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ABSTRACT

For many RNA molecules, the secondary structure
is essential for the correct function of the RNA. Pre-
dicting RNA secondary structure from nucleotide se-
quences is a long-standing problem in genomics, but
the prediction performance has reached a plateau
over time. Traditional RNA secondary structure pre-
diction algorithms are primarily based on thermo-
dynamic models through free energy minimization,
which imposes strong prior assumptions and is
slow to run. Here, we propose a deep learning-
based method, called UFold, for RNA secondary
structure prediction, trained directly on annotated
data and base-pairing rules. UFold proposes a novel
image-like representation of RNA sequences, which
can be efficiently processed by Fully Convolutional
Networks (FCNs). We benchmark the performance
of UFold on both within- and cross-family RNA
datasets. It significantly outperforms previous meth-
ods on within-family datasets, while achieving a sim-
ilar performance as the traditional methods when
trained and tested on distinct RNA families. UFold
is also able to predict pseudoknots accurately. Its
prediction is fast with an inference time of about
160 ms per sequence up to 1500 bp in length. An
online web server running UFold is available at
https://ufold.ics.uci.edu. Code is available at https:
//github.com/uci-cbcl/UFold.

INTRODUCTION

The biology of RNA is diverse and complex. Aside from
its conventional role as an intermediate between DNA and
protein, cellular RNA consists of many other functional

classes, including ribosomal RNA (rRNA), transfer RNA
(tRNA), small nuclear RNA (snRNA), microRNA and
other noncoding RNAs (1–4). Some RNAs possess cat-
alytic functionality, playing a role similar to protein en-
zymes. The spliceosome, which performs intron splicing,
is assembled from several snRNAs. The microRNAs are
abundant in many mammalian cell types, targeting ∼60%
of genes (5), and are often regarded as biomarkers for di-
verse diseases (6).

Cellular RNA is typically single-stranded. RNA fold-
ing is in large part determined by nucleotide base pair-
ing, including canonical base pairing––A–U, C–G and non-
Watson–Crick pairing G-U, and non-canonical base pair-
ing (7,8). The base-paired structure is often referred to
as the secondary structure of RNA (9). For many RNA
molecules, the secondary structure is essential for the cor-
rect function of the RNA, in many cases, more than the pri-
mary sequence itself. As evidence of this, many homologous
RNA species demonstrate conserved secondary structures,
although the sequences themselves may diverge (10).

RNA secondary structure can be determined from
atomic coordinates obtained from X-ray crystallography,
nuclear magnetic resonance (NMR), or cryogenic elec-
tron microscopy (11–13). However, these methods have low
throughput. Only a tiny fraction of RNAs have experimen-
tally determined structures. To address this limitation, ex-
perimental methods have been proposed to infer base par-
ing by using probes based on enzymes, chemicals, and cross-
linking techniques coupled with high throughput sequenc-
ing (14–17). Although promising, these methods are still at
the early stage of development, unable to provide precise
base-pairing at a single nucleotide solution.

Computationally predicting the secondary structure of
RNA is a long-standing problem in genomics and bioinfor-
matics. Many methods have been proposed over the past
two decades. They can be broadly classified into two cate-
gories: (i) single sequence prediction methods and (ii) com-
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parative methods. In the first category, the most common
method is to search for thermodynamically stable states
through free energy minimization. If the secondary struc-
ture contains only nested base pairing, the energy minimiza-
tion can be efficiently solved through dynamic program-
ming, such as those implemented in Vienna RNAfold (18),
MFold (19), RNAstructure (20) and CONTRAfold (21).
Faster implementations that try to improve the speed of dy-
namic programming include Rfold (22), Vienna RNAplfold
(23), LocalFold (24) and LinearFold (25). Efficient dy-
namic programming algorithms that sample suboptimal
secondary structures from the Boltzmann ensembles of
structures have also been proposed, for example, Centroid-
Fold (26). However, some dynamic programming-based
methods break down when base pairs contain non-nested
patterns, called pseudoknots, which include two stem–loop
structures with half of one stem intercalating between the
two halves of another stem. Predicting secondary struc-
tures with pseudoknots is hard and has shown to be NP-
complete under the energy minimization framework (27).
Methods in the secondary category utilize covariance meth-
ods by aligning related RNA sequences and identifying cor-
related compensatory mutations. The second category of
methods such as (28–30) analyze multiple sequences to de-
termine points of base covariance within the sequences to
help infer base pair positions, and try to predict conserved
structures. Although the list of proposed methods in each of
the two categories is long and diverse (31), the performance
of these methods has not been significantly improved over
time, reaching a performance ceiling of about 80% (32). It
is possible because they fail to account for base pairing re-
sulting from tertiary interactions (33), unstacked base pairs,
pseudoknot, noncanonical base pairing, or other unknown
factors (8).

