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A B S T R A C T   

Post-stroke aphasia is a consequence of localized stroke-related damage as well as global disturbances in a highly 
interactive and bilaterally-distributed language network. Aphasia is increasingly accepted as a network disorder 
and it should be treated as such when examining the reorganization and recovery mechanisms after stroke. In the 
current study, we sought to investigate reorganized patterns of electrophysiological connectivity, derived from 
resting-state magnetoencephalography (rsMEG), in post-stroke chronic (>6 months after onset) aphasia. We 
implemented amplitude envelope correlations (AEC), a metric of connectivity commonly used to describe slower 
aspects of interregional communication in resting-state electrophysiological data. The main focus was on iden-
tifying the oscillatory frequency bands and frequency-specific spatial topology of connections associated with 
preserved language abilities after stroke. 

RsMEG was recorded for 5 min in 21 chronic stroke survivors with aphasia and in 20 matched healthy con-
trols. Source-level MEG activity was reconstructed and summarized within 72 atlas-defined brain regions (or 
nodes). A 72 × 72 leakage-corrected connectivity (of AEC) matrix was obtained for frequencies from theta to 
low-gamma (4–50 Hz). Connectivity was compared between groups, and, the correlations between connectivity 
and subscale scores from the Western Aphasia Battery (WAB) were evaluated in the stroke group, using partial 
least squares analyses. Posthoc multiple regression analyses were also conducted on a graph theory measure of 
node strengths, derived from significant connectivity results, to control for node-wise properties (local spectral 
power and lesion sizes) and demographic and stroke-related variables. 

Connectivity among the left hemisphere regions, i.e. those ipsilateral to the stroke lesion, was greatly reduced 
in stroke survivors with aphasia compared to matched healthy controls in the alpha (8–13 Hz; p = 0.011) and 
beta (15–30 Hz; p = 0.001) bands. The spatial topology of hypoconnectivity in the alpha vs. beta bands was 
distinct, revealing a greater involvement of ventral frontal, temporal and parietal areas in alpha, and dorsal 
frontal and parietal areas in beta. The node strengths from alpha and beta group differences remained significant 
after controlling for nodal spectral power. AEC correlations with WAB subscales of object naming and fluency 
were significant. Greater alpha connectivity was associated with better naming performance (p = 0.045), and 
greater connectivity in both the alpha (p = 0.033) and beta (p = 0.007) bands was associated with better speech 
fluency performance. The spatial topology was distinct between these frequency bands. The node strengths 
remained significant after controlling for age, time post stroke onset, nodal spectral power and nodal lesion sizes. 

Our findings provide important insights into the electrophysiological connectivity profiles (frequency and 
spatial topology) potentially underpinning preserved language abilities in stroke survivors with aphasia.   
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1. Introduction 

Stroke recovery is thought to depend on neuroplastic changes within 
preserved brain areas (Saur et al., 2006). In aphasia, language recovery 
relies on spared left-hemispheric areas surrounding the stroke lesion 
(perilesional), and/or right-hemispheric contralesional areas (Fri-
driksson et al., 2010; Chrysikou and Hamilton, 2011; Hamilton et al., 
2011; Turkeltaub et al., 2011). Evidence also suggests that the func-
tional capacity of perilesional areas is compromised due to the adjacent 
lesion (Tecchio et al., 2006; Meinzer et al., 2008). Using resting-state 
magnetoencephalography (rsMEG) in patients with aphasia, we and 
others have shown that spontaneous neural activity in perilesional areas 
is abnormal, exhibiting shifts toward slower oscillatory activity and al-
terations in signal complexity (Laaksonen et al., 2013; Chu et al., 2015; 
Kielar et al., 2016; Shah-Basak et al., 2020). Physiological slow activity 
manifests as increased delta (1–4 Hz) and theta (4–7 Hz) spectral power 
but reduced beta (15–30 Hz) and low-gamma (30–50 Hz) power. It is 
hypothesized that such slowing indicates dysfunction in otherwise intact 
brain tissue, which may hinder recovery processes. 

To date, much work has focused on local dysfunction by analyzing 
changes in regional spectral power and signal complexity after stroke. 
But little is known about electrophysiological abnormalities manifesting 
in interregional connectivity, encompassing the perilesional and con-
tralesional areas in post-stroke aphasia. We know that processing of 
language relies on dynamic and rapid processes emerging across a large 
network of brain regions (Piai and Zheng, 2019). Coherent neural os-
cillations via phase synchronization or correlated oscillatory amplitude 
(or power envelope) fluctuations are thought to constitute the physio-
logical mechanism that supports timely coordination, signaling and 
communication across distant brain regions (Fries, 2005; Wang, 2010; 
Fries, 2015; Cox et al., 2018). Spontaneous amplitude-based connec-
tivity during the resting state is a widely studied phenomenon, wherein 
oscillatory amplitude or power envelope fluctuations are thought to 
capture the slower aspects of interregional communication (Cox et al., 
2018). In the current study, we sought to characterize spontaneous 
(resting-state) long-range oscillatory connectivity using a metric of 
amplitude envelope correlation (AEC) in frequency bands ranging from 
theta to low-gamma (4–50 Hz), and evaluated relationships between 
connectivity and language outcomes in stroke survivors with aphasia. 

We quantified amplitude-based coupling or AEC to gain insights into 
the resting-state connectomes in post-stroke aphasia. Our focus on AEC 
was motivated by a number of prior studies that found a strong agree-
ment between fMRI-derived resting-state networks (RSNs) and those 
derived from rsMEG using AEC (Brookes et al., 2011a; Hipp et al., 2012; 
Tewarie et al., 2014). In particular, AEC of alpha and beta oscillations 
(8–30 Hz) reveals patterns that are similar to fMRI RSNs (Cabral et al., 
2014; Wei et al., 2021). The AEC estimates of connectivity are also found 
to be most consistent across repeated measurements both within par-
ticipants and for group-level inferences compared to phase-based mea-
sures (Colclough et al., 2016). 

