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Abstract 

Background:  Phthalates and bisphenols are non-persistent endocrine disrupting chemicals that are ubiquitously 
present in our environment and may have long-lasting health effects following fetal exposure. A potential mechanism 
underlying these exposure–outcome relationships is differential DNA methylation. Our objective was to examine the 
associations of maternal phthalate and bisphenol concentrations during pregnancy with DNA methylation in cord 
blood using a chemical mixtures approach.

Methods:  This study was embedded in a prospective birth cohort study in the Netherlands and included 306 par-
ticipants. We measured urine phthalates and bisphenols concentrations in the first, second and third trimester. Cord 
blood DNA methylation in their children was processed using the Illumina Infinium HumanMethylation450 BeadChip 
using an epigenome-wide association approach. Using quantile g-computation, we examined the association of 
increasing all mixture components by one quartile with cord blood DNA methylation.

Results:  We did not find evidence for statistically significant associations of a maternal mixture of phthalates and 
bisphenols during any of the trimesters of pregnancy with DNA methylation in cord blood (all p values > 4.01 * 10–8). 
However, we identified one suggestive association (p value < 1.0 * 10–6) of the first trimester maternal mixture of 
phthalates and bisphenols and three suggestive associations of the second trimester maternal mixture of phthalates 
and bisphenols with DNA methylation in cord blood.

Conclusions:  Although we did not identify genome-wide significant results, we identified some suggestive asso-
ciations of exposure to a maternal mixture of phthalates and bisphenols in the first and second trimester with DNA 
methylation in cord blood that need further exploration in larger study samples.
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Background
Endocrine disrupting chemicals (EDCs) such as phtha-
lates and bisphenols are used in many consumer prod-
ucts such as cosmetics and plastic food packaging [1, 2]. 
As a result, throughout their lives, humans are continu-
ously exposed to a mixture of these endocrine disruptors. 
Previous studies have shown associations of exposure to 
endocrine disruptors with cardiometabolic health, insu-
lin resistance and fertility in humans [3–6]. As phthalates 
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and bisphenols are able to cross the placenta, exposure 
begins in utero [7, 8]. Fetal life has been suggested to be 
a sensitive period for exposure to environmental factors 
that determine life-long patterns of health and disease, 
as suggested in the Developmental Origins of Health and 
Disease framework [9]. Previous studies of EDC exposure 
during fetal life with childhood health have also shown 
an association of these exposures with birth weight, neu-
rodevelopment and cardiometabolic risk factors during 
childhood, among others [3, 10–13].

One of the proposed mechanisms by which phtha-
lates and bisphenols could affect health is by influencing 
DNA methylation [14]. Results from studies that have 
examined the association between phthalate or bisphe-
nol exposure during fetal life and DNA methylation in 
humans are not consistent. Varying associations of fetal 
exposure to phthalates or bisphenol A were found with 
DNA methylation of the insulin-like growth factor 2 
(IGF2) gene in candidate-gene studies [15–19]. These 
studies assessed DNA methylation in different tissues. 
In the study by Montrose et  al., DNA methylation was 
assessed in cord blood, while in two other studies, pla-
cental tissue was used [16, 17, 19]. Finally, in two other 
studies, whole blood during childhood was used [15, 18]. 
As DNA methylation is tissue- and age-specific, results of 
these studies are not directly comparable. Several other 
studies of prenatal bisphenol and phthalate exposure, 
using an epigenome-wide approach, have identified dif-
ferential DNA methylation at multiple CpG sites in cord 
blood in relation to exposure to different phthalates or 
bisphenols [20–25]. In addition, one study explored the 
associations of prenatal exposure to phthalates with DNA 
methylation in peripheral blood and buccal epithelial 
cells during childhood [26]. When exploring the associa-
tions with DNA methylation in cord blood, only the stud-
ies by Miura et al. and Petroff et al. included more than 
70 mother–child pairs and the studies by Chen et al. and 
Petroff et al. were the only studies that included a phtha-
late [20, 22, 24, 25]. Most previous studies that assessed 
the associations of maternal phthalate or bisphenol urine 
concentrations with DNA methylation focused on one or 
a few phthalates or bisphenols and did not consider joint 
effects of the exposures [15–30]. This is an oversimplifi-
cation, since humans are exposed to a mixture of differ-
ent chemicals that could influence each other and thus 
could have synergistic or antagonistic effects. Focusing 
on only one single exposure might not fully elucidate 
the total mixture-effect of endocrine disruptors during 
pregnancy.