Recently deep learning techniques have started to emerge
as an alternative approach to functional structure predic-
tion problems including RNA secondary structure predic-
tion problems (34–38). Compared to the thermodynamic
model-based approaches, the learning-based methods ben-
efit from making few assumptions, allowing pseudoknots,
and accounting for tertiary interactions, noncanonical base
pairing, or other previously unrecognized base-pairing con-
straints. Existing deep learning methods differ in model ar-
chitectural design and their choices of model input and out-
put. These methods either treat the input as a sequence,
utilizing LSTM (39) or transformer encoder (40) to cap-
ture long-range interactions between nucleotides (37,41,42).
Other methods aim to integrate deep learning techniques
with dynamic programming or thermodynamic methods
to alleviate prediction biases (34,35,41). However, existing
deep learning approaches still face several challenges: First,
both LSTM and transformer encoder modules involve a
huge number of model parameters, which lead to high com-
putational cost and low efficiency. Second, integrating with
thermodynamic optimization methods will push the models
to assume the assumptions underlying traditional methods,
which can hinder the model performance. Third, because
the performance of deep learning models depends heavily
on the distribution of training data, we need to think about
how to improve the performance of these models on previ-
ously unseen classes of RNA structures (41). Because many

new RNA families have yet to be discovered, it would be im-
portant for the learning-based models to have a good gen-
eralization ability.

Instead of using the nucleotide sequence itself, the in-
put of our model consists of all possible base-pairing maps
within the input sequence. Each map, first represented by a
square matrix of the same dimension as the input sequence
length, denotes the occurrences of one of the 16 possible
base pairs between the input nucleotides. Under this new
representation, the input is treated as a 2D ‘image’ with 16
channels, allowing the model to explicitly consider all long-
range interactions and all possible base pairing, including
non-canonical ones. We include one additional channel to
store the pairing probability between input base pairs cal-
culated based on three paring rules (34) and concatenate it
with the previous 16 channel representation. So, an over-
all 17 channel 2D map is used as our model input. We use
an encoder-decoder framework to extract multi-scale long-
and short-range interaction features of the input sequence,
implemented in a U-Net model (43). For this reason, we will
refer to our method as UFold (stands for U-Net based on
RNA folding). The output of UFold is the predicted contact
score map between the bases of the input sequence. UFold is
fully convolutional, and as such, it can readily handle input
sequences with variable lengths.

We conduct experiments on both known family RNA
sequences and cross family RNA sequences to compare
the performance of UFold against both the traditional
energy minimization-based methods and recent learning-
based methods. We show that UFold yields substantial
performance gain over previous methods on within-family
datasets, highlighting its promising potential in solving
the RNA secondary structure prediction problem. We also
show how to use synthetic data to improve the generaliza-
tion of UFold on the more challenging cases of cross-family
RNA structure prediction.

UFold is fast with an inference time of an average of 160
ms per sequence for RNA sequences with lengths of up to
1500 bp. We have developed an online web server running
UFold RNA secondary structure prediction. The server is
freely available, allowing users to enter sequences and visu-
alize predicted secondary structures.

MATERIALS AND METHODS

Datasets

Several benchmark datasets are used in this study: (a)
RNAStralign (44), which contains 30 451 unique sequences
from 8 RNA families; (b) ArchiveII (45), which contains
3975 sequences from 10 RNA families and is the most
widely used dataset for benchmarking RNA structure pre-
diction performance; (c) bpRNA-1m (46), which contains
102 318 sequences from 2588 families and is one of the
most comprehensive RNA structure datasets available and
(d) bpRNA-new, derived from Rfam 14.2 (41,47), contain-
ing sequences from 1500 new RNA families. RNA families
occurring in bpRNA-1m or any other dataset are excluded
from bpRNA-new. e) PDB dataset from bpRNA and PDB
database (46,48), which contains high-resolution (<3.5 Å)
RNA X-ray structures, we also manually downloaded se-
quences that were submitted to PDB from July 2017 to
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October 2020. In this work, the bpRNA-new dataset is
treated as a cross-family dataset to assess cross-family
model generalization.

The RNAStralign dataset is randomly split into training
and test sets, with 24 895 and 2854 samples, respectively. Re-
dundant sequences between test and training are removed
in the same way as processed in e2efold (36) and MXFold2
(41). For the bpRNA-1m dataset, we followed the same pro-
cessing procedure used in MXfold2 (41) by using the CD-
HIT program (49) to remove redundant sequences and ran-
domly split the dataset into two sub-datasets for training
and testing, named TR0 and TS0, respectively. Redundancy
removed ArchiveII and bpRNA-new are used only for test-
ing. As for the PDB dataset, we used PDB sequences re-
trieved from bpRNA database and PDB database as train-
ing data, and then referred to the name of datasets TS1,
TS2, TS3 from (50) as test set and manually collect their
high-quality RNA secondary structure from the PDB file
using RNApdbee 2.0 (51). Sequences with similarity scores
of greater than 80% to the training data were discarded us-
ing CD-HIT-EST. Details of statistics of the datasets are
listed in Supplementary Tables S1 and S2. In addition,
we also include data augmentation strategy to enlarge the
training set, which is detailed in Results section. All in all,
the training datasets we used in the paper are RNAStralign
training dataset, TR0, augmented training data, and PDB
training data. The test datasets are ArchiveII, TS0, bpRNA-
new and PDB test data (TS1, TS2 and TS3).

