chin, S.H. Chen, H.H. Wu, C.W. Ho, M.T. Ko, C.Y. Lin, cytoHubba: identifying hub objects and sub-networks from complex interactome, BMC systems 
biology8 Suppl 4 (Suppl 4) (2014) S11, https://doi.org/10.1186/1752-0509-8-s4-s11. 
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