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Tyrosine phosphorylation and bacterial virulence

Sarah E Whitmore and Richard J Lamont

Protein phosphorylation on tyrosine has emerged as a key device in the control of numerous cellular functions in bacteria. In this article,

we review the structure and function of bacterial tyrosine kinases and phosphatases. Phosphorylation is catalyzed by

autophosphorylating adenosine triphosphate-dependent enzymes (bacterial tyrosine (BY) kinases) that are characterized by the

presence of Walker motifs. The reverse reaction is catalyzed by three classes of enzymes: the eukaryotic-like phosphatases (PTPs) and

dual-specific phosphatases; the low molecular weight protein-tyrosine phosphatases (LMW-PTPs); and the polymerase–histidinol

phosphatases (PHP). Many BY kinases and tyrosine phosphatases can utilize host cell proteins as substrates, thereby contributing to

bacterial pathogenicity. Bacterial tyrosine phosphorylation/dephosphorylation is also involved in biofilm formation and community

development. The Porphyromonas gingivalis tyrosine phosphatase Ltp1 is involved in a restraint pathway that regulates heterotypic

community development with Streptococcus gordonii. Ltp1 is upregulated by contact with S. gordonii and Ltp1 activity controls

adhesin expression and levels of the interspecies signal AI-2.
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INTRODUCTION

Regulation of protein activity, as orchestrated by the tightly co-

ordinated and balanced dynamics between kinases and phosphatases,

is one of the critical determinants of normal cellular growth and

development. While the addition or removal of phosphoryl groups

to/from serine, threonine or tyrosine residues has long been estab-

lished as one of the predominant mechanisms of post-translational

protein modification in eukaryotes, it was not until the 1970s that

landmark studies demonstrated its importance in prokaryotes.1

Furthermore, protein phosphorylation has now also been shown to

be prevalent in archaea.2 The first characterized phosphorylation

systems in prokaryotic organisms were the two component systems

(TCS) and the phosphotransferase system (PTS).3 In the basic

configuration of TCS, a surface-exposed sensor kinase is first

autophosphorylated in response to an external signal. The phosphoryl

group is then transferred to the aspartyl residue of a response

regulator, which in turn can modulate gene expression. In this

manner, signal transduction is effectuated by phosphate flow. TCS

are widespread in bacteria, and they control the response to a wide

range of environmental stimuli. Remarkably, any one organism can

possess up to 50 functionally isolated systems. In the PTS system,

a phosphoryl group from phosphoenol pyruvate is transferred

along a chain of proteins by reversible phosphorylation of histidine

residues (although HPr is phosphorylated on histidine and serine).3

The final receptor for the phosphoryl group is a sugar; hence,

the PTS is involved in carbohydrate uptake rather than signal

transduction.

PHOSPHORYLATION OF PROTEINS IN BACTERIA

Serine and threonine phosphorylation

Bacterial serine/threonine specific phosphorylation was discovered

more than 30 years ago, and this post-translational modification is

now known to be ubiquitous and is involved in a diverse array of

physiological processes including secondary metabolism, catabolite

repression, oxidative stress responses and sporulation.4 Serine/threo-

nine kinases and phosphatases are also involved in bacterial virulence,

in particular through their action on host cell substrates (Table 1). For

example, the YpkA/YopO kinase of Yersinia species is delivered into

epithelial cells by type III secretion machinery, whereupon it disrupts

actin microfilament structure.5 Two autophosphorylated Ser/Thr pro-

tein kinases, NleH1 and NleH2, in enterohemorrhagic Escherichia coli,

and the OspG protein in Shigella flexneri, inhibit activation of the

proinflammatory transcription factor NF-kB.6–7 The serine phospha-

tase SerB of Porphyromonas gingivalis, which is required for maximal

invasion of the organisms into epithelial cells, can impact both the

actin and tubulin cytoskeleton of host cells, and also attenuate NF-kB

activation.8–10 The secretion of serine kinases and/or phosphatases has

thus afforded bacterial pathogens the means to interfere with host

signal transduction pathways.