Input and output representation

The general problem of the RNA secondary struc-
ture prediction is to predict base pairing patterns given
an input sequence. Let x = (x1, x2, · · · , xL) with xi ∈
{′A′, ′U′, ′C′, ′G′} be an input sequence of length L. The
goal is to predict the secondary structure of x, represented
by a contact matrix A ∈ {0, 1}L×L with Ai j = 1 denoting
a base pairing between bases xi and xj , and 0 otherwise.
UFold utilizes a deep neural network to predict the con-
tact matrix given the input. Next, we describe several design
choices behind UFold (Figure 1).

Most existing learning-based methods treat the input as
a sequence and use recurrent neural nets (RNNs) to model
the interaction between different bases. Gated RNNs, such
as LSTMs and GRUs, are often the method of choice
for dealing with sequential data because of their ability
to model long-range dependencies. However, RNN mod-
els need to be run sequentially, causing issues in both train-
ing and inference. Newer RNA structure prediction mod-
els based on transformers, which do not require the se-
quential data to be processed in order, have also been
proposed (36).

Unlike the previous models, UFold converts the input
sequence directly into an ‘image’. This is done by first en-
coding x with one-hot representation, representing the se-
quence with an L × 4 binary matrix X ∈ {0, 1}L×4. x is then
transformed into a 16 × L × Ltensor through a Kronecker
product between x and itself, followed by reshaping dimen-
sions (Figure 1a),

K = X ⊗ X (1)

In this representation, input K ∈ {0, 1}16×L×L can be un-
derstood as an image of size L × L with 16 color channels.
Each channel specifies one of the 16 possible base-pairing
rules; K(i, j, k) denotes whether bases xj and xk are paired
according to the i-th base-pairing rule (e.g. i = 2 for A–C
pairing).

To overcome the sparsity bringing by converting sequenc-
ing into 16 channels, we also adopt an extra channel used
in CDPFold (34), which reflects the implicit matching be-
tween bases (more details in Supplementary notes section
1 and Figure S1). We calculate the paring possibilities be-
tween each nucleotide and others from one sequence ac-
cording to three paring rules (34), using these rules we could
calculate the specific values of each nucleotide position with
other nucleotides. These non-binary values may help allevi-
ate the sparsity of the model and provide more information
on paring bases. The calculated matrix W ∈ R

1×L×L is then
concatenated with K along the first dimension to get the
final UFold input I of dimension 17 × L × L.

UFold takes I as input and computes Y = f (I; θ ) with a
deep convolutional neural net (Figure 1b). The output Y ∈
[0, 1]L×L is a L × Lmatrix, with Yi j denoting the probability
score of nucleotides bases xi and xj being paired.

The new input representation taken by UFold has several
advantages: first, using an image representation allows it to
model all possible long-range interactions explicitly. Base
pairing between distant sequence segments shows up locally
in the image representation. Second, it considers all pos-
sible base pairing patterns, making no distinction between
canonical and non-canonical base pairs. Third, it allows us
to implement a fully convolutional neural model that can
handle variable sequence length, eliminating the need of
padding the input sequence to a fixed length.

Input and scoring network architecture

UFold uses an encoder-decoder architecture for computing
the predicted contact score matrix Y (Figure 1). The model
consists of a sequence of down-sampling layers (encoder)
to derive increasingly complex semantic representations of
the input, followed by a sequence of up-sampling layers (de-
coder), with lateral connections from the encoder to fill in
contextual information. The overall design follows the U-
Net model, widely used in the field of image segmentation.
More detail on the framework is illustrated in Supplemen-
tary file (Section 2).

All operations in UFold are fully convolutional. Thus,
the input sequence can be of variable length, with the out-
put matrix changing correspondingly. This feature is espe-
cially beneficial for RNA secondary structure as the range
of the input sequence length is very large, from tens of nu-
cleotides for small RNAs to thousands of nucleotides for
large RNAs. Padding input sequences to the same length as
done in other methods would have significantly impacted
the efficiency of the algorithm.

UFold is trained by minimizing the cross-entropy be-
tween the predicted probability contact matrix Y and the
true contact matrix A, using stochastic gradient descent.
The predicted matrix of pairs represents the base-pairing
probabilities, which are strictly positive in our model. Our
final layer of activation function takes the form of a sigmoid
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Figure 1. The overall architecture of UFold. (A) The input sequence is first converted into one-hot representation. A novel representation of the sequence
is then introduced by taking outer product of all combinations of base pair channels, resulting in an image-like representation with 16 channels and with
the same size as the contact map. We calculate a paring possibilities matrix according to three paring rules and concatenate this extra matrix with previous
feature to obtain the final 17 channel input. (B) Detailed architecture of our framework. The input is a 17 × L × Ltensor representation of the original
sequence. The U-Net takes the 17 × L × L tensor as input and outputs an L × L symmetric score matrix Y. After postprocessing, matrix Ŷ∗ is the final
prediction of the contact map.

activation σ (x) = 1
1+e−x , where x is an unbounded output

from the previous layer. A positive weight ω of 300 is added
to leverage the imbalanced 0/1 distribution to derive the
loss function as below.

Loss (Y, A; θ) = −
∑

i j

[
Ai j log

(
Yi j

) + (
1 − Ai j

)
log

(
1 − Yi j

)]
. (2)

where θ is used to represent all parameters in the neural net-
work.

