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ABSTRACT

Post-stroke aphasia is a consequence of localized stroke-related damage as well as global disturbances in a highly
interactive and bilaterally-distributed language network. Aphasia is increasingly accepted as a network disorder
and it should be treated as such when examining the reorganization and recovery mechanisms after stroke. In the
current study, we sought to investigate reorganized patterns of electrophysiological connectivity, derived from
resting-state magnetoencephalography (rsMEG), in post-stroke chronic (>6 months after onset) aphasia. We
implemented amplitude envelope correlations (AEC), a metric of connectivity commonly used to describe slower
aspects of interregional communication in resting-state electrophysiological data. The main focus was on iden-
tifying the oscillatory frequency bands and frequency-specific spatial topology of connections associated with
preserved language abilities after stroke.

RsMEG was recorded for 5 min in 21 chronic stroke survivors with aphasia and in 20 matched healthy con-
trols. Source-level MEG activity was reconstructed and summarized within 72 atlas-defined brain regions (or
nodes). A 72 x 72 leakage-corrected connectivity (of AEC) matrix was obtained for frequencies from theta to
low-gamma (4-50 Hz). Connectivity was compared between groups, and, the correlations between connectivity
and subscale scores from the Western Aphasia Battery (WAB) were evaluated in the stroke group, using partial
least squares analyses. Posthoc multiple regression analyses were also conducted on a graph theory measure of
node strengths, derived from significant connectivity results, to control for node-wise properties (local spectral
power and lesion sizes) and demographic and stroke-related variables.

Connectivity among the left hemisphere regions, i.e. those ipsilateral to the stroke lesion, was greatly reduced
in stroke survivors with aphasia compared to matched healthy controls in the alpha (8-13 Hz; p = 0.011) and
beta (15-30 Hz; p = 0.001) bands. The spatial topology of hypoconnectivity in the alpha vs. beta bands was
distinct, revealing a greater involvement of ventral frontal, temporal and parietal areas in alpha, and dorsal
frontal and parietal areas in beta. The node strengths from alpha and beta group differences remained significant
after controlling for nodal spectral power. AEC correlations with WAB subscales of object naming and fluency
were significant. Greater alpha connectivity was associated with better naming performance (p = 0.045), and
greater connectivity in both the alpha (p = 0.033) and beta (p = 0.007) bands was associated with better speech
fluency performance. The spatial topology was distinct between these frequency bands. The node strengths
remained significant after controlling for age, time post stroke onset, nodal spectral power and nodal lesion sizes.

Our findings provide important insights into the electrophysiological connectivity profiles (frequency and
spatial topology) potentially underpinning preserved language abilities in stroke survivors with aphasia.
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1. Introduction

Stroke recovery is thought to depend on neuroplastic changes within
preserved brain areas (Saur et al., 2006). In aphasia, language recovery
relies on spared left-hemispheric areas surrounding the stroke lesion
(perilesional), and/or right-hemispheric contralesional areas (Fri-
driksson et al., 2010; Chrysikou and Hamilton, 2011; Hamilton et al.,
2011; Turkeltaub et al., 2011). Evidence also suggests that the func-
tional capacity of perilesional areas is compromised due to the adjacent
lesion (Tecchio et al., 2006; Meinzer et al., 2008). Using resting-state
magnetoencephalography (rsMEG) in patients with aphasia, we and
others have shown that spontaneous neural activity in perilesional areas
is abnormal, exhibiting shifts toward slower oscillatory activity and al-
terations in signal complexity (Laaksonen et al., 2013; Chu et al., 2015;
Kielar et al., 2016; Shah-Basak et al., 2020). Physiological slow activity
manifests as increased delta (1-4 Hz) and theta (4-7 Hz) spectral power
but reduced beta (15-30 Hz) and low-gamma (30-50 Hz) power. It is
hypothesized that such slowing indicates dysfunction in otherwise intact
brain tissue, which may hinder recovery processes.

