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Abstract

Objectives: Positive predictive values (PPVs) and negative predictive values (NPVs)

are frequently reported to put estimates of accuracy of a diagnostic test in clinical

context and to obtain risk estimates for a given patient taking into account baseline

prevalence in the population. In order to calculate PPV and NPV, tests with ordi-

nally or continuously scaled results are commonly dichotomized at the expense of a

loss of information.

Methods: Extending the rationale for the calculation of PPV and NPV, Bayesian

theorem is used to calculate the probability of disease given the outcome of a

continuously or ordinally scaled test. Probabilities of test results conditional on

disease status are modeled in a Bayesian framework and subsequently transformed

to probabilities of disease status conditional on test result.

Results: Using publicly available data, probability of a clinical depression diagnosis

given PROMIS Depression scores was estimated. Comparison with PPV and NPV

based on dichotomized scores shows that a more fine‐grained interpretation of test
scores is possible.

Conclusions: The proposed method bears the chance to facilitate accurate and

meaningful interpretation of test results in clinical settings by avoiding unnecessary

dichotomization of test scores.
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1 | INTRODUCTION

The diagnostic performance of a test is commonly evaluated by its

sensitivity and specificity. These estimates of test accuracy have

been reported to be misleading in clinical practice, since a high

sensitivity does not necessarily imply that a condition is likely given a

positive test result (Gigerenzer, Gaissmaier, Kurz‐Milcke, Schwartz,

& Woloshin, 2007). Therefore, positive predictive values (PPVs) and

negative predictive values (NPVs) help to put the results of a diag-

nostic text in clinical context (Altman & Bland, 1994).

PPV (probability for the presence of a disease given a positive

test result) and NPV (probability for the absence of a disease given a

negative test result) are usually calculated for a given cutoff using

this specific cutoff's sensitivity and specificity as well as the expected
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prevalence of the disease in the population of interest. However,

many tests used in clinical practice give ordinal or continuous results

and are subsequently dichotomized. This is true for laboratory pa-

rameters such as the HBa1c value as screening tool for diabetes

(Burlingame, Bartholomew, Brink‐Wong, Sampaga, & Dye, 2015;

Higgins et al., 2011), clinical risk scores in cancer (Li, Khalighi, Wu, &

Garcia, 2018) as well as for patient questionnaires such as the Patient

Health Questionnaire‐9 (PHQ‐9), a depression screening tool (Levis,

Benedetti, & Thombs, 2019).

Dichotomization into negative and positive test result obviously

leads to a loss of information, as the risk of having the condition in

question is likely to be substantially different for a patient with a

result close to the cutoff compared to a patient with a result much

lower or higher than the cutoff. Calculation of PPV and NPV for

each potential test result is therefore desirable to obtain more fine‐
grained estimates of the risk of disease for a patient in a clinical

context.

The aim of this paper is to outline a Bayesian method to calculate

the PPV and NPV for each potential outcome of continuously and

ordinally scaled tests. Following the logic of the calculation of PPV and

NPV for dichotomous test, the general idea is to model the proba-

bilities of each potential test result stratified by disease status and use

these conditional probabilities in turn to calculate PPV and NPV using

Bayes' theorem. After the derivation of the approach, an example is

provided and strengths and limitations of the approached are

discussed.

2 | METHODS

In the following, we denote positive and negative test results with T+
and T‐, and true and negative disease status with D+ and D‐,
respectively. P(T+) is then the probability of a positive test result and
P(T+|D+) is the probability of a positive test result given the true

disease status is positive (sensitivity).

Sensitivity (P(T+|D+)), specificity (P(T−|D−)), PPV (P(D+|T+)), and
NPV (P(D−|T−)) are conditional probabilities linked through Bayes'

theorem:

PPV¼ PðDþ jTþÞ ¼ PðT þ jDþÞ ∗
PðDþÞ
PðTþÞ

¼
PðT þ jDþÞ ∗ PðDþÞ

PðT þ jDþÞ ∗ PðDþÞ þ PðT þ jD−Þ ∗ ð1 − PðDþÞÞ
:

NPV¼ P
�

D − jT −
�

¼
PðT − jD − Þ ∗ ð1 − PðDþ ÞÞ

PðT − Þ

¼
PðT − jD − Þ ∗ ð1 − PðDþ ÞÞ

PðT − jD − Þ ∗ ð1 − PðDþ ÞÞ þ ð1 − PðT þ jDþ ÞÞ ∗ PðDþ Þ
:

Sensitivity and specificity for a given cutoff are usually esti-

mated as the proportion of test positives in the diseased and test

negatives in the undiseased, assuming two independent binomial

distributions.