Postprocessing

After the symmetric contact scoring matrix Y is computed
by UFold, we use a postprocessing procedure to derive
the final secondary structure. The postprocessing proce-
dure takes into account four hard constraints in the sec-
ondary structure: (i) the contact matrix should be symmet-
ric; (ii) only canonical plus U–G paring rules are allowed
(this can be relaxed by including other non-canonical base
pairs); (iii) no sharp loops are allowed, for which we set
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Ai j = 0, ∀i, j with |i − j |lt; 4 and (iv) no overlapping pairs
are allowed, that is, A1 ≤ 1. We follow the steps used in
e2efold by encoding constraints (ii) and (iii) into a matrix
M, defined as M(x):=1 if nucleotides xi and xj can be paired
under constraints (ii) and (iii) and equals to 0 otherwise.

To address the first two constraints, we transform Y ac-
cording to

T (Y) := 1
2

(
Y + YT) ◦ M(x) (3)

where ◦ denotes element-wise multiplication. It ensures that
the transformed Y is symmetric and satisfies constraints (i),
(ii) and (iii).

To address the last constraint, we relax it into a linear
programming problem,

Ŷ∗ = argmax
Ŷ∈RL×L

〈Ŷ, T (Y)〉 − ρ‖Ŷ‖, subject to Ŷ1 ≤ 1 (4)

which tries to find an optimal scoring matrix Ŷ that is
most similar to T (Y) while at the same time satisfying the
nonoverlapping pair constraint. The similarity is measured
in terms of the inner product between Ŷand T (Y). ρ is a
hyperparameter controlling the sparsity of the final output.

The final predicted binary contact map is taken to be Ŷ∗
after thresholding it with an offset, which is chosen through
a grid search.

Training and evaluation

During training, stratified sampling (36) is applied to the
training set to balance the number of training samples from
each RNA family. The hyperparameters of UFold are tuned
based on the validation set. The number of parameters is
listed in Supplementary Table S3.

To improve model transferability on previously unseen
RNA families, we augment the training set with synthetic
data to train UFold. The synthetic data are generated by
randomly mutating sequences in the bpRNA-new dataset
(previously unseen RNA families). We then use Contrafold
to generate predicted structures on the synthetic data and
treat them as ground truth.

Precision is defined as Prec = T P
T P+F P , evaluated on all

predicted base pairs. Recall is defined as Recall = T P
T P+F N .

And F1 score is the harmonic mean of precision and recall,
defined as F1 = 2 · Prec·Recall

Prec+Recall . We use CPU version of In-
tel(R) Xeon(R) CPU E5-2690 v4 @ 2.60GHz, and for the
GPU version we are choosing is Nvidia Titan Xp.

RESULTS

To benchmark the performance of different models, we
first conduct three experimental studies: (a) train models
on the RNAStralign training set and evaluate on the RN-
Stralign test set and ArchiveII; and (b) train the exact same
model on the bpRNA-1m training set (TR0) and evaluate
on the bpRNA-1m test set (TS0) as well as on bpRNA-
new(bpnew). (c) fine-tune previous model on PDB train-
ing dataset and evaluate on a standalone test set. Pub-
lished deep learning models usually report results from ei-
ther Study A or Study B. To have a fair and direct com-
parison with previous models, we report results from both,

Figure 2. Violin plot on the ArchiveII dataset. Visualization of F1 value
of UFold versus other 11 RNA secondary structure predictions methods.

following the same data splitting, preprocessing, and evalu-
ation protocols.

In comparing the results from different models, we
treat within- versus cross-family results separately. In both
studies, the test sets, except bpRNA-new(bpnew), contain
mostly within family RNA species, that is, RNA species
from a similar family occurring in the training set. By con-
trast, the bpRNA-new dataset contains only cross-family
RNA species, that is, none of them shares the same RNA
family as those in the training set. Although RNAs that are
from a known family are easier digging into, their folding
patterns can provide more useful information of formation
secondary structure, which it is helpful for the model’s per-
formance on previously unseen families to assess its model
transferability.

Experimental results on within family datasets

In this section, we report the results of our model on
within-family test sets. Figure 2 and Supplementary Ta-
ble S4 summarizes the evaluation results of UFold on the
ArchieveII test set (from Study A), together with the results
of a collection of traditional energy-based, including Con-
textfold (52), Contrafold (21), Linearfold (25), Eternafold
(53), RNAfold (18), RNAStructure (Fold) (54), RNAsoft
(55) and Mfold (19), and recent learning-based methods
MXfold2 (41), SPOT-RNA (37) and e2efold (36). The tra-
ditional methods achieve an F1 score in the range of 0.55–
0.84. A recent state-of-the-art learning-based method im-
proves the F1 score to 0.77 (MXfold2). UFold can further
improve the performance, achieving an F1 score of 0.91.
Compared with MXfold2, UFold achieves an 18% increase
in F1 score, a 22% increase in recall, and a 13% increase in
precision.
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Figure 3. Violin plot on the TS0 dataset. Visualization of F1 value of
UFold versus other 11 RNA secondary structure predictions methods.