To date, much work has focused on local dysfunction by analyzing
changes in regional spectral power and signal complexity after stroke.
But little is known about electrophysiological abnormalities manifesting
in interregional connectivity, encompassing the perilesional and con-
tralesional areas in post-stroke aphasia. We know that processing of
language relies on dynamic and rapid processes emerging across a large
network of brain regions (Piai and Zheng, 2019). Coherent neural os-
cillations via phase synchronization or correlated oscillatory amplitude
(or power envelope) fluctuations are thought to constitute the physio-
logical mechanism that supports timely coordination, signaling and
communication across distant brain regions (Fries, 2005; Wang, 2010;
Fries, 2015; Cox et al., 2018). Spontaneous amplitude-based connec-
tivity during the resting state is a widely studied phenomenon, wherein
oscillatory amplitude or power envelope fluctuations are thought to
capture the slower aspects of interregional communication (Cox et al.,
2018). In the current study, we sought to characterize spontaneous
(resting-state) long-range oscillatory connectivity using a metric of
amplitude envelope correlation (AEC) in frequency bands ranging from
theta to low-gamma (4-50 Hz), and evaluated relationships between
connectivity and language outcomes in stroke survivors with aphasia.

We quantified amplitude-based coupling or AEC to gain insights into
the resting-state connectomes in post-stroke aphasia. Our focus on AEC
was motivated by a number of prior studies that found a strong agree-
ment between fMRI-derived resting-state networks (RSNs) and those
derived from rsMEG using AEC (Brookes et al., 2011a; Hipp et al., 2012;
Tewarie et al., 2014). In particular, AEC of alpha and beta oscillations
(8-30 Hz) reveals patterns that are similar to fMRI RSNs (Cabral et al.,
2014; Wei et al., 2021). The AEC estimates of connectivity are also found
to be most consistent across repeated measurements both within par-
ticipants and for group-level inferences compared to phase-based mea-
sures (Colclough et al., 2016).

The physiological mechanisms that produce the temporally coordi-
nated amplitude fluctuations measured by AEC remain unclear.
Computational modeling studies provide some insight. For example,
according to Cabral and colleagues (2014), the emergence of oscillatory
envelope fluctuations is found to be linked to a “metastable synchroni-
zation regime” that is shaped by the precise space-time network struc-
ture of our brain. Temporary large-scale synchronization across different
brain regions is possible in this regime at frequencies that typically fall
within the alpha/beta range (Cabral et al., 2014). Full exploration of
candidate mechanisms underlying AECs is one of the major themes of
ongoing research in the field.

Recent work in aphasia underscores functional network-level im-
pairments after stroke (Grefkes and Fink, 2011; Carrera and Tononi,
2014). Stroke induces disruptions in the lesion zone and in functionally
connected areas far from the lesion that may be critical for language
(Turken and Dronkers, 2011). Disconnections can contribute to specific
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linguistic impairments, due to disruptions in relevant information
transfer across brain regions in language subnetworks. Plasticity after
stroke is associated with synchronization of spontaneous neural oscil-
lations between brain areas. One study found that greater oscillatory
synchronization of language and motor areas with the rest of the cortex
at 2-3 weeks after stroke is linked to improvement in corresponding
clinical functions during subsequent weeks (Nicolo et al., 2015). In
particular, coherent synchrony in alpha and beta frequencies has been
associated with post-stroke cognitive and motor recovery (Westlake
et al., 2012; Dubovik et al., 2013; Petrovic et al., 2017). This is an
emerging field of research but so far very little is known about the long-
range connectivity patterns underpinning spared language functions in
post-stroke aphasia.