2.1 | Continuous test results

In order to extend PPV and NPV to ordinal and continuous test

results, the challenge is to model P(Test result|D+), respectively
P(Test result|D−). These are essentially the distributions of test

results stratified by disease status. Continuous tests results can be

modeled using a suitable continuous distribution such as the normal:

ðTest score¼ ijDþÞ ∼ Nðμdiseased; sigmadiseasedÞ;

ðTest score¼ ijD−Þ ∼ N
�
μhealthy; sigmahealthy

�
:

The conditional probabilities can be then calculated by inte-

grating over the respective probability density function and—using

Bayes' theorem—in turn used to derive the probability of the disease

being present given a specific test score:

PðDþ jTest score¼ iÞ

¼
PðTest score¼ ijDþÞ ∗ PðDþÞ

PðTest score¼ ijDþÞ ∗ PðDþÞ þ PðTest score¼ ijD−Þ ∗ ð1 − PðDþÞÞ
;

PðD − jTest score¼ iÞ

¼
PðTest score¼ ijD−Þ ∗ ð1 − PðDþÞÞ

PðTest score¼ ijD−Þ ∗ ð1 − PðDþÞÞ þ PðTest score¼ ijDþÞ ∗ PðDþÞ
:

2.2 | Ordinal test results

The same reasoning applies to ordinal test outcomes. Here, distribu-

tions of test results must follow a bounded, discrete distribution.

Questionnaires and risk scores used in screening are commonly

scored by adding up all observed item responses. An IRT model such

as the graded response model (GRM; Samejima, 1969) can be used to

model such data (Embretson & Reise, 2000). The basic assumption of

any IRT model is that the observed response to each item probabi-

listically depends on a person parameter on an underlying latent trait

(Θ) and item parameters. For the unidimensional GRM, each item has

a single slope parameter (a) and J = K ‐ 1 threshold parameters (b),

where K is the number of response options of the item. The proba-

bility of observing response category 1 or higher in an item is

Pðx ≥ 1jθÞ ¼ 1. The probability of observing a response of k or higher

is given by:

Piðx ≥ kjθ; ai; biÞ ¼
1

1þ eð−ai∗θþ bijÞ
for 2 ≤ k ≤ K and j¼ k − 1;

and the probability of a specific response k therefore is:

Piðx¼ kjθ; ai; biÞ ¼ Piðx ≥ kjθ; ai; biÞ − Piðx ≥ k þ 1jθ; ai; biÞ:

Item responses are considered independent and multiplying the

probabilities of all observed item response gives the probability of the

observed response pattern across the continuum of the latent trait.

2 of 6 - FISCHER



In order to stratify by disease status, one can estimate a multi-

group IRT model, where it is assumed that the latent trait follows two

distinct distributions:

Θhealthy ∼ Nð0;1Þ:

Θdiseased ∼ Nðμdiseased; σdiseasedÞ:

The mean and standard deviation of the latent trait Θ are fixed

to 0, respectively 1, in the healthy group. Item parameters a and b

are considered invariant across groups for identification of the

model.

This model then gives P(Response Pattern|D+) and

P(Response Pattern|D−). A recursive algorithm can be used to

average over all response patterns resulting in the same sum score to

obtain P(Test score = i|D+) and P(Test score = i|D−) (Thissen, Pom-
merich, Billeaud, & Williams, 1995). Bayes' theorem then allows to

calculate P(D+|Test score = i) and P(D−|Test score = i) for any given

test score.

3 | RESULTS

The following example outlines how the proposed model can be used

in practice. It uses publicly available data collected within the Pa-

tient‐Reported Outcome Measurement Information System

(PROMIS) Wave 2 (Pilkonis, 2016; Pilkonis et al., 2014). For this

analysis, only the data collected at time point 3 (3 months after

admission) is considered. Overall, 187 patients completed the

PROMIS Emotional Distress Depression computer‐adaptive test and
clinical diagnosis of major depressive disorder served as reference

standard (134 negative, 53 cases).

