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Abstract: Creating oxygen vacancies and introducing heterostructures are two widely used strate-
gies in Co-based oxides for their efficient electrocatalytic performance, yet both strategies have
rarely been used together to design a bifunctional electrocatalyst for an efficient overall water
splitting. Herein, we propose a facile strategy to synthesize oxygen-defect-rich Co9S8/CoO hetero-
nanoparticles with a nitrogen-doped carbon shell (ODR-Co9S8/CoO/NC) through the in situ con-
version of heterojunction along with surface-induced oxygen vacancies, simply via annealing the
precursor Co3S4/Co(OH)2/ZIF-67. The as-prepared ODR-Co9S8/CoO/NC shows excellent bifunc-
tional catalytic activities, featuring a low overpotential of 217 mV at 10 mA cm−2 in the oxygen
evolution reaction (OER) and 160 mV at 10 mA cm−2 in the hydrogen evolution reaction (HER). This
performance excellency is attributed to unique heterostructure and oxygen defects in Co9S8/CoO
nanoparticles, the current work is expected to offer new insights to the design of cost-effective,
noble-metal-free electrocatalysts.

Keywords: oxygen vacancies; heterojunction; oxygen evolution reaction; hydrogen evolution reaction

1. Introduction

Concerns on fossil fuel reserves and environmental issues have urged scientists to
explore renewable energy reservoirs to find substitutes to traditional fossil fuels [1–5]. In
particular, electrochemical water splitting into hydrogen and oxygen via the hydrogen
evolution reaction (HER) and oxygen evolution reaction (OER) is one of the most attractive
options [6,7]. Literally, it requires electrocatalysts to diminish the overpotentials in the
OER and HER to maximize the conversion efficiency [8,9]. Traditionally, electrocatalysts
based on noble metals have been predominantly used in these tasks (e.g., IrO2 and RuO2
in the OER and Pt in the HER) [10], yet their costs and scarcities significantly limit their
industrial applications. So, the development of highly active noble metal-free electro-
catalysts is of exceptional importance [11,12]. Lately, as efficient electrocatalysts, cobalt
oxides (Co3O4 and CoO) have drawn tremendous attraction due to distinctive features
such as their 3D electronic structure, feasible synthesizing methodologies, and efficient
catalytic activity [13–21]. In spite of this distinctiveness, their poor intrinsic electronic
conductivity and inferior bifunctionality for overall electrochemical water splitting have
hindered their practical applications [22,23]. To resolve its intrinsic conductivity issue, it
was reported while creating oxygen vacancies in these oxides has altered the electronic
environment that acted critically to induce conductivity [24–26]. Xu et al. has fabricated
plasma-engraved oxygen vaccines in Co3O4 nanosheets and reported its improved OER
performance (η of 300 mV at JOER = 10 mA cm−2) over pristine Co3O4 nanosheets (η of
540 mV at JOER = 10 mA cm−2). Oxygen defects in plasma-engraved Co3O4 nanosheets
were noticed to induce enhancement of Co2+ population with distinctively exposed active
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sites and highly increased surface area which has improved its electrical conductance [27].
Liang et al. synthesized CoO hexagrams having numerous oxygen defects and they demon-
strated an η of ~260 mV at JOER = 10 mA cm−2. Moreover, theoretical explanations revealed
this performance excellency was attributed to the abundant oxygen defects in CoO that
lowered the activation energy barrier and improved the electrical conductivity as well [28].
However, for electrochemical bifunctional catalysis, fabrication of cobalt-based oxides with
HER active counterpart could develop a heterojunction that has manipulated distinctive
features for bifunctionality [29]. DFT and experimental studies have supported the poten-
tial role of heterojunction to enhance the catalytic conductivity for electrochemical water
splitting purposes due to an altered electronic environment exposing more active sites with
efficient chemisorption properties [30–33]. For example, Muthurasu et al. synthesized a
Co3O4/MoS2 heterostructure, and the synergic effects between MoS2 and Co3O4 enabled
the catalyst an efficient OER as well as HER with η values of 230 mV (JOER = 20 mA cm−2)
and 205 mV (JHER = 10 mA cm−2) respectively. Interfacial coupling in Co3O4/MoS2
heterostructure has enhanced the binding affinities for oxygen and hydrogen-carrying
intermediates, which in turn improved overall water splitting [34]. Peng et al. synthesized
Co9S8/Co3O4 nano-heterostructure which manifested an OER η of 250 mV and HER η of
360 mV at 10 mA cm−2 as well. The heterostructure formation created such structural
alignments which lowered the activation energy barrier, enhanced the absorption of in-
termediates, and also accelerated the overall electrochemical splitting [29]. Generally, the
generation of carbon-matrix-woven heterostructures needed a lengthy/intricate synthetic
procedure, while metal-organic frameworks (MOFs) can easily produce metal sulfides
and/or metal oxides heterostructures along with carbon frameworks [35–37]. The inherited
frame structure of MOF precursors along with embedded heterostructured nanoparticles
in graphitic carbon framework remarkably improves the electrocatalytic performance and
the stability of the catalyst [38].