In this study, we implemented rsMEG analysis for computing AEC to
characterize electrophysiological connectivity differences between 21 S
patients with chronic aphasia and 20 age- and sex-matched healthy
controls. Based on prior literature, we expected hypoconnectivity in the
alpha (8-13 Hz) and beta (15-30 Hz) bands in the left (or ipsilesional)
hemisphere in patients compared to the healthy controls. For the group
differences, there was little doubt that we would find connectivity dif-
ferences emerging from the lesioned hemisphere. Thus, the primary
interest of this analysis was to determine the involvement of specific
frequency bands, and the spatial topology of connections (reflecting the
number of connections, and edges or links between brain areas in a
network) within those frequency bands. The second aim was to disen-
tangle the relationship between frequency-specific connectivity patterns
and preserved language functions after stroke. We hypothesized that
greater connectivity in the alpha and beta bands and connections
involving the left perilesional areas would positively correlate with
language performance. For these analyses, we compared AEC estimates
with subscales of a widely used clinical language battery—the Western
Aphasia Battery (WAB)—including selected measures of fluency, audi-
tory comprehension, repetition and object naming (Kertesz, 2007).
Finally, to control for potential confounding effects of stroke-related
variables, post-hoc regression analyses were conducted with lesion
sizes, time post stroke onset and age as covariates. Overall, our study
aimed to provide insights into the electrophysiological connectivity
profiles that underpin preserved language abilities in aphasia. We expect
that this understanding would inform aphasia treatments, particularly
those employing rhythmic brain stimulation to promote language re-
covery after stroke.

2. Materials and methods
2.1. Participants

Resting-state MEG data was collected as part of two prior studies
(Kielar et al., 2016; Shah-Basak et al., 2020). Twenty-one stroke survi-
vors with chronic aphasia (mean =+ standard deviation: age: 61.5 + 13.2
years; education: 16.3 + 2.5 years; 16 males; Table 1) and 20 older
healthy controls (age: 63.4 + 12.6 years; education: 17.5 + 2.4 years; 15
males) were included in the analysis. Patients suffered a single left-
hemispheric stroke on average 6 years prior to the study (stroke onset:
6.1 + 4.7, range: 0.6-21 years). Twelve patients suffered an ischemic
stroke, 6 a hemorrhagic stroke, and 3 had an unspecified etiology.

The lesion overlap in stroke survivors, provided in Fig. 1, indicated
maximum damage (in ~ 60% of participants) in the left superior tem-
poral gyrus and rolandic operculum (MNI coordinates: —54-28 14 and
—40-18 12). The diagnosis of aphasia was made by a speech-language
pathologist and/or a board-certified neurologist, and further verified
based on clinical presentation, narrative speech samples and standard-
ized linguistic tests. The healthy controls were matched with the stroke
patients on age (p = 0.65), education (p = 0.13) and sex (75% males).

All participants were right-handed (pre-stroke), native speakers of
English, and had normal hearing and normal or corrected-to-normal
vision. All stroke patients retained sufficient language comprehension
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Table 1
Demographics, clinical variables and language scores for the stroke patients.
D Age Education Sex Time Etiology Aphasia % left WAB- WAB- WAB- WAB-
) ) post- type damage Fluency Comp Rep Naming
onset

P1 60 16 Male 4y Ischemic Non-fluent 19.8 4 10 7.5 10
P2 62 12 Male Sy Ischemic Fluent 38.64 2 10 6 5.5
P3 67 16 Male 6y 2 m Unspecified Non-fluent 12.94 8 10 5 8.5
P4 70 18 Male 9y Ischemic Non-fluent 21.3 9 10 9 10
P5 72 19 Male 2ly4m Unspecified Anomia 31.81 1 8 1.5 1

P6 34 19 Female 4y Hemorrhagic ~ Conduction 18.96 7 9 8.5 10
P7 71 15 Female 9y 4m Hemorrhagic ~ Anomia 23.35 8 10 8 9.5
P8 63 12 Female 13y Ischemic Anomia 28.71 8 10 7 8.5
P9 60 13 Male 6y 5m Hemorrhagic ~ Non-fluent 421 2 9 5 4.5
P10 41 18 Male 5y 9m Ischemic Non-fluent 22.29 2 8 5 7.5
P11 68 16 Male 4y 10m Unspecified Conduction 15.48 9 9 9.5 9.5
P12 46 18 Female 3y8m Hemorrhagic ~ Non-fluent 20.13 5 9 5 9
P13 47 18 Male 4y1m Hemorrhagic ~ Anomia 20.87 5 8 7.5 9.5
P14 75 15 Male 2y 4m Ischemic Anomia 9 8 10 7.5 7.5
P15 46 15 Male 2y3m Ischemic Conduction 16.81 8 9 7.5 10
P16 84 19 Male 10y Ischemic Anomia 1.82 9 9 10 9.5
P17 77 20 Male 7m Ischemic Fluent 9.81 7 9 6 6
P18 46 16 Male 4y Ischemic Non-fluent 21.71 6 10 9.5 10
P19 65 20 Male 6y 1m Ischemic Non-fluent 36.36 0 7 3.5 0.5
P20 68 13 Female 3y3m Hemorrhagic ~ Anomia 13.09 9 9 10 10
P21 69 15 Male ly Ischemic Non-fluent 23.03 4 9 9 9
Mean 61.5 16.3 16 6y1m 21.3 5.8 9.1 7.0 7.9