To overcome this limitation, we investigated the asso-
ciations of fetal exposure to a mixture of phthalates and 
bisphenols, using a novel statistical approach, with DNA 

methylation in offspring [31]. We measured phthalate 
and bisphenol concentrations at three time points dur-
ing pregnancy in spot urine samples obtained from 306 
participants in a Dutch population-based cohort study 
and measured DNA methylation in an epigenome-wide 
association study (EWAS) in cord blood in their children.

Methods
Design
This study was embedded in the Generation R Study, a 
population-based prospective cohort study starting dur-
ing early fetal life in Rotterdam, the Netherlands [32]. The 
study has been approved by the Medical Ethical Commit-
tee of the Erasmus MC, University Medical Center Rot-
terdam. Written informed consent was obtained for all 
participants.

Mother–child pairs were included in this exploratory 
study if bisphenols and phthalates urine concentrations 
were available at all three time points during pregnancy, 
which was in a subsample of 1379 mothers of the full 
Generation R Study, and if DNA methylation was meas-
ured in cord blood collected at birth. DNA methylation 
data were collected in a subsample of children participat-
ing in the full Generation R Study, consisting of partici-
pants with parents born in the Netherlands. A total of 
306 mothers and their children were included in the cur-
rent analyses (Additional file 1: Fig. S1).

Phthalate and bisphenol measurements
Between February 2004 and July 2005, women were 
invited to our research facility during early (median 
12.6  weeks, interquartile range (IQR) 2.0  weeks), mid 
(median 20.4 weeks, IQR 1.0 weeks) and late pregnancy 
(median 30.2 weeks, IQR 1.3 weeks), at which time they 
provided a spot urine sample. The analyses of the phtha-
late, bisphenol and creatinine concentrations were 
performed at the Wadsworth Center, New York State 
Department of Health, Albany, New York, USA. Collec-
tion, transportation and analysis of these urine samples 
have been previously described [33]. Of all measured 
phthalates and bisphenols, we included those in the 
assessment that had less than 25% of their concentra-
tions during all trimesters below the limit of detec-
tion (LOD). Phthalates and bisphenols with more than 
25% of the samples below the limit of detection were 
thus not included in the further analysis. Concentra-
tions below the LOD were substituted by LOD divided 
by the square root of 2 (LOD/√2) [34]. To account for 
urinary dilution in the analysis, all urine concentra-
tions of phthalates and bisphenols were converted to 
µmol/g creatinine. An overview of the concentrations 
of included phthalates and bisphenols is presented 
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in Table  1. (Non-participants are shown in Addi-
tional file  1: Table  S1.) Finally, to reduce skewedness 
of the distributions, the phthalate and bisphenol urine 

concentrations were natural log transformed. As a sen-
sitivity analysis, all analyses were repeated using the 
averaged concentrations over pregnancy.

Table 1  Urine concentrations of phthalates and bisphenols, specified per trimester

Values represent medians (25–75th percentiles). Absolute urine concentration of the limit of detection (in nmol/L urine) and individual exposures (in nmol/L urine) 
with concentrations below the limit of detection imputed as limit of detection/square root of 2. Only phthalates and bisphenols that have at least 75% detection in 
all trimesters are presented in this table. Individual exposures assessed but not included in the analysis in this study due to less than 75% of concentrations above 
the limit of detection in all trimesters include monoisononylphthalate, monocyclohexylphthalate, monooctylphthalate, mono-(8-methyl-1-nonyl)phthalate, mono-
hexylphthalate, mono-2-heptylphthalate, mono-(7-carboxy-n-heptyl)phthalate, bisphenol S, bisphenol Z, bisphenol B, bisphenol F, bisphenol AP, bisphenol AF and 
bisphenol P

LOD limit of detection

LOD (nmol/L) First trimester Second trimester Third trimester

Median 
(25–75th 
percentile)

Percentage < LOD Median 
(25–75th 
percentile)