Tyrosine phosphorylation

The first definitive evidence of protein tyrosine kinase activity in bac-

teria was discovered in E. coli with the identification of phosphotyr-

osine in partial acid hydrolysates of proteins.11 Protein tyrosine

phosphorylation subsequently was shown to direct many essential
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cellular processes, such as capsule production, growth, proliferation,

migration, flagellin export, adaptation to stress and production of

secondary metabolites (Table 2).12 Moreover, the addition of a bulky,

negatively charged phosphoryl group to a protein can influence both

cellular location and the overall protein interactome.13 A number

of global phosphoproteome studies have now been conducted in

bacteria, including E. coli, Helicobacter pylori, Bacillus subtilis,

Streptomyces coelicolor, Mycoplasma pneumoniae, Streptococcus pneu-

moniae, Klebsiella pneumoniae, Lactococcus lactis, Campylobacter

jejuni and Pseudomonas species. These databases have shown an

increasing number of bacterial proteins that are phosphorylated on

Ser/Thr/Tyr residues; and, moreover, these proteins are involved

Table 1 Bacterial kinases and phosphatases involved in virulence through interaction with host cell proteins

Organism Enzyme Activity Impact on host cell function References

Coxiella burnetii Acp Tyrosine phosphatase Inhibition of human neutrophils 55–56

Enterohemorrhagic NleH1, NleH2 Ser/Thr kinase Inhibit activation of NF-kB 6

Escherichia coli NleH1, NleH2 Ser/Thr kinase Inhibit activation of NF-kB 6

Listeria monocytogenes LipA Tyrosine phosphatase Actin cytoskeleton disruption 39

Mycobacterium tuberculosis MPtpA and B Tyrosine phosphatase Phagocytosis actin polymerization in macrophages 35, 57

PknG Ser/Thr kinase Inhibition of phagosome-lysosome fusion 58

Porphyromonas gingivalis SerB Serine phosphatase Disruption of actin/tubulin; inhibition of NF-kB activation,

intracellular persistence

9–10

Salmonella typhi StpA Tyrosine phosphatase Host cytoskeleton disruption 59

Salmonella ‘typhimurium’ SptP Tyrosine phosphatase Actin rearrangements 60

Shigella flexneri OspG Ser/Thr kinase Inhibit NF-kB activation 6

OspF Dual specific phosphatase Represses innate immunity 61

Yersinia enterocolitica YopO Ser/Thr kinase Disruption of actin; inhibition of phagocytosis 62

Yersinia pseudotuberculosis YopH Tyrosine phosphatase Cytoskeletal rearrangements; inhibition of phagocytosis 28

Yersinia pseudotuberculosis YpkA Ser/Thr kinase Disruption of actin; inhibition of phagocytosis 5

Yersinia pestis YpkA Ser/Thr kinase Disruption of actin; inhibition of phagocytosis 5

Table 2 Bacterial protein tyrosine kinases and phosphatases and their functional roles

Organism Tyrosine Kinase

Tyrosine

Phosphatase Substrate(s) Function References

Acinetobacter johnsonii Ptk Ptp Ptp uses Ptk as endogenous

substrate

Phosphorelay reactions of inner

membrane proteins

63

Acinetobacter lwoffii Wzc Wzb Wzb uses Wzc as endogenous

substrate

Emulsan production 46

Bacillus subtilis YwqD, PtkA, PtkB,

McsB

YwqE, YfkJ, YwlE,

PtpZ

TuaD, Ugd, SsbA, McsA, CtsR, YjoA,

YnfE, TvyG, YorK, Asd, YwpH

Exopolysaccharide synthesis,

teichuronic acid production, DNA

metabolism, heat shock response

64–65

Caulobacter crescentus DivL — CtrA Cell division 66

Erwinia amylovora AmsA AmsI Lipid carrier di-/monophosphates Amylovoran production 67

Escherichia coli K-12 WzcCA Wzb Ugd; Wzb uses Wzc as endogenous

substrate

Colanic acid synthesis 40, 68

Escherichia coli K-12/K-30 Etk Etp RpoH, RseA; Etk Exopolysaccharide production 69

Escherichia coli K-30 WzcCPS Wzb Ugd Group 1 capsule assembly 44

Klebsiella pneumonia Yco6, Wzc Yor5, Wzb Yor5 uses Yco6 as endogenous

substrate

Capsule synthesis 18, 70

Myxococcus xanthus MasK — MgIA Aggregation, sporulation, motility,

development

71

Porphyromonas gingivalis Ltp1 Exopolysaccharide production,

heterotypic community development

49

Pseudomonas aeruginosa WaaP Lipopolysaccharide synthesis 72

Pseudomonas aeruginosa 42k Flagellin a and b proteins; Flagellin export 73

Pseudomonas aeruginosa TbpA Diguanylate cyclase Exopolysaccharide production, biofilm

development

47

Ralstonia solanacearum EpsB EpsP Exopolysaccharide transport 74–75

Salmonella typhimurium PutA — P5C Proline metabolism 76

Sinorhizobium meliloti ExoP — Succinoglycan production 77

Staphylococcus aureus Cap5B2 CapC, PtpA, PtpB Cap5O (UDP-acetyl-mannosamine

dehydrogenase)