(SD) (13.2) (2.5) Males (4y 8 m) (10.0) (3.0) (0.8) 2.3) (2.9

y = years; m = months; SD = Standard deviation; WAB = Western Aphasia Battery; WAB-Comp = Auditory Comprehension; WAB-Rep = Repetition; Unspecified - not

clear from medical reports.

T .
1 11

Fig. 1. Lesion overlap across 21 stroke survivors with aphasia (thresholded from 1 to 11). Surface representation of overlap is also provided.

capacity to consent and follow task instructions. Exclusion criteria were
other neurological diseases, language disorders (for controls), head
traumas or brain surgery, epilepsy, severe psychiatric disorders, unsta-
ble or poor health, and any contraindications to MRI or MEG (Kielar
et al., 2016; Kielar et al., 2018).

This study was approved by the Research Ethics Board at Baycrest
Health Sciences. All participants gave their written informed consent
according to the Declaration of Helsinki prior to the study and were
compensated for their participation.

2.2. Clinical language battery

All patients completed the Western Aphasia Battery-Revised (WAB-
R) bedside form, including selected subtests of fluency, auditory
comprehension, repetition and object naming (Kertesz, 1982, 2007).
The WAB fluency test consisted of a description of the ‘Cookie theft’
picture, and a rating based on the sentence length, complexity, speed,
and number of paraphasias. WAB comprehension was assessed through
yes/no questions, word recognition and sequential commands tasks, and
WAB repetition through asking participants to repeat single words,
phrases and sentences. WAB object naming consisted of 20 different
picture stimuli. The summary scores for each of the subscales are pro-
vided in Table 1. In our cohort on average, patients had the least diffi-
culty following auditory commands on the WAB-Comprehension subtest
with the scores ranging from 7 to 10 (mean: 9.1 + 0.8), but faced most
difficulty with the picture description task on the WAB-Fluency subtest
with scores ranging from 0 to 9 (mean: 5.8 + 3.0).

2.3. MRI acquisition

MRI was carried out on a 3-Tesla scanner (Siemens TIM Trio). For
MEG source localization, we acquired a T1-weighted MPRAGE image (1
mm isotropic voxels, TR = 2000 ms (ms), TE = 2.63 ms, FOV = 256 x
256 mm2, 160 axial slices, scan time 6 m, 26 s). MR-visible markers
were placed at the fiducial points for accurate co-registration with MEG,
aided by digital photographs.

2.4. MEG acquisition, head modeling and source analysis

Resting-state MEG signals were recorded with eyes open condition
using a 151-channel whole-head system with axial gradiometers
(VSMMedTech, Coquitlam, Canada), acquired continuously for 300 s (or
5 min) at a sampling rate of 625 Hz or 1250 Hz (down-sampled to 625
Hz) and with an online synthetic 3rd-order gradient noise reduction.
Head position with respect to the MEG helmet was monitored using
three coils placed at fiducial landmarks of the head (nasion, left and
right pre-auricular points). Head positions were measured before and
after the resting-state run, and the two positions were averaged. Multi-
sphere head models were constructed for MEG source analysis (Huang
et al., 1999) using the T1-weighted MRI. Source analysis was conducted
on an isotropic grid with a spacing of 10 mm, or a voxel size of 10 mm®,
across the whole-brain. The Synthetic Aperture Magnetometry (SAM)
beamformer (Robinson and Vrba, 1999; Vrba and Robinson, 2001) was
implemented using the CTF software (CTF; Port Coquitlam, British
Columbia, Canada), and further analyses were supplemented with in-
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house MATLAB scripts. SAM is a scalar beamformer, in which a
nonlinear optimization technique is used to select one direction of cur-
rent flow at each voxel (or grid location) to maximize dipole power. SAM
outputs beamformer weights in the time-domain. In short, SAM provides
a series of sensor weights for each voxel; the weights are computed so as
to pass signal from a dipole located in the target voxel, while minimizing
signal power from all other locations. Scalar beamformers have better
spatial resolution and are commonly preferred unless there is a specific
need to examine activity in different orientations within the same
location (Jaiswal et al., 2020). In this study, the beamformer weights
were computed at each voxel (10 mm3), and were then multiplied with
the original sensor time series data to yield a new spatially-filtered
signal, the so-called virtual time series (Vrba and Robinson, 2001).
Normalized weights were computed as a signal-to-noise ratio with noise
power estimated as the lowest singular value of the sensor covariance
matrix. This step rendered the virtual time series with dimensionless
units.