Percentage < LOD Median 
(25–75th 
percentile)

Percentage < LOD

Phthalic acid (PA) 
(nmol/L)

6.68 349.2 (195.4–
844.3)

0.3 953.2 (381.6–
1558.6)

0 345.7 (187.1–
715.6)

0.3

Monomethyl-
phthalate (mMP) 
(nmol/L)

0.33 28.3 (14.8–52.4) 0.3 18.5 (9.2–34.1) 0.3 16.8 (9.4–36.6) 1.0

Monoethyl-
phthalate (mEP) 
(nmol/L)

0.31 671.5 (198.0–
2412.9)

0 330.5 (123.2–
1057.6)

0 591.3 (207.8–
1775.7)

0

Mono-isobutyl-
phthalate (mIBP) 
(nmol/L)

0.40 84.2 (38.3–157.8) 0 35.6 (18.9–66.4) 0 58.9 (33.6–115.0) 0.3

Mono-n-butyl-
phthalate (mBP) 
(nmol/L)

0.63 68.5 (30.8–124.5) 0.3 41.0 (24.4–75.1) 0 45.7 (23.9–78.8) 0

Monoben-
zylphthalate 
(mBzBP) (nmol/L)

0.59 24.6 (8.8–43.6) 6.9 17.4 (7.2–33.6) 2.9 9.9 (3.3–19.1) 3.6

Mono-(2-ethyl-
5-carboxy-
pentyl)phthalate 
(mECPP) 
(nmol/L)

0.94 46.8 (26.3–92.9) 0 33.2 (18.7–59.2) 0 51.7 (26.8–90.3) 0

Mono-(2-ethyl-
5-hydroxy-hexyl)
phthalate 
(mEHHP) 
(nmol/L)

0.27 35.1 (16.5–73.8) 0 19.1 (10.6–36.8) 0 33.0 (15.9–58.0) 0

Mono-(2-ethyl-
5oxohexyl)
phthalate 
(mEOHP) 
(nmol/L)

0.14 22.6 (10.4–45.7) 0 26.5 (14.2–56.7) 0 22.5 (12.1–43.4) 0

Mono-[(2-
carboxymethyl)-
hexyl]phthalate 
(mCMHP) 
(nmol/L)

0.13 42.4 (23.3–74.3) 0 12.3 (7.1–23.4) 0.3 9.1 (5.0–17.4) 0

Mono(3-carboxy-
propyl)phthalate 
(mCPP) (nmol/L)

0.03 5.2 (3.0–10.4) 0 3.6 (2.0–6.6) 0 6.6 (3.7–12.1) 0

Bisphenol A 
(BPA) (nmol/L)

0.66 6.2 (1.6–14.8) 18.0 5.2 (2.4–12.2) 8.2 6.0 (2.9–11.0) 9.2
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DNA methylation measurement
After birth, cord blood was drawn by the attending physi-
cian or midwife. From these samples, DNA was extracted 
using the salting-out method. After bisulfite conversion 
of 500  ng DNA using the EZ-96 DNA Methylation kit 
(Shallow) (Zymo Research Corporation, Irvine, USA), 
samples were processed with the Illumina Infinium 
HumanMethylation450 BeadChip (Illumina Inc., San 
Diego, USA). At the time of processing the cord blood 
samples from the Generation R Study, the MethylationE-
PIC BeadChip was not available yet and whole-genome 
bisulfite sequencing was not feasible for high-throughput 
analysis in population studies. Beta values, which rep-
resent the ratio of methylated signal relative to the total 
(methylated and unmethylated) signal per CpG, were 
calculated. Quality control and normalization were per-
formed using the CPACOR workflow [35]. Probes with 
a detection p value ≥ 1.0 * 10–16 were set to missing. 
Intensity values were quantile normalized. Arrays with 
observed technical problems or with a mismatch between 
sex of the proband and sex determined by the intensities 
of the X- and Y-chromosome were removed from the 
analysis. Only arrays with a call rate > 95% per sample 
were processed further, and DNA methylation beta val-
ues outside the range of (25th percentile – 3 * IQR, 75th 
percentile + 3 * IQR) were set to missing. Probes on the 
X and Y chromosomes were excluded from the dataset. 
Additionally, we removed cross-reactive probes, leaving 
information on 415,786 CpGs at birth [36, 37]. Probes 
that map to DNA containing a single nucleotide poly-
morphism (SNP), repetitive sequence elements or DNA 
harboring an insertion or deletion were flagged, but not 
removed [36, 37].