Capsule synthesis 78

Streptococcus agalactiae CpsD CpsB Polysaccharide chain length 79

Streptococcus pneumoniae CpsD CpsB Capsule synthesis 80

Streptococcus thermophilus EpsD EpsB EpsE Exopolysaccharide biosynthesis 81

Streptomyces coelicolor A3(2) AfsK — AfsR Antibiotic production 82–84
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in a variety of important cellular functions, including virulence and

cell survival.14–24

BACTERIAL TYROSINE KINASES

Structure

The bacterial tyrosine (BY) kinase family comprises the major group

of bacterial enzymes endowed with tyrosine kinase activity. In most

cases, BY kinases possess a transmembrane domain that can function

both as an anchor and a sensor, as well as an intracellular catalytic

domain.25 The catalytic domain lacks the distinctive eukaryotic kinase

motifs, and is defined by the presence of Walker A (P-loop) and B

motifs (Figure 1). In addition, some BY kinases also contain a Walker

A9 motif. BY kinases autophosphorylate at a tyrosine rich cluster in the

C-terminal region using adenosine triphosphate as a phosphoryl

donor, and the degree of phosphorylation in this region determines

the interaction strength with other proteins. Some BY kinases also

autophosphorylate on a tyrosine residue in close proximity to the

Walker A9 box. Recent studies have identified other bacterial tyrosine

kinases including those that closely resemble eukaryotic-like

kinases, and those that utilize guaidino-phosphotransferase domains.

Additionally, in some cases, tyrosine can substitute for histidine in

TCS.25

Function

The majority of genes encoding BY kinases reside in operons respons-

ible for regulating the synthesis and secretion of polysaccharides. The

autophosphorylation state of the BY kinases exerts control over this

process through phosphorylation, and activation, of UDP-sugar

dehydrogenases and glucosyltransferases.13 As bacterial regulatory

networks are extensively interconnected, the phosphotransfer reac-

tions can modulate a myriad of physiological processes that include

resistance to cationic peptides and polymixin, along with heat shock

responses. A greater appreciation for the role of tyrosine kinases in

prokaryotes has emerged from the application of global phosphopro-

teome technologies. For example, the PtkA BY kinase of Bacillus

subtilis can phosphorylate at least nine different protein substrates.26

Several of these substrates, most notably single-stranded DNA exonu-

clease YorK and aspartate semialdehyde dehydrogenase Asd, are acti-

vated via phosphorylation. Yet, the activity of many others, such as

enolase, YjoA, YnfE, TvyG, Ugd and SsbA, remains unaffected by

phosphorylation, and rather the cellular localization of these proteins

is governed by phosphorylation status. Hence, BY action can not only

regulate the activity of substrates, but also ensure the correct cellular

localization of specific protein targets.

BACTERIAL TYROSINE PHOSPHATASES

Structure

Bacterial tyrosine phosphatases catalyze the dephosphorylation of

tyrosyl phosphorylated proteins, which in turn can result in either

the propagation or inhibition of phospho-dependent signaling.

Bacterial tyrosine phosphatases can be categorized into three distinct

families: (i) the eukaryotic-like phosphatases (PTPs) and dual-specific

phosphatases that also display activity against phosphoserine and

phosphothreonine; (ii) the low molecular weight protein-tyrosine

phosphatases (LMW-PTPs), a family of small acidic enzymes also

found in eukaryotes; and (iii) the polymerase–histidinol phosphatases

(PHP), a family of phosphoesterases commonly found in gram-

positive bacteria. The PTP, dual-specific phosphatase and LMW-

PTP enzymes utilize a common catalytic mechanism that involves

the conserved signature C(X)5R motif in the phosphate binding loop

where cysteine, functioning as a nucleophile, attacks the phosphorus

atom of the phosphotyrosine residue of the substrate. The arginine

residue interacts with the phosphate moiety of the phosphotyrosine.27

This motif is flanked, more remotely, by an essential aspartic acid

residue, the location of which varies among the families. Protein tyr-

osine phosphatases also are capable of possessing dual functions,

whereby in some instances, they can stimulate actions of cognate

protein tyrosine kinases, yet in other cases, they may antagonize those

actions.12 In gram-negative bacteria, the gene encoding the LMW-PTP

generally is upstream of the tyrosine kinase in the same operon.