The physiological mechanisms that produce the temporally coordi-
nated amplitude fluctuations measured by AEC remain unclear. 
Computational modeling studies provide some insight. For example, 
according to Cabral and colleagues (2014), the emergence of oscillatory 
envelope fluctuations is found to be linked to a “metastable synchroni-
zation regime” that is shaped by the precise space–time network struc-
ture of our brain. Temporary large-scale synchronization across different 
brain regions is possible in this regime at frequencies that typically fall 
within the alpha/beta range (Cabral et al., 2014). Full exploration of 
candidate mechanisms underlying AECs is one of the major themes of 
ongoing research in the field. 

Recent work in aphasia underscores functional network-level im-
pairments after stroke (Grefkes and Fink, 2011; Carrera and Tononi, 
2014). Stroke induces disruptions in the lesion zone and in functionally 
connected areas far from the lesion that may be critical for language 
(Turken and Dronkers, 2011). Disconnections can contribute to specific 

linguistic impairments, due to disruptions in relevant information 
transfer across brain regions in language subnetworks. Plasticity after 
stroke is associated with synchronization of spontaneous neural oscil-
lations between brain areas. One study found that greater oscillatory 
synchronization of language and motor areas with the rest of the cortex 
at 2–3 weeks after stroke is linked to improvement in corresponding 
clinical functions during subsequent weeks (Nicolo et al., 2015). In 
particular, coherent synchrony in alpha and beta frequencies has been 
associated with post-stroke cognitive and motor recovery (Westlake 
et al., 2012; Dubovik et al., 2013; Petrovic et al., 2017). This is an 
emerging field of research but so far very little is known about the long- 
range connectivity patterns underpinning spared language functions in 
post-stroke aphasia. 

In this study, we implemented rsMEG analysis for computing AEC to 
characterize electrophysiological connectivity differences between 21 S 
patients with chronic aphasia and 20 age- and sex-matched healthy 
controls. Based on prior literature, we expected hypoconnectivity in the 
alpha (8–13 Hz) and beta (15–30 Hz) bands in the left (or ipsilesional) 
hemisphere in patients compared to the healthy controls. For the group 
differences, there was little doubt that we would find connectivity dif-
ferences emerging from the lesioned hemisphere. Thus, the primary 
interest of this analysis was to determine the involvement of specific 
frequency bands, and the spatial topology of connections (reflecting the 
number of connections, and edges or links between brain areas in a 
network) within those frequency bands. The second aim was to disen-
tangle the relationship between frequency-specific connectivity patterns 
and preserved language functions after stroke. We hypothesized that 
greater connectivity in the alpha and beta bands and connections 
involving the left perilesional areas would positively correlate with 
language performance. For these analyses, we compared AEC estimates 
with subscales of a widely used clinical language battery—the Western 
Aphasia Battery (WAB)—including selected measures of fluency, audi-
tory comprehension, repetition and object naming (Kertesz, 2007). 
Finally, to control for potential confounding effects of stroke-related 
variables, post-hoc regression analyses were conducted with lesion 
sizes, time post stroke onset and age as covariates. Overall, our study 
aimed to provide insights into the electrophysiological connectivity 
profiles that underpin preserved language abilities in aphasia. We expect 
that this understanding would inform aphasia treatments, particularly 
those employing rhythmic brain stimulation to promote language re-
covery after stroke. 

2. Materials and methods 

2.1. Participants 

Resting-state MEG data was collected as part of two prior studies 
(Kielar et al., 2016; Shah-Basak et al., 2020). Twenty-one stroke survi-
vors with chronic aphasia (mean ± standard deviation: age: 61.5 ± 13.2 
years; education: 16.3 ± 2.5 years; 16 males; Table 1) and 20 older 
healthy controls (age: 63.4 ± 12.6 years; education: 17.5 ± 2.4 years; 15 
males) were included in the analysis. Patients suffered a single left- 
hemispheric stroke on average 6 years prior to the study (stroke onset: 
6.1 ± 4.7, range: 0.6–21 years). Twelve patients suffered an ischemic 
stroke, 6 a hemorrhagic stroke, and 3 had an unspecified etiology. 

The lesion overlap in stroke survivors, provided in Fig. 1, indicated 
maximum damage (in ~ 60% of participants) in the left superior tem-
poral gyrus and rolandic operculum (MNI coordinates: − 54–28 14 and 
− 40–18 12). The diagnosis of aphasia was made by a speech-language 
pathologist and/or a board-certified neurologist, and further verified 
based on clinical presentation, narrative speech samples and standard-
ized linguistic tests. The healthy controls were matched with the stroke 
patients on age (p = 0.65), education (p = 0.13) and sex (75% males). 

All participants were right-handed (pre-stroke), native speakers of 
English, and had normal hearing and normal or corrected-to-normal 
vision. All stroke patients retained sufficient language comprehension 
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capacity to consent and follow task instructions. Exclusion criteria were 
other neurological diseases, language disorders (for controls), head 
traumas or brain surgery, epilepsy, severe psychiatric disorders, unsta-
ble or poor health, and any contraindications to MRI or MEG (Kielar 
et al., 2016; Kielar et al., 2018). 

This study was approved by the Research Ethics Board at Baycrest 
Health Sciences. All participants gave their written informed consent 
according to the Declaration of Helsinki prior to the study and were 
compensated for their participation. 