Covariates
Information on potential confounders was collected using 
questionnaires during pregnancy. Potential confounders 
were chosen based on their known association with both 
phthalate and bisphenol exposure and with DNA meth-
ylation. Included covariates were maternal age  at inclu-
sion, maternal  pre-pregnancy body mass index  (BMI), 
maternal educational level and maternal smoking habits 
(sustained versus non-sustained smoking during preg-
nancy). Child sex was obtained from midwife and hos-
pital records. Sample plate number was included in the 
analysis to correct for batch effects. Plates with fewer 
than two participants were grouped together, which was 
done for six plates, as not all mother–child pairs from 
the Generation R Study in whom DNA methylation was 
measured in cord blood had information on the mater-
nal phthalate and bisphenol urine concentrations dur-
ing pregnancy available. White blood cell composition 

was estimated with the Salas method for cord blood, 
which included B-lymphocytes, CD4+ T-lymphocytes, 
CD8+ T-lymphocytes, granulocytes, monocytes, natural 
killer cells and nucleated red blood cells. Ethnicity and 
use of folic acid supplements were not assessed as poten-
tial confounders in this study, since all participants were 
of European ancestry and almost all participants (93.6%) 
used folic acid supplements.

Statistical analysis
Missing data for covariates (ranging between 0.3 and 
11.4%) were imputed ten times by the Multivariate 
Imputation by Chained Equations (MICE) method in 
R. Imputation was successful for all covariates, and the 
last imputed dataset was used for all analysis. When all 
association analyses were repeated with a random other 
dataset as a sensitivity analysis, there were no differences 
in the reported associations. To assess the joint effects of 
the phthalate and bisphenol mixture in a specific trimes-
ter, we used the quantile-based g-computation approach 
from the qgcomp package in R [31]. In quantile g-com-
putation, the exposures of interest are quantized (e.g., 
transformed into categories of exposure), after which the 
effect of increasing all exposures by one quantile simul-
taneously is evaluated by estimating the parameters of a 
marginal structural model given the joint intervention on 
the exposures. The main advantages of this method are 
the easy interpretation of the association and the absence 
of a need for directional homogeneity. Using this method, 
we were able to estimate the joint effect of increasing all 
mixture components by one quartile.

To examine associations of the chemical mixture with 
DNA methylation in cord blood, we first ran basic linear 
models adjusting for child sex, estimated cell types and 
batch. We then ran fully adjusted linear models adjusting 
for child sex, maternal education, maternal smoking dur-
ing pregnancy, maternal age at inclusion, maternal pre-
pregnancy BMI, estimated cell types and batch.

We used Bonferroni correction (p value cut-
off < 4.01 * 10–8 based on an original p value cutoff of 
0.05 and 415,786 tests per trimester, giving a total of 
1,247,358 tests for the three trimesters) as the primary 
cutoff to assess statistical significance. Additionally, 
we defined suggestive associations based on a p value 
cutoff of < 1.0 * 10–6, as we feared to be too rigorous in 
dismissing potential associations that did not reach sta-
tistical significance due to the exploratory nature of this 
study. To provide a more comprehensive overview of the 
results, we present all associations with a p value cutoff 
of < 1.0 * 10–5 in the supplemental tables. We performed 
a priori defined exploratory analyses stratified on sex, as 
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it has been hypothesized that exposure to endocrine dis-
ruptors could have different effects based on sex [38].

Results
Subject characteristics
Compared to non-participants, participating mothers in 
the present study were more often of European ances-
try, highly educated and were less likely to sustain smok-
ing during pregnancy (Table  2). Almost all participants 
used folic acid supplementation during early pregnancy. 
Most phthalate concentrations were higher among non-
participants than among participants, but bisphenol A 
concentrations during first trimester were lower among 
non-participants (Table 1 and Additional file 1: Table S1).