Conversely, in gram-positives, a PHP type phosphatase often is

located in the same operon as the BY kinase alongside an adaptor

protein, with the gene for the LMW-PTP at a remote site.

Function

While bacterial tyrosine phosphatases can be intimately involved in a

number of cellular processes, two major themes have become appar-

ent: involvement in polysaccharide production; and as secreted

effector proteins with the potential for manipulation of host cell signal

transduction pathways. Polysaccharide production, encompassing

both exopolysaccharides and capsular polysaccharides, is also a key

virulence determinant in many organisms and thus tyrosine phospha-

tase activity is emerging as a central player in the information flow that

controls pathogenic activity.

The YopH protein tyrosine phosphatase of Yersinia, a member of the

PTP family, is an essential virulence factor that is injected into epithelial

cells by type III secretion machinery. YopH can uncouple multiple

signal transduction pathways,28 and in human epithelial cells YopH

dephosphorylates several focal adhesion proteins, including p130Cas

(Cas), focal adhesion kinase and paxillin.29–31 Similarly, Salmonella

‘typhimurium’ translocates the PTP tyrosine phosphatase SptP into

epithelial cells where it is involved in reversing mitogen-activated

protein kinase activation.32 SptP is required for full virulence in mur-

ine models of disease.33 Shigella flexneri produces a dually specific

phosphatase, OspF, that dephosphorylates mitogen-activated protein

kinase, which consequently prevents histone H3 phosphorylation.34

Figure 1 Domain structure of BY kinases. A periplasmic (gram-negatives) or

extracellular (gram-positives) sensory loop is linked to the catalytic intracellular

domain, either contiguously (gram-negatives) or through protein–protein inter-

action (gram-negatives). The catalytic domain contains Walker A, B and A9 motifs

(blue). A tyrosine-rich region (red) containing the phosphorylation sites is present

in the C-terminus, and gram-negative BY kinases also possess an internal tyr-

osine (red) that can be autophosphorylated. Walker motifs A, A9 and B can be

identified by conserved sequences motifs. BY, bacterial tyrosine.
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A reduction in the level of histone 3 phosphorylation impedes access

of the transcription factor NF-kB to the chromosome and hence

transcription of NF-kB responsive genes such as IL-8 is reduced.

Thus, OspF activity allows S. flexneri to modulate host cell epigenetic

information as a strategy for repressing innate immunity.

Mycobacterium tuberculosis secretes two LMW-PTPs, PtpA and

PtpB.35 The predicted lack of tyrosine kinases in the M. tuberculosis

genome suggests a dedicated role for these phosphatases in regulation

of host cell functions. Expression of ptpA in M. tuberculosis is upre-

gulated within monocytes, and a ptpB mutant is impaired in its ability

to grow in human macrophages36 and survive in a guinea pig model.37

These phosphatases appear to function by impacting actin polymer-

ization within macrophages and thereby affecting phagocytosis of the

organism.38 A recently identified phosphatase, LipA, in L. mono-

cytogenes has a predicted structure bearing a remarkable semblance

to the PtpB phosphatase.39 Moreover, both LipA and PtpB share a

unique feature whereby they possess dual-function activities as phos-

photyrosine and phosphoinositide phosphatases, and both harbor the

potential to play pivotal roles in bacterial virulence.

