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Abstract

The ability to delay gratification in childhood has been linked to positive outcomes in adolescence 

and adulthood. Here we examine a subsample of participants from a seminal longitudinal study of 

self-control throughout a subject’s lifespan. Self control, first studied in children at age 4, is now 

reexamined 40 years later, on a task that required control over the contents of working memory. 

We examine whether patterns of brain activation on this task can reliably distinguish participants 

with consistently low and high self-control abilities (low vs. high delayers). We find that low 

delayers recruit significantly higher-dimensional neural networks when performing the task 

compared to high delayers. High delayers are also more homogeneous as a group in their neural 

patterns compared to low delayers. From these brain patterns we can predict with 71% accuracy, 

whether a participant is a high or low delayer. The present results suggest that dimensionality of 

neural networks is a biological predictor of self-control abilities.
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Introduction

The ability to delay gratification as a child has been linked to many important health, social, 

and cognitive outcomes later in life1–4. The neural mechanisms that underlie this 

association, however, are not understood. The current study draws on a seminal longitudinal 

examination of self-control over much of the life span, first measured in children at 4 years 

of age. A subsample of these participants was tested some 40 years later on a task that 

required self-control over the contents of working memory. In this study we examined 

whether patterns of brain activation on this task could distinguish reliably between 

participants with consistently low and high self-control abilities.

One potential driving mechanism for delaying gratification is the ability to keep unwanted or 

inappropriate information out of working memory so that this information does not unduly 

influence cognitive processing. For example, the ability to control appetitive impulses that 

might be in the focus of working memory should help individuals resist immediate 

temptation on the classic marshmallow test3. This delay measure required foregoing an 

appealing reward such as a marshmallow when delaying immediate consumption would lead 

to increased rewards, two marshmallows.

To examine the hypothesis that controlling the contents of working memory is critical to the 

ability to delay gratification, we capitalized on a unique resource: a group of adults who 

have a documented life-long history of effective self-control, starting 40 years earlier at age 

4, and a group of adults who differed from the first group only in having an equally long 

history of less effective self-control (see methods and supplementary information; SI). We 

refer to the former as “high delayers” and the latter as “low delayers.” Therefore, these two 

samples were quite homogeneous aside from differences in self-control measures across the 

lifespan. We examined whether these two groups differ in their neural functioning during a 

task that requires controlling the contents of working memory by expelling task-irrelevant 

information.

The task was simple: On each trial, 6 words were presented for storage in working memory, 

following which participants were directed to forget three of these words. A probe word was 

then presented, and participants had to indicate whether the probe was one of the remaining 

stored words. The critical feature of this task is that sometimes participants were presented 

probe items (“lures”) that had to be forgotten from working memory, hence, requiring a 

negative response. Responses to these critical lures were compared with responses to probes 

that had not been presented in the memory set (“controls”, i.e., probes that were not in 

memory to begin with; Fig. 1A).

If there is a difference between the groups in responses to lure and control trials, it might 

reveal itself in one or both of two outcomes. First, low-delay participants might have more 
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difficulty responding negatively to lures than high-delay participants, revealed as relatively 

longer response times and relatively poorer accuracy to lure versus control trials. Second, 

the groups might differ neurally, with low-delay participants exhibiting less efficient neural 

recruitment during engagement with the working memory task.

Dimensionality of neural responses may be an important metric of the efficiency of cortical 

networks. In longitudinal fMRI experiments of stroke recovery, low principal component 

(PC) dimensionality was found to be related to better post-stroke behavioral recovery5. In 

simulated fMRI data, lower PC dimensionality has been shown to correspond to stronger 

coupling and/or stronger dynamic range6. In other words, intrinsic PC dimensionality is 

related to the number of distinct strongly covarying networks in fMRI data; if 

dimensionality is low, then the fMRI signal can be described by a simpler model that 

contains fewer distinct covarying networks (i.e., PCs). Therefore, it is possible that low PC 

dimensionality may reflect a more efficient recruitment of cortical networks to achieve the 

same behavioral performance. We define dimensionality by the number of PCs required to 

optimize classification accuracy between lure and control trials (i.e., working memory 

control).

Here we show that low delayers recruited significantly higher-dimensional neural networks 

when performing the task compared to high delayers. In addition, results indicated that high 

delayers were more homogeneous as a group in their activation patterns than were low 

delayers. Finally, utilizing a quadratic discriminant analysis, we could predict with 71% 

accuracy whether a participant was a high or a low delayer from their brain activity patterns. 