Therefore, it is believed that structural designing in cobalt-based oxides may prove
more effective, such as by creating oxygen vacancies and interfacial coupling may fabricate
an efficient and highly conductive bifunctional electrocatalyst for water splitting purposes.

Moreover, doping the carbon framework with heteroatoms, such as N with stronger
electronegativity, is highly attractive, as this induces carbon atoms to serve as accessible
active sites in catalysis by promoting a positive charge density on them [39,40]. In the
hybrid structure of nanoparticles embedded in N-doped carbon, nanoparticles can be
isolated by covered carbon materials to fully expose their catalytic sites and the carbon
framework protects inner nanoparticles from unwanted side reactions for better long-term
stability [40–42].

Herein, we have adopted a facile strategy to synthesize ODR-Co9S8/CoO/NC by
in situ generation of heterojunction and surface-induced oxygen vacancies via annealing
well-dispersed Co3S4 in the ZIF-67 framework. Benefiting from these distinctive features,
the as-prepared catalyst shows an η of 217 mV (JOER = 10 mA cm−2) in the OER and an η of
160 mV (JHER = 10 mA cm−2) in the HER, qualifying it as the best OER/HER bifunctional
catalyst among reported Co-based compounds. The following factors are accountable
for improved bifunctionality of the ODR-Co9S8/CoO/NC: (i) the generation of oxygen
vacancies produces more active defects for OER and also alters the surface electronic
structure to enhance the electrocatalytic activity; (ii) the formation of heterostructure offers
many active sites for optimization of adsorption as well as desorption free energies of
reactants/intermediates to accelerate the sluggish step with ultimate fast water dissociation
in alkaline electrolytes; (iii) the carbon framework along with N-doping, protects the hetero-
nanoparticles from catalytic corrosion to ensure catalytic stability. The current work is
expected to provide new insights into the designing and synthesis of new noble-metal-free
bifunctional electrocatalysts with improved OER and HER activities.
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2. Experimental Section
2.1. Chemicals

Co(NO3)2·6H2O (98.0%), C2H5NS (99%), C4H6N2 (98%) and C2H6O2 (98%) (Aladdin,
Shanghai, China), commercial RuO2 (99.9%) and Pt/C (99.9%) (Sigma-Aldrich, Shanghai,
China). Where Co(NO3)2.6H2O and C4H6N2 have been used as ZIF-67 precursors. All
above-mentioned chemical reagents were used without any further refinement. For overall
experimentations, distilled water has been used.