2.2. Clinical language battery 

All patients completed the Western Aphasia Battery-Revised (WAB- 
R) bedside form, including selected subtests of fluency, auditory 
comprehension, repetition and object naming (Kertesz, 1982, 2007). 
The WAB fluency test consisted of a description of the ‘Cookie theft’ 
picture, and a rating based on the sentence length, complexity, speed, 
and number of paraphasias. WAB comprehension was assessed through 
yes/no questions, word recognition and sequential commands tasks, and 
WAB repetition through asking participants to repeat single words, 
phrases and sentences. WAB object naming consisted of 20 different 
picture stimuli. The summary scores for each of the subscales are pro-
vided in Table 1. In our cohort on average, patients had the least diffi-
culty following auditory commands on the WAB-Comprehension subtest 
with the scores ranging from 7 to 10 (mean: 9.1 ± 0.8), but faced most 
difficulty with the picture description task on the WAB-Fluency subtest 
with scores ranging from 0 to 9 (mean: 5.8 ± 3.0). 

2.3. MRI acquisition 

MRI was carried out on a 3-Tesla scanner (Siemens TIM Trio). For 
MEG source localization, we acquired a T1-weighted MPRAGE image (1 
mm isotropic voxels, TR = 2000 ms (ms), TE = 2.63 ms, FOV = 256 ×
256 mm2, 160 axial slices, scan time 6 m, 26 s). MR-visible markers 
were placed at the fiducial points for accurate co-registration with MEG, 
aided by digital photographs. 

2.4. MEG acquisition, head modeling and source analysis 

Resting-state MEG signals were recorded with eyes open condition 
using a 151-channel whole-head system with axial gradiometers 
(VSMMedTech, Coquitlam, Canada), acquired continuously for 300 s (or 
5 min) at a sampling rate of 625 Hz or 1250 Hz (down-sampled to 625 
Hz) and with an online synthetic 3rd-order gradient noise reduction. 
Head position with respect to the MEG helmet was monitored using 
three coils placed at fiducial landmarks of the head (nasion, left and 
right pre-auricular points). Head positions were measured before and 
after the resting-state run, and the two positions were averaged. Multi- 
sphere head models were constructed for MEG source analysis (Huang 
et al., 1999) using the T1-weighted MRI. Source analysis was conducted 
on an isotropic grid with a spacing of 10 mm, or a voxel size of 10 mm3, 
across the whole-brain. The Synthetic Aperture Magnetometry (SAM) 
beamformer (Robinson and Vrba, 1999; Vrba and Robinson, 2001) was 
implemented using the CTF software (CTF; Port Coquitlam, British 
Columbia, Canada), and further analyses were supplemented with in- 

Table 1 
Demographics, clinical variables and language scores for the stroke patients.  

ID Age 
(y) 

Education 
(y) 

Sex Time 
post- 
onset 

Etiology Aphasia 
type 

% left 
damage 

WAB- 
Fluency 

WAB- 
Comp 

WAB- 
Rep 

WAB- 
Naming 

P1 60 16 Male 4y Ischemic Non-fluent 19.8 4 10 7.5 10 
P2 62 12 Male 5y Ischemic Fluent 38.64 2 10 6 5.5 
P3 67 16 Male 6y 2 m Unspecified Non-fluent 12.94 8 10 5 8.5 
P4 70 18 Male 9y Ischemic Non-fluent 21.3 9 10 9 10 
P5 72 19 Male 21y 4 m Unspecified Anomia 31.81 1 8 1.5 1 
P6 34 19 Female 4y Hemorrhagic Conduction 18.96 7 9 8.5 10 
P7 71 15 Female 9y 4 m Hemorrhagic Anomia 23.35 8 10 8 9.5 
P8 63 12 Female 13y Ischemic Anomia 28.71 8 10 7 8.5 
P9 60 13 Male 6y 5 m Hemorrhagic Non-fluent 42.1 2 9 5 4.5 
P10 41 18 Male 5y 9 m Ischemic Non-fluent 22.29 2 8 5 7.5 
P11 68 16 Male 4y 10 m Unspecified Conduction 15.48 9 9 9.5 9.5 
P12 46 18 Female 3y 8 m Hemorrhagic Non-fluent 20.13 5 9 5 9 
P13 47 18 Male 4y 1 m Hemorrhagic Anomia 20.87 5 8 7.5 9.5 
P14 75 15 Male 2y 4 m Ischemic Anomia 9 8 10 7.5 7.5 
P15 46 15 Male 2y 3 m Ischemic Conduction 16.81 8 9 7.5 10 
P16 84 19 Male 10y Ischemic Anomia 1.82 9 9 10 9.5 
P17 77 20 Male 7 m Ischemic Fluent 9.81 7 9 6 6 
P18 46 16 Male 4y Ischemic Non-fluent 21.71 6 10 9.5 10 
P19 65 20 Male 6y 1 m Ischemic Non-fluent 36.36 0 7 3.5 0.5 
P20 68 13 Female 3y 3 m Hemorrhagic Anomia 13.09 9 9 10 10 
P21 69 15 Male 1y Ischemic Non-fluent 23.03 4 9 9 9 
Mean 

(SD) 
61.5 
(13.2) 

16.3 
(2.5) 

16 
Males 

6y 1 m 
(4y 8 m)   

21.3 
(10.0) 

5.8 
(3.0) 

9.1 
(0.8) 

7.0 
(2.3) 

7.9 
(2.9) 

y = years; m = months; SD = Standard deviation; WAB = Western Aphasia Battery; WAB-Comp = Auditory Comprehension; WAB-Rep = Repetition; Unspecified - not 
clear from medical reports. 

Fig. 1. Lesion overlap across 21 stroke survivors with aphasia (thresholded from 1 to 11). Surface representation of overlap is also provided.  
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house MATLAB scripts. SAM is a scalar beamformer, in which a 
nonlinear optimization technique is used to select one direction of cur-
rent flow at each voxel (or grid location) to maximize dipole power. SAM 
outputs beamformer weights in the time-domain. In short, SAM provides 
a series of sensor weights for each voxel; the weights are computed so as 
to pass signal from a dipole located in the target voxel, while minimizing 
signal power from all other locations. Scalar beamformers have better 
spatial resolution and are commonly preferred unless there is a specific 
need to examine activity in different orientations within the same 
location (Jaiswal et al., 2020). In this study, the beamformer weights 
were computed at each voxel (10 mm3), and were then multiplied with 
the original sensor time series data to yield a new spatially-filtered 
signal, the so-called virtual time series (Vrba and Robinson, 2001). 
Normalized weights were computed as a signal-to-noise ratio with noise 
power estimated as the lowest singular value of the sensor covariance 
matrix. This step rendered the virtual time series with dimensionless 
units. 

