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Defective silencing of tumor suppressor genes through epigenetic alterations

contributes to oncogenesis by perturbing cell cycle regulation, DNA repair or

cell death mechanisms. Reversal of such epigenetic changes including DNA

hypermethylation provides a promising anticancer strategy. Until now, the

nucleoside derivatives 5-azacytidine and decitabine are the sole DNA

methyltransferase (DNMT) inhibitors approved by the FDA for the treatment

of specific hematological cancers. Nevertheless, due to their nucleoside

structure, these inhibitors directly incorporate into DNA, which leads to

severe side effects and compromises genomic stability. Much emphasis has

been placed on the development of less toxic epigenetic modifiers. Recently,

several preclinical studies demonstrated the potent epigenetic effects of local

anesthetics, which are routinely used during primary tumor resection to relief

surgical pain. These non-nucleoside molecules inhibit DNMT activity, affect the

expression of micro-RNAs and repress histone acetylation, thus exerting

cytotoxic effects on malignant cells. The in-depth mechanistic

comprehension of these epigenetic effects might promote the use of local

anesthetics as anticancer drugs.
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Introduction

Epigenetic alterations and cancer

Epigenetic alterations are common molecular hallmarks of

most cancers (1). In normal cells, epigenetic changes are

fundamental for the control of gene expression, for the

maintenance of cellular identities and for acquisition of an

ever more differentiated and specialized phenotype (2).

Epigenetic changes are highly regulated to maintain the

stability of the epigenome and cellular homeostasis. However,

aberrant patterns of DNA methylation, histone modifications

(acetylation, methylation, phosphorylation, etc.) and

dysregulation of non-coding RNAs correlate with the

development of various kinds of cancers by inactivating tumor

suppressor genes, by perturbing DNA repair and chromatin

remodeling, or by promoting oncogenic pathways (2, 3). These

modifications are under the control of interconnected regulators.

For instance, many micro-RNAs (miRNAs) can stimulate

cellular proliferation by directly interacting with cell-cycle

components, as this has been reported for miR-17-92, miR-

221/222, miR-663, miR-302 or miR-24, which target the

transcription factor E2F1 or the cyclin dependent kinase

(CDK) inhibitors p27Kip1, p21CIP1 and p16INK4a,

respectively (4–8). The hypermethylation of DNA, which is

associated with multiple pathologies, is characterized by the

transfer of methyl groups to the position 5 of cytosine residues at

CpG islands, which may be located in the promoter regions of

tumor suppressive genes, thus inducing their inactivation (9).

This reaction is catalyzed by a family of DNAmethyltransferases

encoded by four specific genes (DNMT1, DNMT2, DNMT3a

and DNMT3b) that synergistically promote oncogenesis (9–11).

Of note, hypermethylation of DNA is perfectly reversible, and

silent genes can be reactivated by administration of

hypomethylating agents. Two demethylating drugs were

approved by the FDA for this purpose: 5-azacytidine and the

cytidine analog 5-aza-2’-deoxycytidine also known as decitabine

(sold under the brand name dacogen, DAC). After their

incorporation into genomic DNA, both agents directly inhibit

DNMTs. In the clinic, they are exclusively prescribed for the

treatment of myelodysplasia and acute myeloid leukemia (12).

However, despite promising preliminary preclinical data (such

as the promotion of cancer cell apoptosis in vitro and the

reduction of tumor growth in mouse models), 5-azacytidine

and decitabine provoke considerable side-effects in patients (e.g.

mutagenicity, thrombocytopenia and prolonged neutropenia),

limiting their employment and motivating their continuous

investigation in clinical trials (13). For this reason, the search

for ever less toxic hypomethylating agents is ongoing.