Associations of exposure to a mixture of endocrine 
disruptors and DNA methylation in cord blood
In the total study population, there were no significant 
associations of fetal exposure to a mixture of phtha-
lates and bisphenols during either first, second or third 
trimester with DNA methylation in cord blood. (Fig-
ure  1A–C shows the Manhattan plots, CpGs with a p 
value < 1.0 * 10–6 are presented in Table 3, and CpGs with 
a p value < 1.0 * 10–5 are presented in Additional file  1: 
Table S2.) There were a few suggestive associations. The 
strongest association in the first trimester was found 
with decreased DNA methylation of cg05058973 (effect 
− 1.20 * 10–2 (standard error (SE) 2.37 * 10–3) per quartile 

increase in the mixture, p value 7.08 * 10–7), which maps 
to the growth hormone-releasing hormone recep-
tor (GHRHR) gene. In the second trimester, we found a 
suggestive association with an increase in DNA meth-
ylation of cg00141688, located near the hippocalcin-
like 1 (HPCAL1) gene, and cg15961211, which is close 
to the family with sequence similarity 183 member A 
(FAM183A) gene (effect per quartile increase in the mix-
ture: 1.59 * 10–2 (SE 2.93 * 10–3), p value 1.21 * 10–7 and 
3.65 * 10–3 (SE 7.11 * 10–4), p value 5.32 * 10–7, respectively) 
and with a decrease in DNA methylation of cg20840540, 
which is close to transcriptional-regulating factor 1 
(TRERF1) (effect per quartile increase in the mixture 
− 1.28 * 10–2 (SE 2.52 * 10–3), p value 7.54 * 10–7). The anal-
ysis for the third trimester mixture showed no sugges-
tive associations. Results for the models unadjusted for 
demographic covariates were comparable to those from 
the fully adjusted model (Additional file 1: Table S3 and 
Fig. S2).

In the explorative stratified analyses among boys, there 
were no statistically significant associations of exposure 
to a mixture of phthalates and bisphenols during preg-
nancy with cord blood DNA methylation at birth. (Fig-
ure  2A–C shows the Manhattan plots, CpGs with a p 
value < 1.0 * 10–6 are presented in Table 4, and CpGs with 
a p value < 1.0 * 10–5 are presented in Additional file  1: 
Table S4.) However, there were some suggestive associa-
tions of exposure to the mixture during second trimester 

Table 2  Participant and non-participant characteristics

Values represent numbers (valid percent), mean (SD) or median (95% range)

SD standard deviation

*p value < 0.05

Participants (three trimesters) Non-participants
n = 306 n = 1 073

Maternal characteristics

 Age at enrollment, mean (SD) (years) 32.1 (3.9)* 30.1 (5.0)*

Ethnicity, n (%)

 European ancestry 298 (97.4%)* 455 (42.9%)*

 Non-European ancestry 8 (2.6%)* 605 (57.1%)*

Education, n (%)

 Low-middle 92 (30.2%)* 564 (55.6%)*

 High 213 (69.8%)* 450 (44.4%)*

 Pre-pregnancy BMI, median (95% range) (kg/m2) 22.6 (18.7–34.4) 22.7 (18.4–35.1)

 Folic acid supplementation, n (%), yes 233 (93.6%)* 654 (76.9%)*

 Smoking sustained during pregnancy, n (%), yes 24 (8.9%)* 155 (15.9%)*

 Alcohol consumption sustained during pregnancy (any), n (%), yes 202 (55.8%)* 340 (35.1%)*

Child characteristics

 Gender (boys), n (%) 160 (52.3%) 536 (50.0%)

 Birth weight, mean (SD) (g) 3556 (468)* 3425 (503)*

 Gestational age at birth, mean (SD) (weeks) 40.3 (1.3)* 40.0 (1.5)*
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with a decrease in DNA methylation of cg03764767, 
which is located in the peroxisomal biogenesis factor 
10 (PEX10) gene, and exposure to the mixture during 
third trimester with an increase in DNA methylation of 
cg23462052, located close to the small nuclear ribonu-
cleoprotein polypeptides B and B1 (SNRPB) gene. (Fig-
ure  2A–C shows the Manhattan plots, CpGs with a p 
value < 1.0 * 10–6 are presented in Table 4, and CpGs with 
a p value < 1.0 * 10–5 are presented in Additional file  1: 

Table S4.) Among girls, there were no statistically signifi-
cant or suggestive associations of exposure to the mix-
ture during any of the trimesters with cord blood DNA 
methylation. (Figure  3A–C shows the Manhattan plots, 
and CpGs with a p value < 1.0 * 10–5 are presented in 
Additional file 1: Table S5.)