Prior to beamforming, signals were segmented into 4-second epochs, 
and bandpass filtered from 0.1 to 150 Hz. Raw MEG sensor signals were 
screened for motion (e.g., coughs, sneezes, yawns, head movements) 
and environmental artifacts, and epochs containing obvious signal dis-
ruptions or drifts were rejected (0–4 epochs rejected). The SAM beam-
former procedure effectively attenuates physiological artifacts such as 
those from muscle activity and eye movements or blinks (Vrba, 2002; 
Cheyne et al., 2007). Therefore, the epochs containing these artifacts 
were not rejected manually. 

Voxelwise source signals were then summarized within 72 cortical 
and subcortical regions (Supplementary Figure 1), as defined by the 
Automated Anatomical Labeling (AAL) atlas (Tzourio-Mazoyer et al., 
2002), using the ‘mean flip’ method implemented in the MNE-Python 
package (Gramfort et al., 2013), which flips the sign of some voxels 
prior to averaging to ensure that signals having opposite polarity due to 
arbitrary selection of the beamformer direction do not cancel each other. 
Eighteen regions in the AAL atlas were excluded prior to any statistical 
analysis: (1) due to limited voxelwise coverage (i.e. 0 voxels within an 
AAL-defined region) based on individual participants’ anatomical scans, 
which included Heschl’s gyri and amygdala, (2) involving subcortical 
regions including the basal ganglia regions and the thalamus, and (3) 
other regions for which we did not have a priori hypotheses in language 
processes such as the olfactory cortices and the paracentral lobule. In 
stroke patients, the voxels overlapping with lesion maps in individual 
patients were excluded, before summarizing the voxelwise data within 
the AAL-defined regions or nodes. 

2.5. Amplitude envelope correlations 

We used the methods described by Hipp and colleagues (2012) to 
compute the amplitude envelope correlations or AEC between each of 
the 72 node pairs (Hipp et al., 2012). The input signals for this analysis 
in each participant were the node time series with non-overlapping 
epochs of 4 s. These node signals were downsampled from 625 Hz to 
312.5 Hz to reduce the computational demand for subsequent AEC an-
alyses. The downsampled signals were then subjected to spectral anal-
ysis using Morlet’s wavelets to obtain signals in the frequency domain. 
The frequencies of interest (FOI) were logarithmically spaced with base 
2 and exponents ranging from 1 to 7 in steps of 0.25 (2 to 128 Hz) (Hipp 
et al., 2012). The number of cycles for wavelet analysis was set to half of 
the FOIs. The output of the Morlet’s wavelet analyses was set to single 
trial complex, resulting in 75 epochs across 72 nodes for 25 FOIs and 
1250 time points (4 s * 312.5 Hz). To reduce spurious correlations due to 
signal leakage (O’Neill et al., 2015), the frequency domain signals from 
each node were orthogonalized to every other node using the ordinary 
least squares analysis before computing the AECs. The orthogonalization 
between node pairs was conducted by subtracting the part of the com-
plex signal (say Y) from one node that can be linearly predicted from the 
complex signal (say X) from another node. As described in detail by Hipp 

and colleagues (2012), the operation for orthogonalization is as follows: 

Yortho(t, f ) = imag
(

Y(t, f )
X(t, f )*

|X(t, f )|

)

where t are the time points, f is the FOI, * is the complex conjugate, and 
imag() is the imaginary part of the complex number. Orthogonalization 
was bi-directional from X to Y and Y to X. The AECs were then computed 
for both orthogonalized directions using Pearson correlation analysis, 
and the two resulting correlation coefficients were averaged together for 
further analyses. At the end of this computation, a 72 × 72 AEC matrix 
was obtained for each epoch and FOI. A single AEC matrix per FOI was 
obtained by averaging across epochs, which was subjected to the Fisher 
r-to-z transformation. Statistical analyses were conducted on the aver-
ages of the AEC matrices within canonical frequency bands—theta (4–7 
Hz), alpha (8–13 Hz), beta (15–30 Hz) and low-gamma (25–50 Hz). 

2.6. Local spectral properties 

Power spectral densities of the voxelwise virtual signals were 
computed using the multitaper method in MATLAB (Thomson, 1982). 
The time half bandwidth (NW) was set to 3, which resulted in 5 (2* 
(NW)-1) discrete prolate spheroidal or Slepian sequences for multitaper 
computations. A frequency resolution of 0.3052 Hz was achieved with 
FFT length of 1024 and sampling frequency of 625 Hz. Relative power 
was computed for each canonical frequency band as a ratio of the sum of 
power within a frequency band and the sum of total power from 1 to 80 
Hz. Relative power estimates were then averaged within the AAL- 
defined nodes. These estimates were entered as covariates in our sta-
tistical analysis to control for the potential contribution of local spectral 
properties toward connectivity findings. 