Recently, local anesthetics (LA) such as bupivacaine,

levobupivacaine, lidocaine, ropivacaine and procaine were

described to act as non-nucleoside DNA demethylating agents
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responsible for upregulating transcriptionally silent genes (14–

21), to interfere with the expression of several miRNAs and to

impact on the level of histone acetylation (22). These LA are

currently employed for their analgesic and anti-inflammatory

properties, but also turned out to be endowed with potent anti-

tumor effects (23–33).
Local anesthetics induce
anticancer effects

LA are commonly used during oncological surgery to relief

the acute pain generated by the surgical procedure. Several

retrospective clinical trials reported a notable improvement of

overall survival and a reduction in recurrence after primary

tumor resection under local anesthesia compared to general

anesthesia alone (23, 26, 34–36). This epidemiological evidence

suggests that LA might have anticancer effects. Several pathways

that may explain such antineoplastic effects have been described

in the literature. Indeed, preclinical data indicate that LA

influence the migration and the survival of cancer cells. At

clinically relevant concentrations, LA inhibit the proliferation

of cancer cells by provoking cell cycle arrest, by triggering

mitochondrial dysfunction or by causing apoptotic cell death

(28, 29, 37). Moreover, LA abrogate the migration of cancer cells

after inducing intracellular Ca2+ changes that affect the

cytoskeleton (24). LA also inhibit the secretion of matrix

metalloproteinases necessary for the invasion of cancer cells

into the extracellular matrix (38). The anti-inflammatory

property of LA reduces the levels of procarcinogenic cytokine

interleukin-6 (IL-6) detectable in the serum of patients during

oncological surgery (25, 39). In vivo, LA elicit an anticancer

immune response, thus causing tumor growth reduction in mice

and extending the lifespan of animals with solid tumors (20, 40).

When combined with chemotherapeutic agents such as 5-

fluorouracil, paclitaxel or platinum salts, LA induce a

synergistic antitumor effect, meaning that they sensitize cancer

cells to the cytotoxicity of chemotherapy (14, 41). Taken

together, the current state of the literature supports the

contention that LA may directly kill cancer cells and also

promote immune responses against neoplastic cells.

Hitherto, only few prospective trials investigated the role of

local anesthetics on oncological prognosis (42). Most studies

failed to support a direct impact on clinical outcome. However,

the continued accumulation of irrefutable preclinical data

demonstrating antitumor effects of local anesthetics

encourages clinicians to further pursue investigations as

illustrated by several randomized controlled trials recorded at

www.clinicaltrials.gov and summarized in (43). Among the

published scientific readouts, it can be suspected that at least

some of these effects are secondary to LA effects on the tumor

epigenome. Here, we summarize preclinical data highlighting
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the epigenetic mode of action through which LA could exert

their antineoplastic activity.
Local anesthetics promote DNA
demethylation and restore expression of
tumor suppressor genes

Several studies observed that aminoamide-type local

anesthetics such as bupivacaine, lidocaine, ropivacaine and

ester-type local anesthetic like procaine mediate antitumor

effects as well as global DNA demethylation in many types of

solid cancers in a time-and dose-dependent manner (Table 1).

For instance, bupivacaine, lidocaine and ropivacaine turned out

to be potent DNA-demethylating agents of RASSF1A,

hampering the proliferation of human hepatocarcinoma

HepG2 and BEL-7402 cells (45). Lidocaine triggered apoptosis

of human breast cancer BT-20 and MCF-7 cells by inducing the

expression of the tumor suppressive RARb2 and RASSF1A genes

(14). Procaine reduced global DNA methylation by 40% in

breast cancer MCF-7 cells by inhibiting DNMT1 (21) and

showed an outstanding ability to minimize the growth, the

proliferation and the invasion of various human cancers both

in vitro and in vivo (15, 17, 20, 21). Interestingly, LA can
Frontiers in Oncology 03
sterically inhibit DNMT binding to CpG islands or to DNA

(15, 21, 47) (Figure 1). As a consequence, the epigenetic

regulation by LA could represent a therapeutic option. Indeed,

the cytotoxic effects of conventional chemotherapeutic agents

such as cisplatin or carboplatin are significantly potentiated

when they are combined with LA (14, 17, 45). The association

of both lidocaine and cisplatin triggers a higher level of cancer

cell apoptosis than lidocaine or cisplatin alone because of the re-

expression of the RASSF1A and RARb2 genes (14). Combined

with 5-aza-2 ’-deoxycytidine, an interesting additive

demethylating effect was observed for lidocaine (44).