Figure 3 and Supplementary Table S5 summarizes
the evaluation results on the TS0 test set (from Study
B). Since this dataset was also used in two other deep
learning-based methods––SPOT-RNA and MXfold2, we
compare UFold with these two methods along with other
energy-based methods. Again, UFold outperforms both the
deep learning-based and the energy-based methods. UFold
achieves a mean F1 score of 0.654 on this dataset, cor-
responding to a 5.7% improvement over SPOT-RNA, the
state-of-the-art method on this dataset, and 15% improve-
ment over traditional methods. Improvements in recall and
precision also surpass all other methods.

We conduct an experiment to demonstrate whether the
‘image-like’ encoding of sequences helps improve the pre-
diction of long-range interactions. For this experiment, we
use the TS0 dataset as a test dataset since it contains more
versatile sequences of different length and various RNA
families. For each sequence of length L, we define the paired
and unpaired bases with intervals longer than L/2 as long-
range base pairing. We then calculate the precision, recall as
well as F1 score of UFold on these long-range pairing pre-
dictions and compare them to other methods. The results
are reported in Supplementary Figure S2 and Supplemen-
tary Table S6. We find that UFold achieves significantly bet-
ter results than other methods on these long-range pairing
predictions. Moreover, the results also show that the per-
formance of UFold on long-range base pairing prediction
is similar to its performance on short-range base pairings
(Figure 2). By contrast, the performances of all other meth-
ods significantly deteriorate when evaluated on long-range
interactions. These results demonstrate the ‘image-like’ en-
coding facilitates the prediction of long-range interactions.

Table 1. Evaluation results of RNA structures with pseudoknots on the
RNAStralign test dataset

Method Recall Precision Specificity Accuracy

UFold 99% 96.2% 96.8% 87.5%
SPOT-RNA 97.8% 67.7% 61.8% 31.4%
E2Efold 99% 84.4% 84.0% 78.8%
RNAstructure
(ProbKnot)

76.1% 77.8% 81.5% 38.5%

NuPack 93.3% 72.4% 72.2% 51.4%
HotKnotsa 56.5% 50% 83.1% 42.7%

aThe sequence number here is 2021, the rest sequence number is 2826.

Predicting secondary structures with pseudoknots is es-
pecially challenging for thermodynamic models. We also
validate the performance of UFold on predicting base pair-
ing in the presence of pseudoknots. For this purpose, we use
all RNA structures in the RNAStralign test set, on which we
then benchmark UFold against other methods that can pre-
dict pseudoknots, including SPOT-RNA, e2efold, RNAs-
tructure(ProbKnot) (56), NuPack (57) and HotKnots (58).
We examined whether ground truth and predictions have
pseudoknot respectively and summarized results in Table
1. As shown in Table 1, all other methods tend to predict
pseudoknot structures for normal sequences. The number
of the pseudoknot pairs of different types is listed in Sup-
plementary Table S7 and accuracy of the pseudoknotted
pairs is also measured. The result is shown in Table 1 as
well. By contrast, UFold still achieves higher recall, pre-
cision and specificity values, while maintaining the high-
est pseudoknotted pairs prediction accuracy compared with
others, highlighting the robustness of UFold predictions in
the presence of pseudoknots.

Experimental results on cross family datasets

In this section, we evaluate the performance of UFold on
previously unseen RNA families. We expect learning-based
methods do poorly on these RNAs since they are not repre-
sented in the training set as shown in Supplementary Table
S8. To address this problem, methods integrating free en-
ergy minimization with deep learning methods have been
proposed, like MXfold2 (41). However, these methods in-
advertently introduce biases into the prediction model and
likely lead to reduced performance on within family RNAs.

Although UFold does not involve any energy minimiza-
tion term in its original design, it uses data augmentation
to improve the performance on cross-family RNAs with
the help of another model Contrafold (21), a probabilis-
tic model which generalizes upon stochastic context-free
grammars (SCFGs) by using discriminative training and
feature-rich scoring found in typical thermodynamic mod-
els. Specifically, for each sequence we randomly choose 20–
30% present of single nucleotides to perform random mu-
tation. For each real sequence, we first generate 3 synthetic
sequences to create a pool of synthetic sequences. We then
use CD-HIT 80 to remove any sequences that have similar-
ity over 80% to real sequences. The resulting synthetic se-
quence pool is then used for generating synthetic data with
size 2000. The synthetic ground truth labels are generated
with Contrafold, which then use to train UFold. Those data
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Figure 4. Violin plot on the bpRNA-new dataset. Visualization of F1 value
of UFold versus other 11 RNA secondary structure predictions methods.

are then merged with the TR0 training set for model train-
ing.

Figure 4 and Supplementary Table S8 show the eval-
uation results of UFold using the previously pre-trained
model on the bpRNA-new dataset, containing about 1500
previously unseen RNA families. Note that here UFold is
trained only once based on all the training data for the three
testing experiments including ArchiveII, TS0 and bpRNA-
new datasets. UFold can achieve a similar performance on
bpRNA-new dataset as other methods like MXfold2, all
of which involve thermodynamic terms or constraints in
their objectives. By contrast, UFold is a pure learning-based
method. Through data augmentation, it can learn to pre-
dict the structures of RNAs not represented in the training
set and further improved the performance on previously un-
seen family sequences (i.e. bpnew dataset).