In addition to physical protection, exopolysaccharide such as cap-

sule is often poorly immunogenic and can mask protein antigens and

receptors for complement and phagocytic cells. In many cases, depho-

sphorylation of tyrosine kinases increases the level of polysaccharide

synthesis,4 as evidenced by the activity of the E. coli K-12 BY kinase

Wzc-ca, which is regulated by its cognate LMW-PTP, Wzb.40 In this

system, production of the capsular exopolysaccharide colonic acid is

maximal when Wzc-ca is dephosphorylated by Wzb. Similarly, in

Streptococcus pneumoniae autophosphorylation of the CpsD kinase,

when in the presence of its cognate partner, CpsC, results in the

attenuation of CpsD kinase activity, as well as a reduction in the

level of encapsulation via a negative feedback regulatory loop.41

Consequently, the PHP family phosphatase CpsB can control capsule

production via dephosphorylation of CpsD which functions as a

reversible switch.42 The converse situation also exists. In clinical iso-

lates of S. pneumoniae, phosphorylation of CpsD increases capsule

production under anaerobic conditions,43 and in E. coli K30 the

assembly of group I capsular polysaccharides is elevated by

phosphorylation of Wzc-cps.44 Undoubtedly, the interplay among

tyrosine kinases, phosphatases and exopolysaccharide is of a nuanced

and subtle nature that may be reconfigured according to envir-

onmental conditions. Indeed, metabolic activity is one factor that

has been shown to influence kinase to phosphatase ratios.45–46

Role in biofilms

A recent study in Pseudomonas aeruginosa demonstrated that tyrosine

phosphatase activity is a unifying element that amalgamates polysac-

charide production and biofilm formation with quorum sensing.47

The PTP family tyrosine phosphatase, TpbA, is a negative regulator

of 3,5-cyclic diguanylic acid (c-di-GMP), an important second mes-

senger which suppresses transcription across the pel operon that

encodes for extracellular matrix polysaccharide. Lower levels of exo-

polysaccharide in turn lead to reduced biofilm formation. In addition,

TpbA responds to acyl homoserine lactone, and tpbA is regulated

positively by the LasR transcriptional regulator. TpbA also regulates

cell lysis as a means to control extracellular DNA that is used for

complex biofilm maturation.48 These findings also reveal a previously

unrecognized ability for phospho-dependent signaling to intersect

with other important cellular second messenger systems.

Tyrosine phosphatases can also control heterotypic biofilm forma-

tion among oral organisms. P. gingivalis accumulates into heterotypic

communities with the antecedent oral biofilm colonizer S. gordonii

(Figure 2). Maeda et al.49 identified a LMW-PTP, Ltp1, in P. gingivalis

which functions as a negative regulator of EPS production, as well as

community formation with S. gordonii. Transcription of ltp1 is

increased following contact with S. gordonii,50 and Ltp1 is a compon-

ent of a signaling pathway that converges on the LuxR family tran-

scriptional regulator CdhR.51 The expression of the P. gingivalis Mfa

fimbriae and of LuxS, both of which contribute to community

development with S. gordonii, are negatively regulated by CdhR

(Figure 3). Thus, in both P. aeruginosa and P. gingivalis, tyrosine

phosphatase activity results in arrested community development

which may maintain optimal biofilm architecture.

CONCLUSION

It is sobering to reflect that until fairly recently, post-translational

modification of tyrosine residues by phosphorylation was believed

to be an indicator of the sophisticated regulatory networks character-

istic of eukaryotic systems. Since then, research on bacterial tyrosine

kinases and phosphatases has proceeded apace and they are now con-

sidered key contributors to bacterial cell homeostasis, virulence and

even cell survival in all domains of life. Future genomics and proteo-

mics research will decipher and dissect the underlying mechanisms of

tyrosine phosphotransfer cascades in bacteria and their functional

roles. Accumulating evidence reaffirms the notion that bacterial tyr-

osine kinases and phosphatases display exquisite substrate specificity;

nevertheless, they are still capable of utilizing multiple protein sub-

strates, both endogenous and exogenous, thereby providing versatility

in phosphorelay signaling networks. Ongoing studies reveal increasing

instances where bacterial kinases/phosphatases are capable of indu-

cing post-translational modifications of host proteins and are a crucial

facet of the dynamic host-pathogen relationship. Moreover, as BY

kinases differ from their eukaryotic counterparts in significant bio-

chemical and structural aspects, they provide attractive targets for

specific antibacterial drugs. The crystal structures of the CapB kinase

of Staphylococcus aureus and the Etk kinase of E. coli have been deter-

mined52–53 and they exhibit a high degree of structural similarity. The

availability of structural and biochemical information will facilitate

the rational design of compounds that can inhibit BY kinases, while

concomitantly avoiding any eukaryotic kinases.54

Figure 2 Porphyromonas gingivalis (green) accumulates into a mixed species

community on a substratum of Streptococcus gordonii (red). Image courtesy of

Dr Christopher Wright.
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