2.2. Method

For the synthesis of ODR-Co9S8/CoO/NC heterostructure nanocomposite, firstly,
ZIF-67 was prepared, for which 0.06 M cobalt (II) nitrate hexahydrates solution (50 mL) was
gradually added into 2.16 M 2-methylimidazole solution (50 mL) and ultrasonically stirred
for 30 min at room temperature. Then, 30 mL of 0.13 M thioacetamide solution (10 mL dis-
tilled water and 20 mL ethylene glycol) was poured into the above ZIF-67 solution with sub-
sequent 1 h vigorous stirring at 25 °C and then shifted into an autoclave (100 mL) where it
was solvothermally treated for 18 h at 180 ◦C. After the autoclave was cooled, the as-formed
product was centrifuged and rinsed repeatedly to obtain the Co3S4/Co(OH)2/ZIF-67 pre-
cursor. Solvothermally grown precursor (Co3S4/Co(OH)2/ZIF-67) was then calcined for
3 h at 650 ◦C under inert conditions to synthesize the oxygen defect-rich Co9S8/CoO/NC
heterostructure. For comparison, the CoO/NC composite was synthesized by following
the reported method [43]. Generally, it is prepared by annealing ZIF-67 for 5 min at 530 ◦C
under Ar flow. Pure Co9S8 was also obtained through the same process without adding
2-methylimidazole.

2.3. Material Characterization

The scanning electron microscopy (SEM) and transmission electron microscopy (TEM)
measurements were performed with JSM-7001F (Tokyo, Japan) and JEM 2100 (Tokyo, Japan)
electron microscopes, while for X-ray diffraction (XRD), 1710 diffractometer (Netherland)
was used to record data. For X-ray photoelectron spectra (XPS), ESCALab220i-XL electron
spectrometer (VG Scientific Waltham, MA, USA) was used for material characterization. For
a description of XPS spectra deconvolution, Shirley and Linear function fitted background
was applied. While for data interpretation, XPS peak software was used.

2.4. Electrochemical Measurements

A conventional three electrodes set up in the presence of basic media (0.1 M KOH
solution) has been utilized to pursue electrochemical measurements on CHI 760D electro-
chemical workstation. The voltage of Ag/AgCl was calibrated to RHE as shown in the
given condition:

ERHE = EAg/AgCl + 0.197 + 0.059 pH (1)

To make catalyst ink, 5 mg sample has added in 1000 µL of the solvent mixture
containing 100 µL of 5% Nafion solution, 450 µL ethanol, and 450 µL DI water and then
loaded on pre-polished GCE (3 mm diameter) through dripping the 4 µL catalyst ink
(≈0.283 mg cm−2). For minimizing the double-layer charging current, linear sweep voltam-
metric (LSV) tests have been performed with 5 mV s −1 scanning speed. All the LSV data
were 100% compensated to remove the ohmic voltage. For the stability test, chronopoten-
tiometric tests (i-t) were performed at 20 mA cm−2. From the LSV curves, a Tafel plot has
been assessed by employing the given relation.

η = a + b log j (2)

Overpotential for HER and OER was determined by utilizing the following equation:

η = 0 − ERHE (3)
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η = ERHE − 1.23 (4)

EIS measurements were performed at 105 to 0.1 Hz frequency range under applied
voltage equivalent to the potential at j ~ 10 mA cm−2.

3. Result and Discussion

The ODR-Co9S8/CoO/NC heterostructure was prepared by a facile two-step method-
ology presented in Figure 1. The zeolite imidazole framework-67 (ZIF-67) with the charac-
teristic crystal structure and dodecahedral rhombic morphology (Figures S1a,b, S2a and S3)
were used as the cobalt source. In the presence of thioacetamide, the solvothermal treatment
of ZIF-67 led to the in situ formation of Co3S4/Co(OH)2/ZIF-67 [44,45]. The coexistence
of both cobalt sulfide (Co3S4) and cobalt hydroxide Co(OH)2 in the resulted precursor
was evidenced by XRD, FTIR, EDS, and XPS (Figures S2a,b, S4 and S5). During annealing
under an Ar atmosphere at 650 ◦C, thermal decomposition of Co(OH)2 into CoO and phase
transition of Co3S4 into Co9S8 resulted in the conversion of Co3S4/Co(OH)2/ZIF-67 to
ODR-Co9S8/CoO/NC heterostructure [28].
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Figure 1. Schematic diagram of ODR-Co9S8/CoO/NC.