Furthermore, UFold is also benchmarked on high-
resolution based RNA secondary structures derived from
the PDB dataset, whose secondary structures have been ex-
perimentally validated. We used pretrained model and fine-
tuned it on PDB sequences retrieved from bpRNA database
and PDB database. Following the partition used in SPOT-
RNA2 (50), we divided the PDB sequences into three sub-
sets: TS1, TS2 and TS3. The overall result is reported in
Figure 5, more detailed results are presented in Supple-
mentary Table S9-S11. Based on the results, UFold is deal-
ing well in recognizing these dense pairing RNA secondary
structures compared with others on this high-quality exper-
imentally validated dataset. We also notice another recent
model SPOT-RNA2 (50) which incorporates evolutionary-
based features besides sequence features, but all the com-
pared models in our results are all only sequence based so
we do not include it in our summarized results. The re-

Figure 5. Violin plot on the PDB dataset. Visualization of F1 value of
UFold versus other 11 RNA secondary structure predictions methods.

sults of splitting these datasets (TS1, TS2 and TS3) are
shown in Supplementary Supplementary Figure S3 and
Supplementary Table S9-S11. In addition, we benchmarked
6 RNAs from PDB dataset, which is measured in SPOT-
RNA paper. We confirmed that none of these sequences
appeared in our training dataset. As shown in Supplemen-
tary Figure S4, UFold produced consistently better results
than SPOT-RNA and other predictors on these 6 RNAs.
Since PDB dataset contains multiple non-canonical pairs,
so we systematically measured the performance of UFold
against SPOT-RNA which is also capable of predicting non-
canonical pairs. The higher mean F1 value in three datasets
indicates the superior ability of predicting non-canonical
pairs of UFold as shown in Supplementary Table S12. These
findings support the effectiveness of UFold in handling non-
canonical pairs. We also explored how the UFold performs
on different Rfam families. We mapped all the sequences
from PDB dataset to Rfam families using Rfam webserver
(https://rfam.xfam.org), during which we found 34 RNA
families matched to Rfam families, covering 47 of the se-
quences in the test set. Among those, we found 26 RNA
families (including 39 sequences) that are overlapped with
training families. We then evaluated the performance of F1
value on two groups: no Rfam family which contains se-
quences that do not match any Rfam or other families in the
training set, and within-family which contains sequences
matching a family in the training set. As reported the re-
sults in Supplementary Figure S5, the sequences that do not
match to any Rfam families even achieve higher mean F1
value as it is shown in Supplementary Figure S6. This fur-
ther demonstrates UFold’s robust performance.

In order to further validate the effectiveness of UFold
prediction, we include the assessment of the statistical sig-
nificance on the performance comparisons between UFold
and other methods. Two types of statistical significance

https://rfam.xfam.org
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Figure 6. Visualization of two example UFold RNA secondary structure predictions. From top to bottom: ground truth, UFold prediction, and E2Efold
prediction. Two RNA sequences are (A) Aspergillus fumigatus species, the RNA ID is GSP-41122, as recorded in SRPDB database. and (B) Alphaproteobac-
teria subfamily 16S rRNA sequence whose database ID is U13162, as recorded in RNAStralign database(http://rna.urmc.rochester.edu). Non-canonical
base pairs are colored in light green. In both cases, UFold produces predictions more aligned with the ground-truth.

measures are calculated: one based on paired t-tests and the
other based on bootstrapping. The paired t-test P-value re-
sults are shown in Supplementary Table S13, which shows
that UFold performs better than the other methods in a sta-
tistically significant way, with most P-values less than 0.05.

For the PDB dataset, because its three subsets (TS1,
TS2 and TS3) have limited number of sequences, we used
bootstrapping strategy on these datasets to estimate the sta-
tistical significance. The results are summarized in Supple-
mentary Figure S7, which shows that the performance of
UFold is significantly better than nearly all other meth-
ods. For bootstrapping, margins of improvements reside
outside the 95% confidence intervals with steady interval
width (Supplementary Figure S8 and Supplementary Table
S14). Altogether, our results support previous conclusions
and the performance improvements of UFold over previous
methods are statistically significant.

Another point worth noting is that, since UFold chooses
Kronecker product to construct the input, in order to vali-
date whether this is a good choice compared to other con-
catenation such as outer concatenation adopted in SPOT-
RNA (37). We added one additional ablation study, in
which we replace the Kronecker product with outer con-
catenation by first extending the one-hots column wise and
row wise and then concatenating them together to create a
new input matrix. We retrain the whole UFold model with
this input while keeping the rest the same. We use ArchiveII
and bpnew dataset to test the performance in our ablation
study. As it is shown in Supplementary Figure S9, on both
datasets we tested, the Kronecker product design yields bet-
ter results. We think the reason is that the Kronecker prod-
uct design provides a more direct representation of base-

Table 2. Inference time on the RNAStralign test set

Method Time per seq

UFold (Pytorch) 0.16 s (GPU)
MXfold2(Pytorch) 0.31 s (GPU)
E2Efold (Pytorch) 0.40 s (GPU)
SPOT-RNA(Pytorch) 77.80 s (GPU)
CDPfold (tensorflow) 300.107 s
LinearFold (C++) 0.43 s
Eternafold (C++) 6.42 s
RNAsoft (C++) 4.58 s
Mfold (C) 7.65 s
RNAstructure (C) 142.02 s
RNAfold (C) 0.55 s
CONTRAfold (C++) 30.58 s

pairing information. On the other hand, outer concatena-
tion design in theory contains the same information en-
coded in the Kronecker product, but requires more com-
plicated modellings to process this information.