In the sensitivity analysis, in which we used the aver-
aged mixture during pregnancy, there were no signifi-
cant associations for fetal exposure to the mixture of 

Fig. 1  Manhattan plot of associations between a mixture of phthalates and bisphenols during first, second and third trimester with DNA 
methylation at birth. Manhattan plot of associations between a mixture of phthalates and bisphenols during first (A), second (B) and third (C) 
trimester with DNA methylation at birth in the total population. In all Manhattan plots, the x-axis represents the autosomal chromosomes, the y-axis 
represents the −log10 of the p value and the dots represent CpGs

Table 3  CpGs with p values < 1.0 * 10–6 from epigenome-wide association study of a mixture of phthalates and bisphenols in maternal 
urine during first, second and third trimester and DNA methylation in cord blood

There were no CpGs presented for third trimester, as none reached our uncorrected p value cutoff of < 1.0 * 10–6. There were no associations that reached significance 
(p value < 0.05) after further FDR-adjustment of the p value for multiple testing including the three trimesters
# We have indicated probes that map to DNA containing a single nucleotide polymorphism (SNP), repetitive sequence elements or DNA harboring an insertion or 
deletion with a ‘1’ in this column

CpG Chr Position Gene Effect SE p value Flag#

First trimester cg05058973 7 31002599 GHRHR − 1.20 * 10–2 2.37 * 10–3 7.08 * 10–7 0

Second trimester cg00141688 2 10517352 HPCAL1 1.59 * 10–2 2.93 * 10–3 1.21 * 10–7 0

cg15961211 1 43613440 FAM183A 3.65 * 10–3 7.11 * 10–4 5.32 * 10–7 0

cg20840540 6 42363749 TRERF1 − 1.28 * 10–2 2.52 * 10–3 7.54 * 10–7 0
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phthalates and bisphenols in the total study population. 
(Figure 4A–C shows the Manhattan plots, CpGs with a p 
value < 1.0 * 10–6 are presented in Table 5, and CpGs with 
a p value < 1.0 * 10–5 are presented in Additional file  1: 
Table S6.) Among boys, there were two CpGs that had a 
suggestive association and among girls, five CpGs had a 
suggestive association. These associations did not over-
lap with the suggestive associations we identified in the 
trimester-specific analyses.

Discussion
Main findings
In this relatively small population-based cohort study 
including children of European ancestry, using a novel 
statistical method for the analysis of joint mixture effects 
of exposure to phthalates and bisphenols during each tri-
mester of pregnancy, we found that exposure to a mix-
ture of phthalates and bisphenols was not significantly 
associated with DNA methylation in cord blood. How-
ever, there were some suggestive associations for expo-
sure in the first and second trimester.

Fig. 2  Manhattan plot of associations between a mixture of phthalates and bisphenols during first, second and third trimester with DNA 
methylation at birth among boys. Manhattan plot of associations between a mixture of phthalates and bisphenols during first (A), second (B) and 
third (C) trimester with DNA methylation at birth among boys. In all Manhattan plots, the x-axis represents the autosomal chromosomes, the y-axis 
represents the −log10 of the p value and the dots represent CpGs

Table 4  CpGs with p values < 1.0 * 10–6 from epigenome-wide association study of a mixture of phthalates and bisphenols in maternal 
urine during first, second and third trimester and DNA methylation in cord blood among boys

There were no CpGs presented for first trimester, as none reached our uncorrected p value cutoff of < 1.0 * 10–6. There were no associations that reached significance (p 
value < 0.05) after further FDR-adjustment of the p value for multiple testing including the three trimesters
# We have indicated probes that map to DNA containing a single nucleotide polymorphism (SNP), repetitive sequence elements or DNA harboring an insertion or 
deletion with a ‘1’ in this column