SEM was used initially for the exploration of the morphology and microstructure of
the ODR-Co9S8/CoO/NC heterostructure. As shown in Figure 2a, ODR-Co9S8/CoO/NC
retained the uniform polyhedral structure inherited from the precursor (ZIF-67), while
the cracks confirmed its hollow nature with shells of 20–30 nm in thickness. TEM images
further revealed that the hollow polyhedral structure was consist of nanoparticles with
an outermost carbon layer (Figure 2b). In Figure 2c, more speculation by HRTEM has
declared that these nanoparticles were composed of both Co9S8 and CoO (hetero particles).
Moreover, lattice fringes profiles (Figure S6) were conferred with 0.298 nm and 0.249 nm
interplanar spacing that were assigned to (311) and (111) planes in Co9S8 and CoO, respec-
tively [46,47]. Energy-dispersive X-ray analysis (EDX) (Figure S7) and energy-dispersive
elemental mapping results (Figure 2d–i) further proved the coexistence and homogeneous
distribution of Co, S, O, and N elements in the carbon matrix.
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The crystalline structure of the ODR-Co9S8/CoO/NC heterostructure was charac-
terized by the powder XRD pattern (Figure 3a). The as-prepared ODR-Co9S8/CoO/NC
heterostructure exhibited two types of characteristic diffraction peaks. The peaks at 2 theta
of 36.6◦, 42.6◦, 61.5◦, and 73.7◦ corresponded to (111), (200), (220), and (311) planes of cubic
CoO (JCPDS No. 78-431), [45] which is due to the thermal decomposition of Co(OH)2 to
CoO at high temperature under an Ar atmosphere [48]. While the set of peaks at 15.5◦,
17.8◦, 25.1◦, 29.5◦, 31.1◦, 39.4◦, 44.7◦, 47.6◦, and 52.3◦ can be ascribed to (111), (200), (220),
(311), (222), (331), (422), (511) and (440) planes of cubic Co9S8 (JPCD NO. 86-2273) [49].
Quantitative surface elemental composition and chemical states of ODR-Co9S8/CoO/NC
heterostructure were probed by XPS in Figure 3b–e, where Co 2p, S 2p, C 1s, and O 1s
deconvolutions have been described and atomic ratios details are enlisted in Table S1. For
Co 2p spectrum (Figure 3b), the peaks at 780.6 eV and 796.5 eV were assigned to the binding
energy of Co 2p3/2 and Co 2p1/2 levels of Co9S8 and CoO, respectively, while two satellite
peaks at 786.1 and 802.8 eV implied the presence of Co2+ in the heterostructure in good
consistency with the published literature [49,50]. While the absence of Co3+ peaks in Co2p
spectrum of ODR-Co9S8/CoO/NC heterostructure is possibly due to the efficient thermal
conversion of the intermediate species (Co(OH)2/Co3O4) into CoO to form pure phase
heterostructure with the appearance of Co2+ sharp peaks for Co2p spectrum [50–53]. For
the S 2p spectrum (Figure 3c), the doublet for S 2p3/2 and S 2p1/2 at 161.2 eV and 162.5 eV
originated from sulfur atoms in Co9S8 [54]. Additionally, peaks at 168.2 eV and 169.1 eV
were attributed to the existence of O=S=O and SO4 bonds, suggesting a chemical coupling
between Co9S8 and CoO [55]. The peaks at 286.3 eV and 288.8 eV in the C 1s spectrum were
related to the presence of C–O and O–C=O bonds while the other two peaks at 284.5 and
285.4 have indicated that (Figure 3d) graphitic carbon (C=C) and N-dopped carbon (C–N)
are dominant in the heterostructure and believed to play a vital role in improving the
heterostructure conductivity by facilitating the charge transportation [43,48]. For O 1s spec-
trum (Figure 3e), three peaks at 529.5 eV, 531.2 eV, and 532 eV were ascribed to the lattice