Visualization

After quantitively evaluating the prediction performance,
we visualize the RNA secondary structures predicted by
UFold to check the pairing details of each nucleotide. For
this purpose, the predicted contact maps were first con-
verted to a bpseq format according to base pair positions.
Raw sequences with the corresponding predicted struc-
tures were fed into the VARNA tool (59) to obtain the
visualization result. As a comparison, we also show the
predicted structures from the other three best-performed
methods, MXfold2, SPOT-RNA and e2efold as well as

http://rna.urmc.rochester.edu
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Table 3. Functionality comparison of different RNA structure prediction web servers

Servers

Supported functions UFold SPOT-RNA RNAfold MXfold2 Linearfold Contextfold RNAsoft Contrafold

Sequence type-in Yes Yes Yes Yes Yes Yes Yes Yes
Fasta file Yes No Yes No Yes Yes Yes Yes
Length >600 bp Yes Yes No No Yes Yes No Yes
Online visualization Yes Yes Yes Yes Yes N/A No N/A
Support multi-samples Yes No No No No No No No

the ground-truth structures. Two examples are from the
Aspergillus fumigatus species and Alphaproteobacteria
subfamily 16S rRNA, their RNA IDs are GSP-41122, as
recorded in SRPDB database (60) and U13162 as recorded
in RNAStralign database (http://rna.urmc.rochester.edu),
respectively. They are drawn and shown in Figure 6. In
both cases, UFold generates RNA secondary structures
more similar to the ground-truth when compared with
other state-of-the-art methods like MXfold2, SPOT-RNA
and E2Efold, showing the closest secondary structure to
the ground truth structure. In addition, we also visualized
more examples from PDB database, whose sequences are
retrieved from 2019 to 2021. As the results shown in Sup-
plementary Figures S10 and S11, UFold is capable of pre-
dicting those structures including pseudoknots and non-
canonical pairs more resemble to ground truth structures.

Inference time

The speed of the prediction algorithm is an important factor
in RNA secondary structure prediction, especially for mul-
tiple sequences predicting simultaneously. Traditional en-
ergy minimization-based methods tend to be slow because
of the time complexity of the minimization algorithm. Deep
learning-based methods like MXfold2 and SPOT-RNA uti-
lize LSTM structure, which require significantly more pa-
rameters than UFold, resulting in low efficiency. UFold in-
ference, on the other hand, runs on feedforward neural nets
only. Specifically, it is comprised of a fully connected con-
volutional neural network, which greatly reduces the run-
ning time since all operations are readily parallelizable. It
can also handle multiple sequences at once, leading to sig-
nificantly higher throughput.

The average inference time per sequence of UFold on
the RNAStralign test set (containing sequences longer than
1000 bp) is reported in Table 2, together with the av-
erage running times of other methods. UFold is much
faster than both learning-based and energy-based meth-
ods. UFold is nearly two times faster than MXfold2, and
orders-of-magnitude faster than RNAstruture (Fold), an-
other popular energy-based method. The running times of
UFold and three other recent deep learning-based meth-
ods are also shown in Table 2. All these methods are im-
plemented in PyTorch (61) and thus it allows us to com-
pare their model efficiency directly. Our model is still the
fastest one among all the other deep learning methods, fur-
ther demonstrating the efficiency of UFold. To study the ef-
fect of sequence length on runtime, we demonstrated two
scatter plots of runtime versus length of the sequences. Most
computations of UFold are performed on GPU. We first
plotted the running time cost on GPU calculation which

is shown in Supplementary Figure S12, the runtime is not
significantly affected by sequences length since GPUs have
efficient parallelization supported by modern deep learning
libraries. We then calculated the total runtime (with con-
tact map inference and postprocessing) and compared with
two other fastest methods, RNAfold and Linearfold, which
can deal with variable sequence length of up to 1500 bp.
As shown in Supplementary Figure S13, UFold is almost 5
times faster than the other two methods on the most com-
mon length sequence (∼600 bp) and is at least two times
faster in longer sequences (up to 1500 bp).

Web server

To facilitate the accessibility of UFold, we developed a web
server running UFold on the backend and made it freely
available. Users can type in or upload RNA sequences in
FASTA format. Our server predicts RNA secondary struc-
tures using the pre-trained UFold model (trained on all the
datasets) and stores predicted structures in a dot-bracket
file or bpseq file for end-users to download. Users may
also choose to predict non-canonical pairs or not directly
in the option panel. The server further provides an inter-
face connection to the VARNA tool (59) for visualizing
predicted structures. Most existing RNA prediction servers
only permit predicting one RNA sequence at a time, such
as RNAfold, MXfold2 and SPOT-RNA, and restrict the
length of the input sequence. Our server does not have such
limitations. Its main functionality differences compared to
other servers are highlighted in Table 3. The interface of our
web server is shown in Figure 7.