CpG Chr Position Gene Effect SE p value Flag#

Second trimester cg03764767 1 2338210 PEX10 − 1.85 * 10–2 3.33 * 10–3 1.36 * 10–7 1

Third trimester cg23462052 20 2452871 SNRPB 1.27 * 10–2 2.36 * 10–3 2.65 * 10–7 1
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Comparison to the literature
In the total group, we found that exposure to the mixture 
of phthalates and bisphenols during the first trimester has 
a suggestive association with a decrease in DNA methyla-
tion of cg05058973, which is close to the GHRHR gene. 
This receptor is mainly expressed in the anterior pitui-
tary gland, and in vitro studies have shown that it plays 
a role in the regulation of growth hormone, which influ-
ences protein and fat metabolism [39]. From animal stud-
ies, we know that expression of the GHRHR gene could 
be influenced by estrogen [40]. Exposure to the mixture 
during second trimester had a suggestive association 
with an increase in DNA methylation of cg00141688, 
which is located near HPCAL1. It has been reported that 
neonatal exposure to estrogens or BPA led to an increase 
in DNA methylation of the promoter of HPCAL1 in the 
prostate gland of rats with persisting effects during life 
[41]. We additionally found a suggestive association of 
exposure to the mixture during second trimester with 
an increase in DNA methylation of cg15961211, which is 
located near the FAM183A gene. This gene has no known 
function in relation to exposure to phthalates or bisphe-
nols. Exposure to the mixture during the second trimes-
ter also had a suggestive association with a decrease in 

DNA methylation of cg20840540, which is located close 
to TRERF1, a gene that interacts with the progesterone 
receptor after its activation by progesterone [42]. Among 
boys, second trimester exposure to the mixture showed 
a suggestive association with a decrease in DNA meth-
ylation of cg03764767, which is within the PEX10 gene, 
which has been indicated as having a role in male fer-
tility as it is important for spermatocyte development 
[43]. Also among boys, there was some indication that 
exposure to the mixture during third trimester could 
be associated with an increase in DNA methylation of 
cg23462052, which is near the SNRPB gene that has no 
known function related to our exposures.

The differentially methylated CpG sites identified in 
this study have not been associated with prenatal BPA 
and phthalate exposure in previous studies in humans, 
although a direct comparison of this study with previ-
ous literature is difficult, as none of the previous stud-
ies studied mixture effects using quantile g-imputation. 
Apart from implementing a mixtures model in this analy-
sis, this study also differed from previous studies in other 
ways. First, several of the studies that have shown asso-
ciations between fetal phthalate and bisphenol exposure 
and DNA methylation at birth have conducted targeted 

Fig. 3  Manhattan plot of associations between a mixture of phthalates and bisphenols during first, second and third trimester with DNA 
methylation at birth among girls. Manhattan plot of associations between a mixture of phthalates and bisphenols during first (A), second (B) and 
third (C) trimester with DNA methylation at birth among girls. In all Manhattan plots, the x-axis represents the autosomal chromosomes, the y-axis 
represents the −log10 of the p value and the dots represent CpGs
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analyses using pyrosequencing [19, 44, 45]. Different 
methods have also been used to model chemical expo-
sure, including exposure in the 25th percentile ver-
sus the 75th percentile, comparing subjects above and 
below the 75th percentile, or including the chemicals 
separately as continuous variables [17, 20–24, 27, 29, 44, 
46]. To our knowledge, the only other study that used a 
chemicals mixture in their model was by Goodrich and 

colleagues, which used principal components to model 
third trimester BPA and phthalates in conjunction with 
targeted pyrosequencing of LINE-1 repetitive elements 
and IGF2, H19 and Hydroxysteroid 11-Beta Dehydro-
genase 2 (HSD11B2) among children aged 8–14  years 
[15]. In that study, it was found that children from moth-
ers with higher third trimester urine BPA concentra-
tions had increased DNA methylation of IGF2 during 

Fig. 4  Manhattan plot of associations between a mixture of phthalates and bisphenols averaged over pregnancy with DNA methylation at birth 
in the total population and among boys and girls specifically. Manhattan plot of associations between a mixture of phthalates and bisphenols 
averaged over pregnancy in the total population (A), among boys (B) and among girls (C) with DNA methylation at birth. In all Manhattan plots, the 
x-axis represents the autosomal chromosomes, the y-axis represents the −log10 of the p value and the dots represent CpG