The effects induced by LA-mediated epigenetic modulation

are not limited to the restoration of tumor suppressor gene

expression but also modulate the sensitivity to pain (48) and

influence the response to corticoid stress during surgery (49, 50),

altogether profoundly impinging on the activity of anti-tumor

effectors (49, 51). Until now, opioids have been the most

commonly used analgesics for controlling acute pain. However,

preclinical data indicate that opioids mediate pro-tumorigenic

effects via the activation of matrix metalloproteinases and

oncogenes like c-Myc as well as via an increase in DNA

methylation (52–54). Of note, DNA methylation leads to the

expression of the mu opioid receptor and predicts the response to

endogenous endorphins and opioid analgesics (55). Paradoxically,
TABLE 1 Local anesthetics and DNA demethylation.

Agents Cancer Human cell lines Epigenetic changes Anticancer effects Ref

Lidocaine
Ropivacaine

Breast BT-20
(estrogen receptor negative)
MCF-7
(estrogen receptor positive)

Global DNA demethylation
Lidocaine + 5-aza-2′-deoxycytidine induce additive demethylating effect

(44)

Lidocaine Breast BT-20
(estrogen receptor negative)
MCF-7
(estrogen receptor positive)

Global DNA demethylation
Unchanged mRNA expression of tumor suppressor genes RASSF1A, MYOD1
and GSTP1

(16)

Lidocaine Breast MCF-7
(estrogen receptor positive)
MDA-MB-231

Global DNA demethylation
Demethylation of tumor suppressor genes RARb2 and RASSF1A (restoration
of expression)
Increased cisplatin cytotoxicity

Apoptosis (14)

Lidocaine
Ropivacaine
Bupivacaine

Liver HepG2
BEL-7402

Demethylation of tumor suppressor genes RASSF1A (restoration of
expression)
Local anesthetics + cisplatin potentiate RASSF1A expression

Proliferation inhibition (45)

Procaine Breast MCF-7
(estrogen receptor positive)

Global DNA demethylation by inhibiting DNMT1
Demethylation of the CpG islands of the tumor suppressor gene RARb2
(restoration of expression)

Growth inhibition (21)

Procaine Liver HLE
HuH6
HuH7

Global DNA demethylation
Demethylation of p16INK4a, HAI-2/PB, 14-3-3-sigma and NQO1 genes
(restoration of expression)

Proliferation inhibition
(HLE cells)
Growth inhibition
(xenograft tumor)

(20)

Procaine Colon HCT116 Procaine alone (3µM) or combined with carboplatin (3µM) induce
demethylation

Reduced viability (17)

Procaine Gastric SGC-7901 Global DNA demethylation by repressing DNMT1 and DNMT3a activity
Demethylation of the tumor suppressor genes CDKN2A and RARb2

Proliferation inhibition
Apoptosis

(15)

Procaine Lung H460
A549

Demethylation of WIF-1 (restoration of expression) (46)
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excessive administration of opioids increases the risk of