oxygen, [56] numerous defects with lower coordination number for oxygen [57,58] and the
presence of hydroxyl group [58] in the ODR-Co9S8/CoO/NC heterostructure, respectively.
The significant presence of oxygen defects in the ODR-Co9S8/CoO/NC heterostructure
is considered pivotal to boost the performance of OER [59]. The electron paramagnetic
resonance (EPR) analysis was conducted to affirm the oxygen vacancies presence in ODR-
Co9S8/CoO/NC heterostructure. As depicted in Figure 3f, a peak with a g factor of
2.002 could be attributed to oxygen vacancies on the surface of the ODR-Co9S8/CoO/NC
heterostructure [60].
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The OER activity of the ODR-Co9S8/CoO/NC heterostructure was electrochemically
accessed in a conventional three-electrode system in 0.1 M KOH solution. For control sam-
ples, under the same conditions, the OER performances of ZIF-67, Co3S4/Co(OH)2/ZIF-67,
CoO/NC, pure Co9S8, and commercial RuO2 were also taken. Figure 4a shows that the
ODR-Co9S8/CoO/NC heterostructure exhibited superior OER performance to other ref-
erence samples and η values (at JOER = 10 mA cm−2) of all catalysts are summarized
in Figure 4b. The improvement in the catalytic activity of the ODR-Co9S8/CoO/NC in
OER can be rationalized by rapid charge transfer and water dissociation induced by the
generation of oxygen defects and the in situ formation of heterojunction [27,61]. Theo-
retical results have shown that the introduction of oxygen vacancies and heterojunction
modulates the surface electronic structure of the catalysts by inducing denser electron
density around the Fermi level, [62,63] where oxygen vacancies tend to generate inter-
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band states for improved conductivity and the formation of heterojunction remodels the
d-band center to circumvent unwanted charge transfer resistance for fast reaction kinet-
ics. Clearly, the ODR-Co9S8/CoO/NC heterostructure possessed the lowest η (217 mV),
as compared to those of ZIF-67 (712 mV), Co3S4/Co(OH)2/ZIF-67 (335 mV), CoO/NC
(367 mV), pure Co9S8 (315 mV) and RuO2/C (290 mV). The kinetics of the catalyzed
OER was studied by Tafel slopes using the polarization curves (Figure 4c) [64]. The
ODR-Co9S8/CoO/NC heterostructure showed a Tafel slope value of 70 mV dec −1, distin-
guishably lowest among ZIF-67 (234 mV dec−1), Co3S4/Co(OH)2/ZIF-67 (146 mV dec−1),
CoO/NC (132 mV dec−1), pure Co9S8 (87 mV dec−1) and RuO2/C (79 mV dec−1). This
lowest Tafel slope value (70 mV dec−1) of ODR-Co9S8/CoO/NC heterostructure suggested
that one-electron equilibrium proceeds a chemical rate-limiting step in OER [65]. In addi-
tion, at the electrode/electrolyte interface, the ECSA of different reference catalysts was
determined from their Cdl values which were calculated from CV curves in Figure S8a–c.
As depicted in Figure 4d and Table S2, the ODR-Co9S8/CoO/NC possessed a greater
Cdl value (39.4 mF cm−2) than those of pure Co9S8 (6 mF cm−2), Co3S4/Co(OH)2/ZIF-67
(4.1 mF cm−2), CoO/NC (2.8 mF cm−2) and ZIF-67 (1 mF cm−2) suggesting numerous
exposed active sites in the OER reaction. Moreover, ECSA normalized linear sweep voltam-
metry (LSV) curves (Figure S9a) of the ODR-Co9S8/CoO/NC demonstrating superior
OER performance to ZIF-67, Co3S4/Co(OH)2/ZIF-67, CoO/NC, pure Co9S8, and RuO2/C
which further indicates that the enhancement in intrinsic activity is due to the improved
conductivity due to oxygen vacancies in ODR-Co9S8/CoO/NC heterostructure.