Table 5  CpGs with p values < 1.0 * 10–6 from epigenome-wide association study of a mixture of phthalates and bisphenols in maternal 
urine averaged over pregnancy and DNA methylation in cord blood among boys and girls specifically

There were no CpGs presented for the total group, as none reached our uncorrected p value cutoff of < 1.0 * 10–6

# We have indicated probes that map to DNA containing a single nucleotide polymorphism (SNP), repetitive sequence elements or DNA harboring an insertion or 
deletion with a ‘1’ in this column

CpG Chr Position Gene Effect SE p value Flag#

Boys cg20400361 8 55,014,040 LYPLA1 9.50 * 10–3 1.80 * 10–3 4.93 * 10–7 0

cg00025138 14 71,275,917 MAP3K9 − 2.57 * 10–3 5.01 * 10–4 8.64 * 10–7 0

Girls cg13344757 17 26904381 ALDOC 1.20 * 10–2 2.24 * 10–3 3.40 * 10–7 0

cg04913443 14 21566084 ZNF219;C14orf176 − 7.00 * 10–3 1.33 * 10–3 5.13 * 10–7 0

cg11723896 17 34136427 TAF15 − 1.05 * 10–2 2.02 * 10–3 6.95 * 10–7 1

cg10074813 8 144637872 GSDMD 1.51 * 10–2 2.93 * 10–3 8.43 * 10–7 1

cg15504459 1 38478291 UTP11L − 8.02 * 10–3 1.55 * 10–3 8.60 * 10–7 0
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peri-adolescence and that higher third trimester maternal 
urine monobenzylphthalate (mBzBP) and mono-isobu-
tylphthalate (mIBP) concentrations were associated with 
increased DNA methylation of H19 during peri-adoles-
cence. In the primary components analysis, higher third 
trimester maternal urine mono-n-butylphthalate (mBP), 
mBzBP, mIBP and mono(3-carboxypropyl)-phthalate 
(mCPP) concentrations predicted increased H19 meth-
ylation. We are unaware of any studies that have analyzed 
bisphenol or phthalate exposure from all three trimesters 
in relation to DNA methylation.

Strengths and limitations
To our knowledge, we have conducted the first study 
exploring the associations of exposure to a mixture of 
phthalates and bisphenols at multiple time points during 
pregnancy with DNA methylation in cord blood. Using 
this novel mixture approach, we ensured that possible 
synergistic or antagonistic effects of the components of 
the mixture are taken into account.

We recognize that our ability to find associations was 
limited due to the relatively small study population. In 
addition, the Illumina Infinium Human Methylation450 
BeadChip only covers 2% of all CpG sites in the DNA and 
we only assessed DNA methylation in cord blood, while 
other tissues could be more informative. The generaliz-
ability of our results could be limited due to the fact that 
the study population was relatively highly educated and 
only of European ancestry. However, even in this small 
population, we found potentially promising results that 
warrant further exploration of these associations in larger 
studies. As we assessed exposure during all three trimes-
ters, we were able to explore possible vulnerable periods. 
Based on the number of associations, there is some indi-
cation that exposure during first and second trimester 
might be more relevant. It is known that early pregnancy 
in particular is a sensitive period for environmental expo-
sures impacting DNA methylation [47]. However, due to 
the short biological half-lives of phthalates and bisphe-
nols, it could be that our measurements do not accu-
rately represent exposure during the whole trimester. 
These results should therefore be seen as exploratory and 
hypothesis-generating.

Future perspectives
Our results support further exploration of exposure to a 
mixture of phthalates and bisphenols during pregnancy, 
preferably in a contemporary, larger, multi-ethnic cohort 
with multiple measures of exposure at different times 
during pregnancy.

Conclusions
In this exploratory study, we found some suggestive 
associations for exposure to a mixture of non-persistent 
endocrine disruptors during first and second trimes-
ter of pregnancy with DNA methylation in cord blood. 
This study underscores the need for larger contemporary 
studies to further explore the association of mixtures of 
phthalates and bisphenols with DNA methylation.
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