hyperalgesia during the postoperative period. It is tempting to

speculate that the epigenetic demethylating activity of LA could

prevent the hyperalgesia induced by both hypermethylation and

opioids and hence counteract the opioid-mediated protumoral

effects as well. Thus, opioid-free anesthesia, in which opioids are

replaced by a mix of local anesthetics and other analgesic agents,

offers a possibility to relieve pain, and to alleviate surgical stress-

induced epigenetic changes, thereby restoring the expression of

tumor suppressor genes.
Local anesthetics regulate
non-coding RNAs

MiRNAs belong to the family of non-coding RNAs. Their

main role is to control gene expression at different levels, and their

dysregulation may trigger malignant transformation (56). LA are

endowed with the capacity to enhance or suppress the expression

of a variety of miRNAs, which differ according to the employed

molecules and cancer cell lines (Table 2). The regulation of

miRNAs by LA impacts several signaling pathways that mediate

oncosuppression. Most of these pathways repress the downstream

signaling pathwaymediated by protein kinase B (PKB, best known

as AKT) and mammalian target of rapamycin (mTOR), thus

deeply affecting the proliferation, migration and invasion of

cancer cells and inducing apoptosis (Figures 1, 2) (81).

Interestingly, mTOR was described as a major regulator of

energy metabolism by controlling oxidative phosphorylation

(84). LA are known to induce mitochondrial dysfunction
Frontiers in Oncology 04
leading to the production of reactive oxygen species. Indeed, the

antitumor activity of ropivacaine involves both the disruption of

mitochondrial function and the inhibition of Akt and mTOR

phosphorylation, highlighting a putative link between AKT/

mTOR and mitochondrial activity in cancer (85). Moreover, the

inhibition of the AKT-mTOR pathway by LA demonstrated a

relevant impact in preclinical experiments. Indeed, lidocaine-

promoted miRNA regulation reversed cisplatin-resistance in

MGC-803/DDP gastric cells, minimized the cisplatin resistance

in lung cancer cells A549/DDP and increased the cytotoxicity of 5-

fluorouracil against SK-MEL-2 melanoma cells via upregulation

of miR-493 (67, 72, 74). LA also exert antineoplastic properties by

acting on the epithelial growth factor receptor (EGFR) axis. For

instance, lidocaine inhibits the proliferation of lung cancer cells

via upregulation of miR-539, which directly targets EGFR (71).

Lidocaine also minimizes the progression of retinoblastoma both

in vitro and in vivo by downregulating EGFR expression through

the upregulation of miR-520a-3p (77).

The extracellular signal-regulated kinases (ERK) signaling

pathway is also impacted by the modulation of miRNA

expression induced by LA. In a model of osteosarcoma,

procaine significantly blocked the proliferation and migration

of tumor cells and promoted apoptosis by upregulating miR-

133b. In parallel, the level of p/t-ERK was profoundly decreased.

The employment of miR-133b inhibitors reversed all the

observed effects including the phosphorylation of ERK,

revealing the interaction between this pathway and non-

coding RNAs (31). Interestingly, the regulation of miRNAs by

LA can target several pathways, thus inducing synergistic effect.

Thus, lidocaine can upregulate the expression of miR-145b,
FIGURE 1

Local anesthetics induce anti-tumor effects via epigenetic modulation in cancer cells. Local anesthetics inhibit DNA methyltransferases (DNMT)
decreasing the level of DNA methylation. This hypomethylation (or demethylation) restores the expression of various tumor suppressor genes
impeding the proliferation, the invasion and the mitochondrial metabolism of tumor cells. This epigenetic effect of local anesthetics potentiates
the cytotoxic activity of antineoplastic therapies.
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TABLE 2 Local anesthetics and non-coding RNAs regulation.

Agents Cancer Human cell
lines

Epigenetic changes Target Anticancer effects Ref

Bupivacaine Neuroblastoma SH-SY5Y miR-132 upregulation IGFR1
Decrease in p-Akt

Proliferation inhibition
Apoptosis

(57)

Bupivacaine Neuroblastoma SH-SY5Y lncRNA ZFAS1
upregulation

miR-421 downregulation
ZNF564 upregulation

Apoptosis (58)

Bupivacaine Neuroblastoma SH-SY5Y lncRNA MALAT1
upregulation

miR-101-3-3p downregulation
PDCD4 upregulation

Apoptosis (59)