The present results suggest that dimensionality of neural networks is a biological predictor 

of self-control abilities into adulthood.

Results

Behavioral Results

Replicating the standard directed forgetting effect of slower and less accurate performance 

on lure trials compared to control trials7,8, we found a significant main effect of trial type for 

both RT, F(1,22) = 58.1, p < .001, ηp
2 = 0.73, and Accuracy, F(1,22) = 9.6, p < .01, ηp

2 = 

0.30. This main effect was present in the low-delay group in RT F(1,11) = 47.67, p < .001, 

ηp
2 = 0.81, and Accuracy, F(1,11) = 6.71, p < .05, ηp

2 = 0.38 and in the high-delay group in 

RT, F(1,11) = 18.57, p < .001, ηp
2 = 0.63, and a trend in Accuracy, F(1,11) = 3.62, p = .08, 

ηp
2 = 0.25. Although there was no interaction between group and trial-type for either RT, 

F(1,22) = 0.61, n.s., ηp
2 = 0.03, or ACC, F(1,22) = 0.01, n.s., ηp

2 = 0.00, the trends for both 

measures were in the predicted direction. Specifically, compared with high delayers, low 

delayers are less accurate and take longer to respond for the lure trials than to the control 

trials. We also examined differences in lure vs. control trials with the combined z-score of 

the effects. Again, we found no significant difference between the two groups, t(22) = .57, 

n.s. We attribute the lack of significance to a small number of experimental trials, high 

variability in the responses, and small overall sample size. Nonetheless, although not reliable 

in the present experiment, these results hint at the possibility that low-delay participants find 

it more difficult than do high-delay participants to resolve interference between relevant and 

irrelevant material in this experiment. More statistical power may be needed to examine 
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whether there is a significant behavioral difference in this task. In addition, there was no 

main effect of group on either RT, F(1,22) = 0.78, n.s. or ACC, F(1,22) = 0.33, n.s. Table 1 

summarizes the RT and ACC effects by group. Thus, although the difference in response 

times and accuracy between lure and control trials was numerically greater for the low than 

for the high delayers, this was not a reliable effect.

Neural network dimensionality

It is important to note that equivalent behavioral performance does not mean that the two 

groups are resolving interference from lure trials in the same way. Indeed, our neural 

analyses suggest quite different routes to the same behavioral outcome.

What is impressive is that low delayers appear to be recruiting neural networks less 

efficiently to achieve the same level of behavioral interference control. Linear discriminant 

analysis on PCs revealed that low delayers recruited higher dimensional neural networks 

than did high delayers when controlling the contents of working memory. In addition, high 

delayers were more stereotyped in their patterns of brain activation (i.e., showed greater 

homogeneity) than were low delayers, who were characterized by more varied neural 

networks. Based on these findings we were able to accurately distinguish neural network 

patterns between high and low delayers with 71% accuracy utilizing a quadratic 

discriminant analysis. The following three analyses support these conclusions.

Dimensionality of individuals’ networks

Univariate analyses are limited to treating each voxel in the brain independently, ignoring 

the spatial patterns and distributions of voxels9 and the interactions of different brain 

locations, all of which have proven important in neuroimaging studies10,11. To remedy this 

problem and to examine neural networks, we conducted multivariate analyses using linear 

discriminant (LD) analysis on PCs to examine differences in the neural networks recruited 

for lure and control trials. LD attempts to find a linear combination of voxels that define a 

plane (i.e., each voxel has a weight, and all of the weights together define the plane) that 

optimally separates two classes of data. This method can be used to classify fMRI volumes 

according to the task performed during the volume’s acquisition12. In addition, the analysis 

provides a spatial map in which each voxel is assigned a value indicating the importance of 

that voxel in the classification5. For each participant, 70% of the lure and control trials were 

used to train the classifier, which was then tested on the remaining 30% of the data to 

determine classification accuracy12 (see Methods). This splitting should provide sufficient 

data to form a good model, while at the same time preserving sufficient data to test the 

model. In addition, we restricted the analysis to the regions that showed the greatest 

difference in lure vs. control trials (Fig. 1B) as uncovered with univariate analyses, a 

procedure shown to reduce classification errors13 and to provide an unbiased and orthogonal 

method from our multivariate analyses to select voxels. This network has been strongly 

implicated in controlling the contents of working memory7,8,14,15, and exhibited 

considerable spatial overlap with previous results (Supplementary Fig. S1), which is why we 

focused on these associated regions. There was a significant difference between the groups 

in the number of PCs required to achieve optimal accuracy in classifying trials as lure vs. 

control, t(22) = 3.45, p < 0.005, ηp
2 = 0.35. On average, whereas 3 PCs were required to 
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optimize classification for high delayers, a full 15 PCs were required for low delayers (Fig. 