Furthermore, the mass activity (1.285 A mg−1) and TOF (9.3 × 10 −3 mol s−1) in
ODR-Co9S8/CoO/NC is superior to individual samples (Figure S10a and Table S3). In
the EIS spectra of Figure 4e, the ODR-Co9S8/ CoO/NC heterostructure exhibited a sig-
nificantly reduced semicircle, further confirming its rapid charge transfer kinetics due to
the formation of heterojunction in the ODR-Co9S8/CoO/NC heterostructure for efficient
OER. The polarization curve in Figure 4f illustrated that the ODR-Co9S8/CoO/NC het-
erostructure barely showed degradation even after 10,000 CV cycles validating it as a stable
and durable electrocatalyst in the alkaline medium for the OER. Additionally, The ODR-
Co9S8/CoO/NC showed similar OER polarization curves even at different scan rates (1 to
100 mV s−1) as depicted in (Figure S11a) which indicates its stability for the active electro-
chemical process in alkaline solution. The crystalline phase of ODR-Co9S8/CoO/NC after
the stability test was also determined. As depicted in Figure S12 the crystalline structure of
the catalyst was intact. This structural solidity may be attributed to the protection from
the carbon framework that helped electrocatalytic active species to resist degradation even
under severe conditions (strong alkaline conditions) after long-term stability tests [40,42].
One concern for the dependency of the catalytic performance on oxygen vacancies needed
speculation, for that, control samples of Co9S8/CoO/NC heterostructure were annealed
at 450 ◦C and 650 °C before electrochemical measurements in Figure S13. Where the EPR
spectra of the sample annealed at 650 °C possessed strong signals with g = 2.002 confirming
the formation of more concentration of oxygen vacancies than the sample annealed at
450 °C. As a result, the sample annealed at 650 °C showed much higher catalytic current
densities than that annealed at 450 °C, suggesting dependency of catalytic performance
of the catalyst on oxygen vacancies [28]. Additionally, performance-based comparative
exploration in-relation to already outlined cobalt-metal-based oxides as well as sulfides,
ODR-Co9S8/CoO/NC heterostructure exhibited conspicuously worth-noticing reduced
η values for OER (Table S4 of Supporting Information and Figure 4g).
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Figure 4. (a) OER performance (b) Overpotential comparison (The error bar represents the range of
results from three independent measurements) and (c) Tafel slope of ODR-Co9S8/CoO/NC, RuO2,
Co3S4/Co(OH)2/ZIF-67, ZIF-67, Co9S8, and CoO/NC in 0.1 M KOH. (d) Capacitive current mea-
surements (∆J0 = Ja − Jc) and (e) Nyquist plots for ODR-Co9S8/CoO/NC, Co3S4/Co(OH)2/ZIF-67,
ZIF-67, Co9S8, and CoO/NC. (f) The polarization curves after the first and 10,000th CV cycles.
(g) Overpotential comparison of the as-prepared catalyst with previously reported Co-based com-
pounds at JOER = 10 mA cm−2.
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The ODR-Co9S8/CoO/NC can also work as an efficient electrocatalyst in the HER.
Figure 5a compares linear sweep voltammetry (LSV) curves of the ODR-Co9S8/CoO/NC,