Bupivacaine Neuroblastoma SH-SY5Y LINC00665
downregulation

hsa-miR-34a-5p Apoptosis (60)

Bupivacaine Gastric AGS
HGC27

miR-145-5p upregulation Decrease in Circ_0000376 Migration and invasion inhibition
Glycolysis inhibition
Apoptosis

(61)

Bupivacaine Breast MCF-7 miR-187-5p upregulation lncRNA DANCR and MYB
downregulation

Inhibition of migration
Apoptosis

(62)

Levobupivacaine Gastric HGC27
SGC7901

miR-489-3p upregulation SLC7A11 Growth inhibition
Ferroptosis

(63)

Lidocaine Breast MCF-7 miR-187-5p upregulation lncRNA DANCR and MYB
downregulation

Migration inhibition
Apoptosis

(62)

Lidocaine Cervix HeLa lncRNA-MEG3
upregulation

miR-421
downregulation
BTG1 upregulation

Proliferation inhibition
Tumor growth inhibition
Apoptosis

(64)

Lidocaine Colon
Rectum

SW480
HCT116
NCM460

miR-520a-3p
upregulation

EGFR inhibition Proliferation inhibition
Apoptosis

(65)

Lidocaine Colon
Rectum

SW620
LoVo

CirclTFG2 upregulation miR-1204 downregulation
SOCS2 upregulation

Proliferation invasion and promotion
inhibition
Apoptosis

(66)

Lidocaine Gastric MGC-803
MGC-803/DDP

miR10b downregulation AKT/mTOR inhibition Migration and invasion inhibition
Cisplatin-resistance reduction

(67)

Lidocaine Gastric GES-1
AGS
HGC-27

Circ_ANO5 upregulation miR-21-5p downregulation
LIFR upregulation

Proliferation, migration and invasion
inhibition
Tumor growth inhibition
Apoptosis

(68)

Lidocaine Gastric MKN45 miR-145 upregulation MEK/ERK and NF-kB Inactivation Growth, migration and invasion
inhibition
Apoptosis

(18)

Lidocaine Glioma U-251MG
T98G

CircEZH2
downregulation

miR-181b-5p upregulation Proliferation, migration and invasion
inhibition
Tumor growth inhibition

(69)

Lidocaine Liver Huh7
Hep3B

Circ_ITCH upregulation miR-421 downregulation
CPEB3 upregulation

Proliferation, migration and invasion
inhibition
Apoptosis

(70)

Lidocaine Lung A549
NCI-H1299

miR-539 upregulation EGFR inhibition Migration and invasion inhibition
Apoptosis

(71)

Lidocaine Lung A549
A549/DDP

miR-21 downregulation PTEN/PI3K/AKT
PDCD4/JNK

Migration and invasion inhibition
Apoptosis

(72)

Lidocaine Lung A549
PC9

Circ_PDZD8
downregulation

miR-516b-5p upregulation
GOLT1A downregulation

Apoptosis (73)

Lidocaine Melanoma SK-MEL-2 miR-493 upregulation Sox4 downregulation
Decrease in p-PI3K, p-AKT, p-
Smad2

Apoptosis
5-FU cytotoxicity increase

(74)

Lidocaine Neuroblastoma SH-SY5Y miR-145 upregulation PI3K/AKT/mTOR inhibition Growth inhibition
Autophagy

(75)

Lidocaine Neuroblastoma SH-SY5Y LINC01347
downregulation

hsa-miR-145-5p upregulation Apoptosis (76)

(Continued)
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which simultaneously inactivates both ERK and NF-kB
pathways, potentiating the inhibition of proliferation,

migration and invasion of malignant gastric cells (18).