2). This suggests that the network of high delayers is less dimensional and potentially more 

efficient than is the network of low delayers.

These results were not a function of the splitting proportions between training and test: our 

results were significant for a 90/10 split, an 80/20 split, a 60/40 split and a 50/50 split (Table 

2). In addition, these results were not idiosyncratic to the feature-selected network. When 

the same analysis was conducted examining all brain voxels (i.e., no masking), we obtained 

the same effect, in which high delayers required fewer PCs than did low delayers to 

distinguish lure from control trials (6 vs. 15), t(22) = 2.18, p < .05, ηp
2 = 0.18. Finally, there 

were no group differences in physiological parameters (heart rate, respiration rate, or breath 

volume), or in the 6 rigid body motion parameters either at the TRs that were analyzed or 

across all functional runs, suggesting that motion and physiology played no role. To control 

for motion and physiology even further, we covaried motion and physiology (see Methods) 

from the raw signal while controlling for the task design. Conducting the analysis on these 

data yielded the same result of increased dimensionality for the low delayers vs. the high 

delayers (6 vs. 14 PCs), t(22) = 2.28, P < .05, ηp
2 = 0.19. Therefore, the present findings do 

not appear to be driven by differences in physiological parameters16 or motion, nor are the 

results idiosyncratic to the splitting ratio of the training and test sets or the voxels that were 

chosen for the analysis.

Another potential confound in the data was an imbalance in males and females. Our high-

delay group contained more females than males (9 out of 12), while our low-delay group 

contained more males than females (8 out of 12). To examine whether gender was a 

confounding variable in our analysis, we aggregated the data from males and from females 

to compare the number of PCs to distinguish lure vs. control trials (i.e., LD dimensionality). 

This analysis yielded no reliable difference in the number of PCs, t(22) = 0.75, n.s. 

Consequently, the dimensionality differences are not driven by gender. Fig. S2 shows the 

results of this analysis.

Sometimes PC spaces can be difficult to interpret. To allay concerns that our PCs may not 

be sensible, we plotted the average of the first and second PC separately for each group (Fig. 

3) and the first and second PC for each individual participant (Supplementary Figs. S3–S6). 

Examining these plots, and in particular Fig. 3, the first and second PCs are sensible in that 

their values are well clustered in our feature-selected network and do not represent 

disjointed random values spread throughout the space (i.e. the values are not salted and 

peppered throughout the space). Thus, we are confident that the PCs are both plausible and 

usable.

Finally, the same anatomical regions were involved in the classification for both groups: 

only 16 of the 2589 voxels showed significant group differences in classification values with 

univariate t-tests at a liberal threshold of p < .05, and no voxels surviving a p < .005 

threshold criterion. In sections 2 and 3 we examine these classification maps with 

multivariate analyses.
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In sum, this analysis indicates that when controlling the contents of working memory, high 

delayers activate networks that require fewer dimensions to optimize classification of lure 

vs. control trials than do low delayers, which we posit indicates more efficient neural 

recruitment.

Homogeneity of networks across participants

Based on the differences in LD dimensionality, we examined differences in homogeneity of 

the classification maps across the two groups of participants. To evaluate group 

homogeneity, we measured the Euclidean distance across all voxels from each participant’s 

LD maps to the mean LD map of all other group members of that participant’s group (either 

high or low). From this analysis we could determine how similar or different each 

participant’s LD classification map was from the mean map of his or her group (excluding 

that particular participant from the mean map). High delayers had significantly smaller 

Euclidean distances (M = 0.0022, SD = 0.0018) than did low delayers (M = 0.0262, SD = .

0225), t(22) = 3.69, p < 0.005, ηp
2 = 0.38, suggesting that they are more homogeneous as a 

group (Fig. 4).

To further examine group homogeneity and to obtain a different visual representation of the 

data, we performed multidimensional scaling17 (MDS) to plot the first three dimensions of 

individuals’ LD map values based on the LD map distance matrix (i.e., the Euclidean 

distance of all individual maps from each other as calculated above). In this way, each 

participant’s entire LD map was summarized by weightings on 3 dimensions. It is apparent 

from Fig. 5 that the high-delay group is clustered more tightly, while the low-delay group is 

more heterogeneous.