ZIF-67, Co3S4/Co(OH)2/ZIF-67, CoO/NC, pure Co9S8, and commercial Pt/C. Unsur-
prisingly, Pt/C showed the lowest η of 41 mV at JHER = 10 mA cm−2, yet the ODR-
Co9S8/CoO/NC heterostructure featured a second-lowest η of 160 mV that is signifi-
cantly lower than those of ZIF-67 (762 mV), Co3S4/Co(OH)2/ZIF-67 (332 mV), CoO/NC
(555 mV) and pure Co9S8 (331 mV) (Figure 5b). This performance excellency again related
to the formation of oxygen vacancies and heterojunction in the ODR-Co9S8/CoO/NC
catalyst with prompt properties of efficient water dissociation and rapid charge transfer for
better HER performance [27,61]. Meanwhile, the ODR-Co9S8/CoO/NC heterostructure
showed a 90 mV dec−1 Tafel slope (Figure 5c) and this value was considerably smaller
than those of ZIF-67, Co3S4/Co(OH)2/ZIF-67, CoO/NC, and pure Co9S8 (1160 mV dec−1,
146 mV dec−1, 181 mV dec−1, 149 mV dec−1, respectively), suggesting a Volmer–Heyrovsky
mechanism for the HER on the surface of the ODR-Co9S8/CoO/NC [66]. As plotted in
Figure 5d and Table S2, the Cdl value calculated from CV curves (Figure S8d) for the ODR-
Co9S8/CoO/NC heterostructure was 16.6 mF cm−2, suggesting a higher electrochemical
surface area (ECSA) among all reference materials. However, ECSA normalized LSV curves
for measuring the HER performance of the ODR-Co9S8/CoO/NC (Figure S9b) also indicate
the performance excels over reference samples including ZIF-67, Co3S4/Co(OH)2/ZIF-67,
CoO/NC, pure Co9S8, and RuO2/C. Again, this improved HER performance of the catalyst
accustomed to oxygen vacancies generations in heterostructured ODR-Co9S8/CoO/NC.
Additionally, the mass activity and TOF for ODR-Co9S8/CoO/NC are (0.98 A mg−1) and
(1.3 × 10−2 mol s−1), respectively, which is much better than reference samples (Figure S10b
and Table S3). EIS results in Figure 5e demonstrated the Rct values follow the order of
ODR-Co9S8/CoO/NC < Co3S4/ZIF-67 < CoO/NC < ZIF-67 ≈ pure Co9S8 which is in
good accordance with the best HER performance related to heterostructure formation
found in the ODR-Co9S8/CoO/NC. In Figure 5f, the catalytic performance of the ODR-
Co9S8/CoO/NC almost remained unchanged after 10,000 CV cycles, proving its excellent
durability in the alkaline medium for HER as well. Similar to OER, ODR-Co9S8/CoO/NC
showed alike HER polarization curves even at different scan rates (1 to 100 mV s−1) as
depicted in (Figure S11b) which indicates its stability for the active electrochemical pro-
cess in alkaline solution. Post-mortem stability analysis in Figure S12 further affirmed
structural solidity of catalyst even after long-term stability test. As carbon framework
shield the hetero-nanoparticles which then resist agglomerations and harsh conditions
during electrolysis, i.e., oxidation potentials, strong bases, and corrosion, which further
confirm its excellent stability. In spite of distinctive OER performance, the as-prepared
catalyst exhibited superior HER activity among previously reported co-based compounds
that highlighted its potential for being a bifunctional catalyst (Table S5 of Supporting
Information and Figure 5g).