2.7. Statistical analysis 

Partial Least Squares (PLS) (McIntosh et al., 1996) analyses were 
conducted to compare AEC estimates in each of the frequency bands 
between stroke patients and age-matched controls. Multivariate 
methods such as PLS do not necessitate corrections for multiple com-
parisons because the statistical inference testing is done at the level of a 
full multivariate pattern rather than at the level of individual nodes 
(McIntosh and Lobaugh, 2004). For the PLS group comparisons, the 
input data matrices had n rows of participants, nested within groups 
(design variables) and v columns of (vectorized) AEC estimates (brain 
variables; 2556 unique connections). PLS estimates the maximal 
covariance between two different types of data blocks (Mǐsić et al., 
2016), which in our case would generate saliences representing the brain 
variables consisting of AEC estimates (brain saliences), and the experi-
mental design variables describing the groups (design saliences). The 
output of PLS, referred to as latent variables (LV), is a composite of 
singular values, which describe the maximal covariance between the 
brain and the design variables, and two singular vectors with brain and 
design saliences. Saliences are the weights for each input data block. 
Linear combinations of brain saliences with the input data matrix pro-
vide brain scores per participants. For our group comparisons, two LVs 
per comparison were produced. 

Statistical inference of LVs was determined by permutation tests with 
1000 iterations with a threshold of p < 0.05. These tests indicated which 
LVs were significant as an entire multivariate pattern. To identify the 
AECs making a significant contribution to the LV pattern, we employed 
bootstrapping with 500 resamples to compute the standard errors (SE) of 
brain saliences. Bootstrap ratios (BSR) were computed as a ratio of the 
brain saliences and the bootstrap SEs, which provided an estimate of the 
reliability of contributions of brain saliences. For significant LVs, BSR 
maps were interpreted at thresholds of ± 3.5 or higher (Mǐsić et al., 
2016). 

Next, behavioral PLS analyses were conducted within the stroke 
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group for brain-behavior correlations between WAB subscale scores 
(fluency, comprehension, repetition, naming) and AEC estimates. 
Separate PLS analyses were conducted for correlations with each of the 
WAB measure. The methods for determining statistical significance and 
reliability of brain saliences were the same as the group PLS analysis 
procedures described above. The Rotman PLS toolbox in MATLAB 
(McIntosh et al., 1996) was used for both group and behavioral PLS 
analyses. To visualize the number of significant connections to nodes, a 
graph theory measure of node degree was computed (Figs. 2 and 3). 

Finally, a graph measure of node strength was computed based on 
statistically significant (or thresholded) connectivity matrices for both 
group differences and within-stroke correlations with WAB subscales. 
Brain Connectivity Toolbox (Rubinov and Sporns, 2010) was used to 
compute undirected node strengths by taking the sum of AEC values at 
each node. To evaluate how node strengths might be affected by local 
spectral properties (e.g., relative power) and by the extent of lesion 
within nodes, we ran node-wise, post-hoc regression analyses that were 
corrected for multiple comparisons using the False Discovery Rate (FDR) 
method (Benjamini and Hochberg, 1995). We controlled for relative 
power within a node for verifying group differences in node strengths by 
fitting a generalized linear model (GLM) with a binomial function; the 
group designation was the dependent variable and the relative power 
and node strength were the independent variables in this analysis 
[group ~ relative power + node strength]. For correlations between 
node strengths and WAB subscores, we controlled for additional vari-
ables such as age, time post stroke onset, node lesion sizes along with 
relative power estimates in a linear regression analysis; the WAB sub-
score was the dependent variable and covariates and node strengths 
were the independent variables [wab_score ~ age + time post onset +
node lesion size + relative power + node strength]. RStudio was used for 
both types of posthoc analyses with glm (with family = binomial) or lm 
functions in the stats package. 

3. Results 

The connectivity matrices and the spatial topology of connections 
representing the top 2–5% of connections in each of the frequency band 
of interest (theta, alpha, beta and low-gamma) are provided in Supple-
mentary Figures 2 and 3 for healthy controls and stroke patients, 
respectively. 

3.1. Group differences 

PLS analysis revealed that the first LV was significant, indicating a 
significant effect of group for the AEC estimates in the alpha (p = 0.011) 
and beta (p = 0.001) frequency bands (Fig. 2). None of the LVs was 
significant for theta or low-gamma AEC estimates (p > 0.05). The di-
rection of the differences pointed to hypoconnectivity in the alpha and 
beta bands in stroke patients compared to controls. As would be ex-
pected, the number of connections (estimated by AEC) on the side of 
stroke lesions was lower in patients. The spatial topology of reduced 
connectivity was distinct between alpha and beta bands, as can be 
visualized in Fig. 2, with BSR thresholds of 3.5 and 4.0, respectively. 
Hypoconnectivity in the alpha band involved both left hemisphere 
ventral and dorsal nodes, including the inferior occipital (IOG), fusiform 
(FFG), middle and inferior temporal (MTG and ITG), parahippocampal 
(PHG) gyri, and the hippocampus (HIP), calcarine (CAL) cortex, tem-
poral pole regions, the postcentral (PoCG), median (DCG) and anterior 
cingulate (ACG) and inferior frontal pars opercularis (IFGoper) gyri. 

The topology of beta hypoconnectivity involved primarily left dorsal 
nodes including the middle frontal (MFG), precentral and postcentral 
(PreCG and PoCG), superior parietal (SPG) gyri, supplementary motor 
areas (SMA), inferior parietal lobule (IPL), precuneus (PCUN), as well as 
the occcipital gyri, CAL, lingual gyrus (LING), and MTG, FFG and ITG. 
The posthoc regression analyses fitting a GLM revealed that differences 

Fig. 2. Spatial topology of hypoconnectivity, as measured by amplitude envelope correlations, in the (A) alpha and (B) beta bands in stroke patients with aphasia 
compared to age-matched healthy controls. The size of the nodes indicates a graph theory measure of node degree. The rightmost column displays the number of 
intrahemispheric left (L), right (R) or interhemispheric (LR) connections. The maps are displayed for bootstrap ratio (BSR) thresholds of 3.5 for alpha and 4.0 for beta 
connectivity. 
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in node strengths involving the left nodes remained significant after 
controlling for node relative power for both the alpha and beta bands; 
results are summarized in Supplementary Tables 1-2. 