Interestingly, different modalities of cell death triggered by

epigenetic modulation were observed after LA treatment. The

upregulation of miR-145 by lidocaine promoted autophagic flux

in neuroblastoma SH-SY5Y cells (75). Lidocaine and

levobupivacaine both induced ferroptosis by upregulating

miR-382-5p and miR-489-3p, respectively (19, 63). The impact

of LA on cellular stress and death pathways via the control of

non-coding RNA emphasizes the possibility to use LA as novel

antineoplastic therapeutics.

Finally, several reports suggest an intertwined regulation of

multiple non-coding RNAs by LA. Indeed, lncRNAs and circular
Frontiers in Oncology 06
RNAs (circRNAs), a group of non-coding RNAs described to be

involved in oncogenesis, may act as miRNA sponges. In a model

of glioma, the treatment with ropivacaine suppressed tumor

progression by upregulating the circRNA circSCAF11, while

downregulating miR-145-5p (30). Inversely, bupivacaine

decreased the expression of circ_0000376 while enhancing

miR-145-5p in gastric cancer cells (61). Lidocaine hampered

the proliferation of colorectal cancer cells by upregulating

circlTFG2 and then decreasing miR-1204 (66). In a model of

gastric cancer, lidocaine hindered tumor progression by

modulating the miR-21-5p/LIFR axis via the overexpression of

circ-ANO5 (68). Bupivacaine impeded neuroblastoma

progression by modifying the expression of various long non-

coding RNAs (ZFAS1, MALAT1, LINC00665, which sponged
TABLE 2 Continued

Agents Cancer Human cell
lines

Epigenetic changes Target Anticancer effects Ref

Lidocaine Ovary
Breast

SKOV-3
T47D

miR-382-5p upregulation SLC7A11 downregulation Proliferation, migration and invasion
inhibition
Tumor growth inhibition
Reactive Oxygen Species production
Ferroptosis

(19)

Lidocaine Retinoblastoma Y79
WERI-RB1
SO-RB50
SO-RB70

miR-520a-3p
upregulation

EGFR inhibition Proliferation inhibition
Apoptosis

(77)

Lidocaine Skin A431 miR-30c upregulation SIRT1 downregulation Proliferation inhibition
Inhibition of cisplatin resistance

(6)

Procaine Osteosarcoma MG63 miR-133b upregulation Decrease in p/t-AKT, p/t-ERK, and
p/t-S6

Proliferation and migration inhibition
Apoptosis

(31)

Ropivacaine Breast MCF-7
MDA-MB-231

miR-27b-3p upregulation YAP downregulation Proliferation, migration and invasion
inhibition
Tumor growth inhibition
Apoptosis

(78)

Ropivacaine Cervix Siha
Caski

miR-96 downregulation MEG2 upregulation Growth inhibition
Apoptosis

(79)

Ropivacaine Choriocarcinoma NA LNCOGFRP1
downregulation

miR-4731-5p upregulation
HIF3A downregulation

Viability, migration and invasion
inhibition

(80)

Ropivacaine Gastric AGS
BGC-823

miR-520a-3p
upregulation

PI3K/AKT inhibition Proliferation, migration and invasion
inhibition
Apoptosis

(81)

Ropivacaine Glioma T98G
LN229

circSCAF11
downregulation

miR-145-5p upregulation Proliferation, migration and invasion
inhibition
Tumor growth inhibition
Reactive Oxygen Species
Apoptosis

(30)

Ropivacaine Glioma T98G
LN229

SNHG16 downregulation miR-424-5 upregulation Proliferation, migration and invasion
inhibition
Apoptosis

(82)

Ropivacaine Glioma U87
U373
U251

miR-21-5p upregulation KANSL2 downregulation Proliferation, migration and invasion
inhibition
Apoptosis