Classification of individual participants

Examining how the participants were clustered based on our MDS analysis, it was apparent 

that participants could not be easily classified with a linear decision boundary, though a 

linear discriminant classifier could classify the groups with 58% accuracy, which was above 

chance. Based on the MDS analysis, we classified the groups with a quadratic discriminant 

(QD), where the decision boundary is a quadratic surface rather than a plane. We 

implemented a leave-two-out cross-validation framework (see Methods) and achieved 

classification accuracy as high as 71.3% (SD = 0.24%).

Using a procedure similar to12 we created a sensitivity map that identified the voxels 

important to the QD classification. Examining the map in Fig. 6, positive and negative 

values are distributed across the feature-selected network, particularly in LiFG, showing that 

the whole network was involved in classification and that regions were not entirely selective 

for one group. As a caveat, piecewise interpretations of multivariate maps can be hazardous 

because of the inclusion of voxel covariances into the analyses, which limits local 

interpretations; therefore, one should be careful in interpreting the map in Fig. 6.

The QD classifier was a bit more accurate in classifying high delayers than low delayers 

(73.6% vs. 69.0%). This was not surprising given that high delayers were more 

homogeneous as a group in their pattern of activation and, therefore, clustered together more 
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tightly. Considered collectively, these analyses suggest that dimensionality of brain 

networks and subsequent classification maps provide important information concerning 

biological predictors of self-control ability.

Univariate fMRI analyses

We note that the univariate analyses of these data reveal more commonality than differences 

between the groups, which may not be surprising given the small behavioral difference in 

interference between the groups. Across both groups, univariate general linear model (GLM) 

analyses revealed significant differences (Fig. 1B) for the lure – control contrast in areas 

such as the left inferior frontal gyrus (LiFG), the anterior cingulate cortex (ACC), and the 

left parietal cortex, replicating results from other studies using a similar task7,8,14,15 and 

exhibiting considerable spatial overlap with previous results (Supplementary Fig. S1). There 

were few and modest differences between the low and high delayers in BOLD activation 

magnitude at liberal thresholds that are summarized in the supplementary Table S1.

Discussion

This study demonstrated that self-control ability across the life span is reflected in intrinsic 

PC dimensionality when performing a task that assesses the ability to control the contents of 

working memory. Intrinsic PC dimensionality is related to the number of distinct strongly 

covarying networks in fMRI data6; for high delayers there are fewer strongly coupled 

networks to optimize classification of lure vs. control trials and therefore their data can be 

described by a simpler model that requires fewer PCs. The opposite was true of the low-

delay group. Therefore, it is possible that low PC dimensionality reflects a more efficient 

recruitment of cortical networks for high delayers relative to low delayers to achieve the 

same behavioral performance on this working memory task.

Note that the present findings were obtained in a task that does not challenge participants 

with information that has emotional or motivational content (as marshmallows do for 

children or as money might for adults). It may be this lack of affective content that leads to 

equivalent behavioral performance in high and low delayers on this task; it is possible that 

with affectively-laden stimuli, low delayers would have exhibited a different pattern of 

behavioral performance in addition to their unique neural signature18. Of course, the pattern 

of neural activations found in the present study must be examined with other cognitive 

control tasks, but the results offer an important clue for the neural bases of life-long 

differences in self-control abilities; it is remarkable nonetheless that some 40 years after our 

participants with well-documented and reliable life-long patterns of high vs. low self-control 

abilities exhibited distinct neural signatures that may represent a biological marker of self-

control ability. In this way, the neural dimensionality differences are linked more broadly to 

behavioral performance – that is, to self-control ability through the lifespan.

Finally, the high-delay group was more homogeneous in their activation patterns than was 

the low-delay group. This could be interpreted as indicating that life-long self-control is 

instantiated with more stereotyped neural activation patterns. These findings bring to mind 

the first line in Leo Tolstoy’s Anna Karenina: “All happy families are alike; each unhappy 
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family is unhappy in its own way.” Perhaps all self-control is alike, but lack of self-control 

may be instantiated more uniquely.