PROMIS employs a GRM for scoring depression severity (Cella,

Gershon, Lai, & Choi, 2007) and test results are therefore individual

estimates of the continuous latent trait. This scale has been initially

calibrated that 50 is approximately the mean depression score in the

general population, with a standard deviation of 10.

For each respondent, Θ was sampled from the respective indi-

vidual posterior distribution of the latent trait, approximated by a

normal distribution. On the sample level, Θ was concurrently

modeled normally distributed stratified by disease state. The pa-

rameters (mean μ, standard deviation σ) of both distributions along

with their 95% credible intervals are given in Figure 1. Posterior

predictive checks (Gabry, Simpson, Vehtari, Betancourt, & Gel-

man, 2019) indicated appropriate model fit as the data randomly

generated by this model (thin lines in Figure 1) resembles the

observed data (thick lines) reasonably well.

The probabilities of each T‐score from 40 to 90 given diagnosis

were estimated by integrating over the respective slice of the

probability density functions. Assuming population prevalence of 5%,

15%, and 25%, Figure 2 shows P(D+|Test score = i) and P(D−|
Test score = i) along with the respective 95% credible intervals. For

comparison, NPV and PPV were also calculated by dichotomizing the

test result using the optimal (maximizing combined sensitivity and

specificity) cutoff (PROMIS T‐score = 58.9) in this sample. 95% CIs

were obtained using the bootstrap with 1000 iterations.

It is apparent that for many potential test results, PPV and NPV

differ substantially from the observed P(D+|Test score = i) and P(D−|
Test score = i), as PPV and NPV average over a wide spectrum of

potential test results. For example, given an expected prevalence of

15%, the probability having the disease of a person with a positive

test (score > 58.86) is 46% (95% CI: 36%–58%). This compares to

21% (16%–26%) if the actual score is 60 and 80% (63%–93%) if the

actual score is 70.

All analysis were conducted using Stan (Carpenter, 2017) and R

(R Development Core Team 3.0.1., 2013). MCMC sampling was done

in three chains using 2000 iterations. Weakly informative priors were

imposed on μ and σ to constrain the parameter space to meaningful

values. Examination of traceplots, Rhat (all parameters < 1.005) and

effective sample size (1095–7261) indicated appropriate exploration

of the posterior distribution. Stan and R code is provided as sup-

plementary material.

4 | DISCUSSION

This paper presents a method to obtain a probability of disease given

the results of a continuous, ordinal, or categorical diagnostic test and

the expected baseline prevalence of the disease in the population.

Similar to PPV and NPV, the prevalence is marginalized—therefore,

the probability of disease given any population prevalence can be

modeled within a single study. Unlike PPV and NPV, P(D+|
Test score = i) and P(D−|Test score = i) take into account all available

information provided by a diagnostic test and therefore bear the

chance to facilitate accurate and meaningful interpretation of test

results in clinical settings.

The choice of the underlying distribution appears crucial for the

application of the proposed model. Scores of questionnaires and risk

scores can be readily modeled as continuous variables, if an appro-

priate measurement model is available. PROMIS employs such models

for scoring of PROMIS instruments. Also, frequently used measures of

depression (e.g., PHQ‐9, CES‐D [Choi, Schalet, Cook, & Cella, 2014]),

anxiety (PANAS, GAD‐7 [[Schalet, Cook, Choi, & Cella, 2014]), and

other patient‐reported outcomes have been calibrated on the

PROMIS scales and can be scored on a continuous scale. If such a

measurementmodel is not available, one can estimate such amodel for

the sole purpose to derive the probability of a given response.

Modeling complex distributions, for example coming from an IRT

model as suggested, involves a substantially higher number of pa-

rameters and therefore larger sample sizes will be needed compared

to estimation of PPV and NPV based on dichotomized test results.

Also, it must be ensured that common IRT model assumptions

regarding dimensionality of the test and local independence of the

items are fulfilled (Embretson & Reise, 2000). Estimation of such a

model in small and selected samples or with few items might be

problematic in particular. A two‐step approach of developing a valid

FISCHER - 3 of 6



measurement model and using this subsequently to obtain continu-

ously distributed test results seems advisable.