3.2. Correlations with WAB subscores 

Alpha AEC or connectivity was positively correlated with object 
naming (p = 0.045; LV correlation = 0.59, 95% CI: 0.54–0.83) and 
fluency (p = 0.033; LV correlation = 0.62, 95% CI: 0.56–0.81) scores, 
and beta AEC was positively correlated with fluency scores (p = 0.007; 
LV correlation = 0.69, 95% CI: 0.67–0.87). PLS correlations with WAB 
repetition and auditory comprehension scores were not significant. A 
distinct topology of connections associated with significant correlations 
was found between alpha and beta bands (Fig. 3). Stronger alpha con-
nectivity among left MTG, FFG, ITG, PHG, IPL, IFG pars triangularis 
(IFGtriang), insula and temporal pole regions was correlated with better 
performance on WAB naming. Stronger alpha connectivity among 
bilateral dorsal and medial aspects of the superior frontal gyrus (SFGdor, 
SFGmed), left PreCG, bilateral DCG, PCUN, bilateral ACG, IFGtriang and 
IFG pars orbitalis (IFGorb), insula and temporal polar regions, along 
with PHG and FFG was associated with better performance on the WAB 
fluency measure. Finally, beta connectivity among left rolandic oper-
culum (ROL), IFGtriang, IFGorb and IFGoper, middle frontal gyrus 
(MFG), PreCG, SMA, IPL, PCUN, MTG and PHG was associated with 
better performance on the WAB fluency measure. 

Posthoc linear regression analyses indicated that node strengths 

derived from alpha and beta connectivity and WAB subscore relation-
ships remained significant after controlling for age, time post stroke 
onset, node lesion sizes and node relative power estimates. The results 
from these analyses are summarized in Supplementary Tables 3–5. None 
of the PLS correlations between AEC and WAB subscores were signifi-
cant in the theta and low-gamma bands. 

4. Discussion 

In the current study, we quantified spontaneous electrophysiological 
connectivity in post-stroke chronic aphasia survivors using rsMEG with 
an overarching aim to examine reorganized connections between brain 
regions that critically support spared language functions after stroke. 
The methods included computations of amplitude envelope correlations 
or AEC, a commonly used measure of oscillatory coupling during 
resting-state (Brookes et al., 2011b; O’Neill et al., 2015), in frequency 
bands ranging from theta to low-gamma. The analyses of AECs revealed 
that the connectivity among (left) perilesional areas was greatly reduced 
in the alpha (8–13 Hz) and beta (15–30 Hz) bands in stroke survivors 
with aphasia compared to age-matched healthy controls. The spatial 
topology of hypoconnectivity between the alpha and beta bands was 
distinct, revealing a greater involvement of ventral frontal, temporal and 
parietal areas in alpha, and dorsal frontal and parietal areas in beta. In 
addition to the group differences, connectivity correlations with lin-
guistic subscores from a clinical aphasia battery revealed the topology of 
connections that underlie preserved abilities to name pictures of objects 

Fig. 3. Spatial topology of positive correlations between alpha connectivity and (A) WAB object naming and (B) WAB fluency subscores, and between (C) beta 
connectivity and WAB fluency subscores in stroke survivors with aphasia. The size of the nodes indicates node degree. The rightmost column displays the number of 
intrahemispheric left (L), right (R) or interhemispheric (LR) connections. The maps are displayed for bootstrap ratio (BSR) thresholds of 4.5 for alpha and 5.0 for beta 
connectivity. 
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and produce spontaneous speech after stroke. These results indicated 
that stronger alpha connectivity was associated with better naming 
performance, and stronger connectivity in both the alpha and beta bands 
was associated with better speech fluency performance (Fig. 3). 
Consistent with the group results, the topology was distinct between 
these frequency bands, with alpha connections involving the IPL, MTG, 
ATL and ventral IFG regions as related to naming, whereas beta con-
nections involving the PreCG, SMA, ROL and MFG as related to fluency. 
We controlled for lesion sizes by removing MEG signals within the 
lesioned tissue, assumed to be electrically-silent (Spironelli and Angrilli, 
2009), in individual patients, before summarizing signals within parcels 
and prior to any statistical analysis. We also included nodal lesion sizes 
as a covariate in posthoc analyses with a graph theory measure of node 
strength. Overall, our results suggest a critical role of coherent activity 
within the alpha and beta bands, governing distinct language functions 
after stroke. 

The involvement of alpha and beta that we found in the current study 
is consistent with multiple prior studies indicating an important role of 
spontaneous coherent activity in these frequency bands in post-stroke 
neuroplasticity (Dubovik et al., 2012; Westlake et al., 2012; Dubovik 
et al., 2013; Nicolo et al., 2015; Petrovic et al., 2017). To our knowledge, 
the findings related to the topology of alpha and beta hypoconnectivity 
and positive correlations with language performance are novel and as 
such contribute to our understanding of frequency-specific connectivity 
profiles in aphasia. These findings provide initial evidence of residual 
networks involving alpha and beta bands, underpinning linguistic abil-
ities after stroke. One clinically-relevant future goal is to verify the 
repeatability of these patterns over multiple time points, and use this 
knowledge to advance our understanding of connectivity profiles within 
individuals and how they might change over the course of stroke re-
covery with and without targeted speech and language treatments. 

Dominant nodes depicted in the alpha connectivity correlations with 
naming as well as those in beta connectivity correlations with fluency 
scores are well-aligned with cognitive operations involving visual, lan-
guage, motor/articulatory and executive control processes. The network 
exhibiting correlations with naming ability in alpha involved connec-
tions among the IPL, MTG, FFG, IFGtriang, ITG, temporal pole and 
medial temporal nodes, which are typically associated with visual 
recognition, semantic and phonological processing (Hickok and Poep-
pel, 2007; Binder et al., 2009; Price, 2012; Baldo et al., 2013; Binder, 
2017). In contrast, the alpha-based fluency network involved bilateral 
superior and middle frontal gyri, anterior cingulate gyrus, SMA, pre-
cuneus and lateral IFG nodes that typically form the multiple-demand 
network, potentially subserving complex operations and sequential 
programming (Duncan, 2010) as required during the production of 
spontaneous and connected speech. The motor articulatory planning 
and execution processes during speech production appear to be captured 
in the beta connectivity correlations with fluency, which involve the 
rolandic operculum, SMA and precentral gyrus, and MFG, along with 
other frontal and parietal nodes (Knopman et al., 1983; Brown et al., 
2005; Ackermann and Riecker, 2010; Biesbroek et al., 2016; Itabashi 
et al., 2016). 