(83)
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FIGURE 2

Local anesthetics inhibit cell proliferation, migration and invasion and promote cancer cell death via inhibition of several signaling pathway. Akt,
protein kinase B; BTG1, B cell translocation gene 1; DDP, cisplatin; EGFR, Epithelial growth factor receptor; ERK, extracellular signal-regulated
kinase; mTOR, mammalian Target of Rapamycin; PI3K, phosphoinositide-3 kinase; PTEN, Phosphatase and TENsin homolog; SOX4, SRY-Box
Transcription Factor 4.
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protumorigenic miR-421, miR-101-3-3p and miR-34a-5p,

respectively) (58–60).
Local anesthetics repress histone
acetylation in cancer cells

Previous publications reported that levobupivacaine, an

amino amide LA widely used to control acute surgical pain,

possesses the capacity to attenuate the oncological properties of

several cancer types (86, 87). However, the mechanisms by

which levobupivacaine exerts its anticancer activity remain

poorly characterized. Lysine acetyltransferase 5 (KAT5)

acetylates both non-histone and histone proteins and increases

the invasiveness of cancer cells (88). Levobupivacaine inhibits

the expression of KAT5 in osteosarcoma cells, thus inhibiting

their proliferation and limiting their survival (22). This

preclinical finding demonstrated the implication of LA in

epigenetic changes on histones leading to anticancer

properties . Interest ingly, the inhibit ion of histone

acetyltransferase activity decreases opioid-induced hyperalgesia

in mice (89). Nevertheless, the impact of LA on histone

modification as well as the oncological consequences remain

unclear, calling for future exploration.
Discussion

The reversal of cancer-associated epigenetic dysregulations

represents one possible antineoplastic strategy. Various

demethylating molecules were characterized at the preclinical

level (as exemplified by curcumin, (−)-epigallocatechin-3-

gallate, N-phthalyl-tryptophan and zebularine) (90–94), and

two agents (5-azacytidine and decitabine) have been approved

by the FDA and EMA to treat patients with myelodysplastic

syndrome or acute myeloid leukemia. These agents inhibit

DNMT and hence reduce the global DNA methylation level in

cancer cells. Despite their established anti-tumor activity, 5-

azacytidine and decitabine induce severe myelosuppression, thus

calling for the identification of novel epigenetic modulators.

Surprisingly, LA mediate significant antineoplastic activities

by directly killing cancer cells and indirectly by eliciting

anticancer immune responses (27, 32, 33, 37, 79, 95, 96). The

detailed molecular comprehension of these effects may open a

novel era in onco-anesthesia. Notably, the discovery of LA-

promoted antitumor effects involving the induction of apoptosis

secondary to the reduction of DNA methylation or the

modulation of miRNAs has spurred much interest (18, 20, 30,

31, 67). Both amide and ester-type local anesthetics reduce

global methylation levels in the promoter regions of tumor

suppressor genes as a result of the inhibited interaction of

DNMT with DNA. However, most preclinical studies have not
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yet investigated the effects of LA on the methylation of

promoters of specific tumor suppressor genes as well as on the

mRNA expression of such genes.

Beyond their effects on DNA methylation, LA also modulate

(enhance or reduce) the expression of miRNAs in cancer cells, as

summarized in a previous review (97). Compared to this

published work, our review is the first one to critically evaluate

all epigenetic changes induced by LA, including demethylating

effects as well as miRNA regulation and histone acetylation, and

to discuss their putative synergistic interaction with 5-

azacytidine, decitabine and cytotoxicants. We surmise that the

epigenetic effects of LA could be clinically relevant. Indeed, LA

are well-known analgesics with a favorable toxicological profile

that are commonly used during oncological intervention. A

positive clinical impact of LA on cancer recurrence would

provide a low-risk and low-cost benefit to oncological patients.

However, before such a conclusion can be reached, further

clinical and translational research must confirm the capacity of

LA to improve the outcome of surgical procedures, especially if

they are preceded or followed by (neo)adjuvant chemotherapy

or immunotherapy. It will be particularly important to

investigate the short-term (intra-operational) and long-term

(post-operational) effects of LA on epigenetic signatures

including DNA methylation patterns and the expression of

non-coding RNAs in further translational studies.
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