DISCUSSION

In this study, we present UFold, a new deep learning-
based model for RNA secondary structure prediction.
We benchmark UFold on both within- and cross-family
RNA datasets and demonstrate that UFold significantly
outperforms previous methods on within-family datasets,
achieving 10–30% performance improvement over tradi-
tional thermodynamic methods, and 5–27% improvement
in F1 score over the state-of-the-art learning-based method,
bringing in substantial gains in RNA secondary prediction
accuracy. In the meantime, it achieves a similar performance
as the traditional methods when trained and tested on dis-
tinct RNA families. In addition, UFold is fast, being able to
generate predictions at roughly 160ms per sequence.

A key difference between UFold and previous learning-
based methods is its architectural design. Instead of us-
ing raw sequences as input, UFold converts sequences into

http://rna.urmc.rochester.edu
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Figure 7 UFold web server interface (available at https://ufold.ics.uci.edu). UFold web server allows users to type in or upload their own fasta file with
multiple sequences (no number limits) and the backend pretrained model will predict the corresponding RNA secondary structures and provide users
either ct or bpseq file to download or directly visualize them online.

https://ufold.ics.uci.edu
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‘images’, explicitly modeling all possible base pairing be-
tween the nucleotides of the input sequence. This choice
of input representation has several important implications:
First, base pairing patterns between distant sequence seg-
ments show up locally in the image representation, mak-
ing the detection and learning of these distant base pair-
ing patterns easier. Second, all base pairing patterns are
explicitly represented in the input, allowing the model to
pick up all potential base pairing rules that might con-
tribute to the formation of the secondary structure. Lastly,
but perhaps most importantly, the image representation al-
lows us to implement a fully convolutional model to pick
up base-pairing features across multiple scales through an
encoder-decoder architecture. This implementation is not
only efficient, with operations highly parallelable and allow-
ing for variable input sequence length, but also highly effec-
tive in combining both local and global features for the final
prediction.

Although UFold demonstrates great potential in solv-
ing the RNA secondary structure prediction problem, as
a learning-based method, its performance is inevitably
closely attached to the quality of training data. Unfortu-
nately, the number of experimentally resolved RNA sec-
ondary structures through X-ray crystallography or NMR
remains small. Many secondary structures in the RNAS-
tralign dataset are computationally generated by align-
ing homologous sequences. Fortunately, high-throughput
methods for determining or constraining the secondary
structures of RNAs are starting to emerge (62,63). We
should also mention that UFold currently predicts RNA
structures only based on sequences. It is well-known that
RNA structures also depend on other factors, such as tem-
perature and salt concentration. How to take these factors
into account in deep learning models remains an open ques-
tion. Because UFold uses a flexible network architecture,
we expect it to be able to incorporate the high-throughput
data and specific factors to improve model training and
inference.

We should note that the method presented here can po-
tentially be applied for protein structure prediction as well.
The number of amino acids is much higher than the num-
ber of bases. It is worth exploring whether all amino acid
pairs, which have 400 pairs, or a subset of them should be
considered in the input representation.

In summary, we show the promising potential of deep
learning in solving the long-standing RNA secondary struc-
ture problem. The new framework presented here brings in
a significant performance gain. We expect the prediction ac-
curacy to be further improved as more and higher quality
training data are becoming available.

DATA AVAILABILITY

An online web server running UFold is available at https:
//ufold.ics.uci.edu. Code is available at https://github.com/
uci-cbcl/UFold.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.

ACKNOWLEDGEMENTS

We acknowledge helpful discussions with MH Celik and
members of the Xie lab.

FUNDING

NSF [IIS-1715017]; NSF [DMS-1763272]; NIH [U54-
CA217378]; Simons Foundation [594598]. Funding for
open access charge: NSF [IIS-1715017]; NSF [DMS-
1763272]; NIH [U54-CA217378].
Conflict of interest statement. None declared.

REFERENCES
1. Noller,H.F. (1984) Structure of ribosomal RNA. Annu. Rev.

Biochem., 53, 119–162.
2. Rich,A. and RajBhandary,U. (1976) Transfer RNA: molecular

structure, sequence, and properties. Annu. Rev. Biochem., 45, 805–860.
3. Allmang,C., Kufel,J., Chanfreau,G., Mitchell,P., Petfalski,E. and

Tollervey,D. (1999) Functions of the exosome in rRNA, snoRNA
and snRNA synthesis. EMBO J., 18, 5399–5410.

4. Geisler,S. and Coller,J. (2013) RNA in unexpected places: long
non-coding RNA functions in diverse cellular contexts. Nat. Rev.
Mol. Cell Biol., 14, 699–712.

5. Gebert,L.F. and MacRae,I.J. (2019) Regulation of microRNA
function in animals. Nat. Rev. Mol. Cell Biol., 20, 21–37.

6. Fu,L. and Peng,Q. (2017) A deep ensemble model to predict
miRNA-disease association. Sci. Rep., 7, 14482.

7. Fallmann,J., Will,S., Engelhardt,J., Grüning,B., Backofen,R. and
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