The WAB battery that we used for our connectivity-behavior corre-
lations is routinely used in clinical research studies for classification of 
aphasia subtypes but it does not isolate component language processes. 
While the nodes and connections as revealed from our analyses are 
consistent with prior fMRI and EEG/MEG, we acknowledge that the use 
of “multifactorial” measures such as WAB naming and fluency compli-
cates our understanding of connectivity profiles underpinning constit-
uent language processes. Naming is a complex multi-stage process that 
involves visual processing of the picture stimulus, visual recognition, 
access to meaning and phonological word forms, and motor planning 
and execution (DeLeon et al., 2007). Similarly, as described by Halai 
et al. (2017), it is unclear to what extent a measure of spontaneous 
speech by picture description reflects semantic or phonological skills 
(Halai et al., 2017). Therefore, a central future goal of our work to fully 

characterize frequency-specific connectivity/network properties is to 
identify unique correlates of constituent semantic and phonological 
processes in post-stroke aphasia. This knowledge would be critical for 
parsing out the effects of language treatments targeting one or more of 
these processes. 

Complementary to amplitude coupling, as mentioned earlier, MEG 
connectivity can be depicted by examining synchronization of phases in 
source time series from different brain regions (Lachaux et al., 1999; 
Stam et al., 2007). While outside the scope of the current study, it would 
be equally interesting to evaluate phase synchronization differences in 
post-stroke aphasia, and the relationship with language outcomes after 
stroke. The patterns of phase coupling, while remain to be explored in 
future studies, could be reliably distinct from amplitude-based net-
works, thus revealing different aspects of neuronal dynamics (Cox et al., 
2018) supporting language functions after stroke. 

5. Conclusions 

In this study, we systematically characterized large-scale oscillatory 
dynamics in post-stroke aphasia, comparing MEG connectivity patterns 
with healthy age-matched controls, with respect to language functions, 
and across a range of frequencies using an amplitude-based metric (or 
AEC). Perilesional left hemispheric regions exhibited hypoconnectivity 
in the alpha and beta bands. Importantly, unique connectivity profiles 
underpinning preserved linguistic abilities such as naming and fluency 
were identified, providing important insights into residual, frequency- 
specific language networks after stroke. Our future goals are to iden-
tify frequency-specific connectivity correlates of constituent semantic 
and phonological language processes, characterize how they change 
over the course of spontaneous and treatment-induced recovery, and 
finally apply phase-based connectivity metrics to more fully characterize 
oscillatory network dynamics in post-stroke aphasia. Electrophysiolog-
ical connectivity in post-stroke aphasia remains largely unexplored, and 
while our current study addresses this important gap, more dedicated 
research is warranted in this field. 
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Mǐsić, B., Dunkley, B.T., Sedge, P.A., Da Costa, L., Fatima, Z., Berman, M.G., Doesburg, S. 
M., McIntosh, A.R., Grodecki, R., Jetly, R., Pang, E.W., Taylor, M.J., 2016. Post- 
traumatic stress constrains the dynamic repertoire of neural activity. J. Neurosci.: 
The Official J. Society Neurosci. 36 (2), 419–431. 

Nicolo, P., Rizk, S., Magnin, C., Pietro, M.D., Schnider, A., Guggisberg, A.G., 2015. 
Coherent neural oscillations predict future motor and language improvement after 
stroke. Brain: A J. Neurol. 138 (10), 3048–3060. 

O’Neill, G.C., Barratt, E.L., Hunt, B.A.E., Tewarie, P.K., Brookes, M.J., 2015. Measuring 
electrophysiological connectivity by power envelope correlation: a technical review 
on MEG methods. Phys. Med. Biol. 60 (21), R271–R295. 

Petrovic, J., Milosevic, V., Zivkovic, M., Stojanov, D., Milojkovic, O., Kalauzi, A., 
Saponjic, J., 2017. Slower EEG alpha generation, synchronization and “flow”- 
possible biomarkers of cognitive impairment and neuropathology of minor stroke. 
PeerJ 5, e3839. 

Piai, V., Zheng, X., 2019. Chapter Eight - Speaking waves: Neuronal oscillations in 
language production. Psychology of Learning and Motivation 71, 265–302. 

Price, C.J., 2012. A review and synthesis of the first 20 years of PET and fMRI studies of 
heard speech, spoken language and reading. NeuroImage 62 (2), 816–847. 

Robinson, S.E., Vrba, J., 1999. Functional neuroimaging by synthetic aperture 
magnetometry (SAM). Tohoku University Press, Sendai.  

Rubinov, M., Sporns, O., 2010. Complex network measures of brain connectivity: Uses 
and interpretations. NeuroImage 52 (3), 1059–1069. 

Saur, D., Lange, R., Baumgaertner, A., Schraknepper, V., Willmes, K., Rijntjes, M., 
Weiller, C., 2006. Dynamics of language reorganization after stroke. Brain: A J. 
Neurol. 129, 1371–1384. 

Shah-Basak, P.P., Sivaratnam, G., Teti, S., Francois-Nienaber, A., Yossofzai, M., 
Armstrong, S., Nayar, S., Jokel, R., Meltzer, J., 2020. High definition transcranial 
direct current stimulation modulates abnormal neurophysiological activity in post- 
stroke aphasia. Sci. Rep. 10 (1). 