Nanomaterials 2021, 11, 2237 10 of 14Nanomaterials 2021, 11, x FOR PEER REVIEW 10 of 14 
 

 

 
Figure 5. (a) HER performance, (b) Overpotential comparison (The error bar represents the range of results from three 
independent measurements). (c) Tafel slope of ODR-Co9S8/CoO/NC, 20% Pt/C, Co3S4/Co(OH)2/ZIF-67, ZIF-67, Co9S8, and 
CoO/NC in 0.1 M KOH. (d) Capacitive current measurements (ΔJ0 = Ja − Jc) and (e) Nyquist plots for ODR-Co9S8/CoO/NC, 
Co3S4/Co(OH)2/ZIF-67, ZIF-67, Co9S8 and CoO/NC. (f) Durability of ODR-Co9S8/CoO/NC electrocatalyst after first and 
10,000th CV cycles. (g) Overpotential comparison of the as-prepared catalyst with previously reported Co-based com-
pounds at JHER = 10 mA cm−2. 

Figure 5. (a) HER performance, (b) Overpotential comparison (The error bar represents the range
of results from three independent measurements). (c) Tafel slope of ODR-Co9S8/CoO/NC, 20%
Pt/C, Co3S4/Co(OH)2/ZIF-67, ZIF-67, Co9S8, and CoO/NC in 0.1 M KOH. (d) Capacitive current
measurements (∆J0 = Ja − Jc) and (e) Nyquist plots for ODR-Co9S8/CoO/NC, Co3S4/Co(OH)2/ZIF-
67, ZIF-67, Co9S8 and CoO/NC. (f) Durability of ODR-Co9S8/CoO/NC electrocatalyst after first
and 10,000th CV cycles. (g) Overpotential comparison of the as-prepared catalyst with previously
reported Co-based compounds at JHER = 10 mA cm−2.
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4. Conclusion

In this work, we have synthesized a bifunctional ODR-Co9S8/CoO/NC electrocata-
lyst through a synergistic strategy, via annealing Co3S4/Co(OH)2/ZIF-67 precursor. The
synergistic effects between surface-induced oxygen vacancies and heterojunction enable
the ODR-Co9S8/CoO/NC to exhibit low overpotentials in both HER and OER. The current
design and synthetic methodology potentially offer an alternative way to fabricate low-cost,
noble-metal-free bifunctional electrocatalysts with good catalytic performance.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/nano11092237/s1, Figure S1: Scanning electron microscope (SEM) images of ZIF-67 (a,b)
and Co3S4/Co(OH)2/ZIF-67 (c,d); Figure S2: (a) X-ray diffraction pattern (XRD) of ZIF-67 and
Co3S4/Co(OH)2/ZIF-67, (b) FTIR spectrum of as-prepared Co3S4/Co(OH)2/ZIF-67 precursor;
Figure S3: EDS analysis of ZIF-67; Figure S4: EDS analysis of Co3S4/Co(OH)2/ZIF-67; Figure S5:
X-ray photoelectron spectroscopy (XPS) spectra of Co3S4/Co(OH)2/ZIF-67 precursor, (a) Co 2p,
(b) S 2p, (c) C 1s, (d) O 1s; Figure S6: (a–f) HRTEM images and profile of the lattice fringes of
ODR-Co9S8/CoO/NC heterostructure; Figure S7: EDX analysis of ODR-Co9S8/CoO/NC; Figure S8:
CV curves of (a) ODR-Co9S8/CoO/NC, (b) Co3S4/Co(OH)2/ZIF-67 and (c) ZIF-67 for OER and
(d) ODR-Co9S8/CoO/NC, (e) Co3S4/Co(OH)2/ZIF-67 and (f) ZIF-67 for HER; Figure S9: ECSA
normalized LSV curves of ODR-Co9S8/CoO/NC in comparative to reference samples for (a) OER and
(b) HER; Figure S10: (a) The mass activity of OER catalysts at 250 mV and (b) HER catalysts at 200 mV;
Figure S11: (a,b) OER and HER polarization curves of ODR-Co9S8/CoO/NC at different scan speeds;
Figure S12: The XRD spectrum of the ODR-Co9S8/CoO/NC heterostructures after electrocatalytic
test; Figure S13: (a,b) OER and HER performance of Co9S8/CoO/NC-450 and Co9S8/CoO/NC-650.
(c) EPR spectrum of Co9S8/CoO/NC-450 and Co9S8/CoO/NC-650; Table S1: The surface elemental
composition of the as-prepared ODR-Co9S8/CoO/NC heterostructures according the XPS measure-
ments; Table S2: Comparison of electrochemical surface area (ECSA) of ODR-Co9S8/CoO/NC and
reference samples for OER and HER; Table S3: TOF of OER and HER catalysts; Table S4: Comparison
of some previously reported cobalt based electrocatalysts for OER; Table S5: Comparison of some
previously reported cobalt based electrocatalysts for HER.
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