Methods

Participants

We contacted 117 individuals from more than 500 original participants who completed the 

delay-of-gratification task at age 4 at Stanford’s Bing Nursery School during the late 1960s 

and early 1970s. These 117 individuals were selected because they exhibited either a life-

long trajectory of high self-control (above average in their original delay-of-gratification 

performance as well as in self-report measures of self-control administered in their 20s and 

30s), or a life-long trajectory of low self-regulation (below average on these measures). Of 

these individuals, 29 participated in this follow-up neuroimaging study and met fMRI safety 

regulations. Two participants did not complete fMRI scanning, and 3 participants did not 

complete all 5 runs of the task, leaving us with 24 participants who had complete fMRI 

imaging data. Please see the Supplementary Information for more details regarding the 

participants.

Directed Forgetting Task

Participants performed a directed forgetting working memory task to examine their ability to 

remove irrelevant information from working memory. Participants saw a display of six 

words on a screen. Three of the words were presented in blue and three in teal colors. 

Participants were instructed to encode and remember all six words. After a 4s delay, 

participants saw a “forget” cue indicating the color of the words they were now to forget; the 

words in the other color were to be remembered. Following a jittered cue-to-stimulus 

interval (CSI) of 2, 3, 5, or 6s (average CSI = 4s), participants saw a single probe word and 

pressed a “yes” key if that word was one of the three words they were to remember or a “no” 

key if it was not one of the three words they were to remember. The intertrial interval (ITI) 

was jittered to be 2, 3, 5, or 6s (average ITI = 4s), which included a 1s warning display that 

the next trial was about to begin.

Two types of “no” trials were the trials of main interest: those with “control” probes (words 

that were not seen in over 11 trials on average) and those with “lure” probes (words that 

were drawn from the to-be-forgotten set of the current trial). Previous research has 

demonstrated that people are both slower and less accurate in responding to lure trials than 

to control trials8,14. The difference in performance between lure and control trials is an index 

of control over the contents of working memory. There were 100 trials in the task: 50 ‘yes’ 

trials, 25 ‘lure’ trials, and 25 ‘control’ trials. Participants first practiced 20 trials of the 

directed forgetting task. All words were 4 letters and were taken from previous work19.

Behavioral Analysis Parameters

A 2 (Group: High vs. Low Delay) X 2 (Trial type: Lure vs. Control) repeated-measures 

analysis of variance (ANOVA) was conducted on reaction time (RT; mean RT for correct 

trials) and accuracy (ACC) data for the ‘no’ trials. The mean RT for correct trials was used 
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in the analysis of RT. Z-scores combining RT and ACC (errors) measures were computed to 

control for speed/accuracy trade-offs.

Classification Analysis Parameters

The de-spiked, smoothed and normalized functional data were mean-centered separately for 

each run per voxel across time. When constructing within-subject classification maps that 

distinguished lure vs. control trials, the 2nd TR after the onset of the probe stimulus for lure 

and control trials was analyzed. These TRs corresponded to the peak activation of that trial, 

without having activation bleed into the following trial. In this analysis all 25 lure trials and 

25 control trials were included. We performed feature-selection to select only the voxels that 

were most active for the Lure-Control contrast across all participants. This map contained 

2589 voxels that met a threshold of p < .005 uncorrected at the voxel level for 10 contiguous 

voxels to reduce and balance type I and type II errors20 and also to increase the number of 

voxels in the feature selected network (for the subsequent multivariate analyses) because a 

voxel may not contribute strongly to a univariate effect, but could contribute to a 

multivariate effect.

Data from individual subjects were repeatedly split into training and test sets. The training 

set was used to train the linear discriminant5, which was then applied to classify the trials in 

the test set according to the task performed. The training test was formed by randomly 

selecting 70% of the trials (with equal number of lure and control trials selected) while the 

remaining 30% formed the test set; we performed 500 such training-test splits. Singular 

value decomposition (SVD21) was performed on the training data to project it into principal 

component (PC) space. SVD ranks PCs according to the amount of variance explained. To 

prevent over-fitting, we used a subset of highest-ranked PCs in our LD analysis, as the 

lowest-ranked components might contain irrelevant noise specific to the training set. The 

size of the subset was varied iteratively: we started with only the first PC, then the first two 

PCs, etc., up to the first 34 PCs. At each iteration, test-set data were projected into this PC 

space, and LD was used to classify the trials into lure and control trials; classification 

accuracy was recorded. The number of PCs that maximizes classification accuracy serves as 

our estimate for intrinsic dimensionality of that particular subject’s data. This number of 

PCs was then used to create LD maps for each individual subject.