Since the probability distributions are estimated independently in

each disease status, they are not affected by any change in the mar-

ginal distribution of true disease status. Nonetheless, generalizability

of the derived PPVs and NPVs could be threatened, if the underlying

data does not reflect the full range of disease. For example, the dis-

tribution of test scores in the healthy participants can be expected to

different in general population samples and clinical populations due to

selection bias. This should be considered in applications.

F I GUR E 1 Distribution of PROMIS Depression T‐scores by disease status. Thin lines depict density of randomly drawn data from the
imposed distributions. Observed data (thick lines) resemble this random data well, indicating that the model is appropriate. PROMIS, Patient‐
Reported Outcome Measurement Information System

F I GUR E 2 NPV, PPV, P(D‐|PROMIS T‐score) and P(D+|PROMIS T‐score) for expected prevalence of 5%, 15%, and 25%. NPV and PPV are
calculated on the basis of the optimal cutoff (indicated by pointed line) maximizing combined sensitivity and specificity. Error bars indicate
95% CIs and shaded areas 95% credible intervals. NPV, negative predictive values; PPV, positive predictive values; PROMIS, Patient‐Reported
Outcome Measurement Information System
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In many cases, the true disease status is not exactly known, but

diagnostic accuracy of screening tests is assessed in comparison to an

imperfect reference test (Buck & Gart, 1966). In particular for major

depressive disorder these reference tests (semi‐ and fully structured
clinical interviews) are known to be imperfect (Levis et al., 2018). The

concurrent estimation of test characteristics and prevalence in

absence of a true gold standard has been addressed by Bayesian

latent class models (Joseph, Gyorkos, & Coupal, 1995). In principle,

the approach described in this paper could be further extended to

imperfect gold standards by modeling true disease status as a latent

variable using information on the reference tests sensitivity and

specificity. It is, however, unclear, how such information could be

obtained.

Risk of disease for a given test score can be modeled using lo-

gistic regression as well (Coughlin et al., 1992) and one can scale such

a model to any expected population prevalence by simply adjusting

the model intercept (Greenland, 1981). Compared to this approach,

modeling the disease‐specific test score distributions and subse-

quently calculating the conditional probabilities in a Bayesian

framework as proposed has some advantages that are worth noting:

1. One can combine meaningful subsets of test results by simply

integrating over the corresponding areas of the probability den-

sity (or mass) function to obtain the probability of disease given

these subsets. For example, it is straightforward to calculate

PðD þ j50 ≤ Test score < 60Þ.

2. Expected prevalence for a given population can be more realis-

tically represented by a beta distribution than a single value of

prevalence. While in logistic regression one needs to specify a

point estimate of the population prevalence, in the Bayesian

framework one could use a Beta(6, 34) to represent the

assumption that the population prevalence is expected to be most

likely 15% with 95% CI that it is smaller than 25%. Therefore, the

approach allows to account for uncertainty about the population

prevalence in a clinical setting.

3. In some situations, the data necessary to perform logistic

regression might not be readily available. The Bayesian approach

allows to flexibly combine data from different studies and sour-

ces, for example if the distribution parameters for controls and

cases were estimated in different samples.

Readers should be aware of some potential shortcomings of the

approach. The choice of distribution tomodel test results is crucial and

although in the example provided a normal distribution seems to work

well, this is probably not the case in every application. Furthermore, it

is unclear to what extend misfit of the distribution could be tolerated.

In particular, estimation of the distribution of the test score in the

diseased group will be challenging in real world scenarios, as preva-

lence is typically low and therefore only few cases are observed. A

limitation of the worked example is that it does not address validation

of the model given the modest sample size.

Taken together, the Bayesian approach outlined in this paper

allows a fine‐grained assessment of risk of disease given results of

continuously and ordinally scaled diagnostic tests by avoiding loss of

information due to dichotomization at the optimal cutoff. It has some

potential advantages compared to use of logistic regression to esti-

mate risk of disease and therefore eventually bears the potential to

improve interpretation and understanding of test results in clinical

applications. A comparative assessment of this proposed method is

needed in order to investigate, whether it can actually deliver such an

improvement. Differences to traditional logistic regression models

should be assessed and one should investigate whether a more fine‐
grained interpretation of screening test data can be successfully

implemented in clinical practice.
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