Spironelli, C., Angrilli, A., 2009. EEG delta band as a marker of brain damage in aphasic 
patients after recovery of language. Neuropsychologia 47 (4), 988–994. 

Stam, C.J., Nolte, G., Daffertshofer, A., 2007. Phase lag index: assessment of functional 
connectivity from multi channel EEG and MEG with diminished bias from common 
sources. Hum. Brain Mapp. 28 (11), 1178–1193. 

Tecchio, F., Zappasodi, F., Pasqualetti, P., Tombini, M., Caulo, M., Ercolani, M., 
Rossini, P.M., 2006. Long-term effects of stroke on neuronal rest activity in rolandic 
cortical areas. J Neurosci Res 83 (6), 1077–1087. 

Tewarie, P., Hillebrand, A., van Dellen, E., Schoonheim, M.M., Barkhof, F., Polman, C.H., 
Beaulieu, C., Gong, G., van Dijk, B.W., Stam, C.J., 2014. Structural degree predicts 
functional network connectivity: a multimodal resting-state fMRI and MEG study. 
NeuroImage 97, 296–307. 

Thomson, D.J., 1982. Spectrum estimation and harmonic analysis. Proc. IEEE 70 (9), 
1055–1096. 

Turkeltaub, P.E., Messing, S., Norise, C., Hamilton, R.H., 2011. Are networks for residual 
language function and recovery consistent across aphasic patients? Neurology 76 
(20), 1726–1734. 

P. Shah-Basak et al.                                                                                                                                                                                                                            

https://doi.org/10.1016/j.nicl.2022.103036
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0005
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0005
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0005
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0010
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0010
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0010
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0010
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0015
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0015
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0015
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0020
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0020
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0020
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0020
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0025
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0025
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0030
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0030
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0030
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0035
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0035
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0035
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0035
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0040
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0040
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0040
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0040
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0045
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0045
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0045
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0050
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0050
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0050
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0050
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0055
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0060
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0060
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0060
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0065
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0065
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0065
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0070
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0070
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0075
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0075
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0075
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0080
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0080
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0085
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0085
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0085
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0090
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0090
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0090
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0090
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0095
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0095
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0095
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0095
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0100
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0100
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0105
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0105
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0105
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0110
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0110
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0115
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0115
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0120
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0120
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0120
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0125
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0125
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0125
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0130
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0130
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0130
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0130
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0130
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0135
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0135
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0140
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0140
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0145
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0145
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0145
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0150
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0150
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0150
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0155
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0155
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0155
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0160
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0160
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0160
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0160
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0165
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0170
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0175
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0175
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0175
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0180
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0180
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0180
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0185
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0185
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0185
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0190
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0190
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0190
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0195
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0195
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0200
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0200
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0205
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0205
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0210
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0210
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0210
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0215
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0215
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0215
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0215
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0220
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0220
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0220
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0225
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0225
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0225
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0230
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0230
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0230
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0230
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0235
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0235
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0240
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0240
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0245
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0245
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0250
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0250
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0255
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0255
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0255
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0260
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0260
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0260
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0260
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0265
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0265
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0270
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0270
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0270
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0275
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0275
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0275
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0280
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0280
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0280
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0280
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0285
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0285
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0290
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0290
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0290


NeuroImage: Clinical 34 (2022) 103036

9

Turken, A.U., Dronkers, N.F., 2011. The neural architecture of the language 
comprehension network: converging evidence from lesion and connectivity analyses. 
Front. Syst. Neurosci. 5, 1. 

Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., 
Delcroix, N., Mazoyer, B., Joliot, M., 2002. Automated anatomical labeling of 
activations in SPM using a macroscopic anatomical parcellation of the MNI MRI 
single-subject brain. NeuroImage 15 (1), 273–289. 

Vrba, J., 2002. Magnetoencephalography: the art of finding a needle in a haystack. 
Physica C 368 (1-4), 1–9. 

Vrba, J., Robinson, S.E., 2001. Signal processing in magnetoencephalography. Methods 
25 (2), 249–271. 

Wang, X.-J., 2010. Neurophysiological and computational principles of cortical rhythms 
in cognition. Physiol. Rev. 90 (3), 1195–1268. 

Wei, H.T., Francois-Nienaber, A., Deschamps, T., Bellana, B., Hebscher, M., 
Sivaratnam, G., Zadeh, M., Meltzer, J.A., 2021. Sensitivity of amplitude and phase 
based MEG measures of interhemispheric connectivity during unilateral finger 
movements. NeuroImage 242, 118457. 

Westlake, K.P., Hinkley, L.B., Bucci, M., Guggisberg, A.G., Findlay, A.M., Henry, R.G., 
Nagarajan, S.S., Byl, N., 2012. Resting state alpha-band functional connectivity and 
recovery after stroke. Exp. Neurol. 237 (1), 160–169. 

P. Shah-Basak et al.                                                                                                                                                                                                                            

http://refhub.elsevier.com/S2213-1582(22)00101-2/h0295
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0295
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0295
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0300
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0300
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0300
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0300
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0305
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0305
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0310
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0310
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0315
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0315
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0320
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0320
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0320
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0320
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0325
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0325
http://refhub.elsevier.com/S2213-1582(22)00101-2/h0325

	Electrophysiological connectivity markers of preserved language functions in post-stroke aphasia
	1 Introduction
	2 Materials and methods
	2.1 Participants
	2.2 Clinical language battery
	2.3 MRI acquisition
	2.4 MEG acquisition, head modeling and source analysis
	2.5 Amplitude envelope correlations
	2.6 Local spectral properties
	2.7 Statistical analysis

	3 Results
	3.1 Group differences
	3.2 Correlations with WAB subscores

	4 Discussion
	5 Conclusions
	CRediT authorship contribution statement

	Declaration of Competing Interest
	Acknowledgments
	Appendix A Supplementary data
	References