Motion and Physiology Covariation

To rule out that our dimensionality results were not driven by motion or physiology we 

covaried motion and physiology parameters from the raw fMRI signal. We calculated 24 

motion parameters, which included the linear, squared, derivative, and squared derivative of 

the six rigid-body movement parameters22. In addition to these movement parameters, heart 

rate and two respiratory physiological variables were also added to the analysis. We then 

mean centered these parameters and calculated the first PC of these 27 parameters, which we 

found to account for 90% of the variance in the motion and physiological data. We then 

regressed this first PC from the mean centered fMRI signal as well as regressing out the task 

design’s convolved HRF response (which was also mean centered). We did this because 

motion and task can be coupled. After performing this regression, we subtracted the beta*the 
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first PC of motion and physiology from the mean centered fMRI signal and used that signal 

in the analysis.

Leave-two-out Cross-Validation Procedure

To examine if individual LD maps could be accurately classified as coming from the high-or 

low-delay group, the set of 24 LD maps was randomly split into the training set (20 maps, 

with 10 high and 10 low), the validation set (1 high and 1 low) and the test set (1 high and 1 

low). The training set was used to train the LD classifier using a specific number of PCs; 

this classifier was then used to classify the validation set. The procedure was repeated for 

different numbers of PCs, from 1 to 19, to determine the number of PCs that optimized 

classification of the validation set. Finally, the test set was classified using the optimal 

number of PCs determined on the validation set. This procedure provides an unbiased 

estimate of classification accuracy of previously unseen (out-of-sample) data. We created 

2000 distinct training-validation-test splits. This same procedure was also conducted when 

we used the QD classifier instead of the LD classifier.

Constructing QD Group Classification Map

The spatial map for QD classification was created similarly to the sensitivity map technique 

described in5, with a small but important modification. We computed sensitivity of a voxel 

as a derivative of the decision function with respect to that voxel, rather than the square of 

that derivative. By not taking the square, we preserve the sign of the decision function, 

which encodes the preferred category for that voxel (see also23 on the sign information in 

sensitivity maps).

Details regarding our fMRI acquisition and preprocessing parameters can be found in the 

Supplementary Methods.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Directed-forgetting task and Activations
(A) Schematic of the working memory directed-forgetting task. The task is composed of 3 

trial types: lure, yes, and control trials. Of most interest is the comparison of accuracy and 

RT for lure vs. control trials. (B) Activation Patterns for the lure – control contrast across all 

participants. Significant activation is seen in the Left Inferior Frontal Gyrus (LiFG), the 

Right Inferior Frontal Gyrus (RiFG), the Anterior Cingulate Cortex (ACC)/Superior Frontral 

Gyrus (sFG), the Caudate, the Precuneus and the Left Inferior Parietal Lobule (LiPL). These 

images are thresholded at p < .005 uncorrected for 10 contiguous voxels.
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Fig. 2. The optimal number of dimensions to maximize classification accuracy
The number of linear discriminant (LD) dimensions/components that were required to 

achieve maximum classification between lure and control trials for each subject, with the 

group averaged data to the far right. High-delay group = red; Low-delay group = blue. Error 

bars represent standard errors of the mean.
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Fig. 3. Averaged first and second PC for each group
(A) Average PC 1 for High delayers (B) Average PC 1 for Low delayers (C) Average PC 2 

for High delayers (D) Average PC 2 for Low delayers
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Fig. 4. The Euclidean distances for each individual participant’s LD map from their group mean 
LD map
High-delay group = red; Low-delay group = blue. Error bars represent standard errors of the 

mean.
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Fig. 5. MDS results for the first 3 dimensions of the LD map distance matrix
The high (red) delayers are grouped together more closely than the low delayers (blue).
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Fig. 6. QD sensitivity map for classifying high- vs. low-delayers’ LD Maps
Areas in blue represent voxels that are higher in low-delayers’ maps. Areas in orange/yellow 

represent voxels that are higher in high-delayers’ maps. The left hemisphere is shown.
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Table 1

RT and ACC data by group with standard deviations in parentheses.

Trial type

Control Yes Lure

ACC data (% correct)

 High 93.3% (11.4) 90.0% (6.0) 84.0% (12.2)

 Low 91.7% (12.2) 87.3% (7.7) 81.7% (9.7)

RT Data (ms)

 High 876.6 (181.5) 867.0 (158.2) 1036.1 (214.0)

 Low 920.3 (138.6) 900.7 (166.2) 1116.1 (182.2)
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