Prior to beamforming, signals were segmented into 4-second epochs,
and bandpass filtered from 0.1 to 150 Hz. Raw MEG sensor signals were
screened for motion (e.g., coughs, sneezes, yawns, head movements)
and environmental artifacts, and epochs containing obvious signal dis-
ruptions or drifts were rejected (0-4 epochs rejected). The SAM beam-
former procedure effectively attenuates physiological artifacts such as
those from muscle activity and eye movements or blinks (Vrba, 2002;
Cheyne et al., 2007). Therefore, the epochs containing these artifacts
were not rejected manually.

Voxelwise source signals were then summarized within 72 cortical
and subcortical regions (Supplementary Figure 1), as defined by the
Automated Anatomical Labeling (AAL) atlas (Tzourio-Mazoyer et al.,
2002), using the ‘mean flip’ method implemented in the MNE-Python
package (Gramfort et al., 2013), which flips the sign of some voxels
prior to averaging to ensure that signals having opposite polarity due to
arbitrary selection of the beamformer direction do not cancel each other.
Eighteen regions in the AAL atlas were excluded prior to any statistical
analysis: (1) due to limited voxelwise coverage (i.e. O voxels within an
AAL-defined region) based on individual participants’ anatomical scans,
which included Heschl’s gyri and amygdala, (2) involving subcortical
regions including the basal ganglia regions and the thalamus, and (3)
other regions for which we did not have a priori hypotheses in language
processes such as the olfactory cortices and the paracentral lobule. In
stroke patients, the voxels overlapping with lesion maps in individual
patients were excluded, before summarizing the voxelwise data within
the AAL-defined regions or nodes.

2.5. Amplitude envelope correlations

We used the methods described by Hipp and colleagues (2012) to
compute the amplitude envelope correlations or AEC between each of
the 72 node pairs (Hipp et al., 2012). The input signals for this analysis
in each participant were the node time series with non-overlapping
epochs of 4 s. These node signals were downsampled from 625 Hz to
312.5 Hz to reduce the computational demand for subsequent AEC an-
alyses. The downsampled signals were then subjected to spectral anal-
ysis using Morlet’s wavelets to obtain signals in the frequency domain.
The frequencies of interest (FOI) were logarithmically spaced with base
2 and exponents ranging from 1 to 7 in steps of 0.25 (2 to 128 Hz) (Hipp
etal., 2012). The number of cycles for wavelet analysis was set to half of
the FOIs. The output of the Morlet’s wavelet analyses was set to single
trial complex, resulting in 75 epochs across 72 nodes for 25 FOIs and
1250 time points (4 s * 312.5 Hz). To reduce spurious correlations due to
signal leakage (O’Neill et al., 2015), the frequency domain signals from
each node were orthogonalized to every other node using the ordinary
least squares analysis before computing the AECs. The orthogonalization
between node pairs was conducted by subtracting the part of the com-
plex signal (say Y) from one node that can be linearly predicted from the
complex signal (say X) from another node. As described in detail by Hipp
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and colleagues (2012), the operation for orthogonalization is as follows:

X(t.f) )
X(2.1)|

Yortho(t,f) = imag(Y(fvf)

where t are the time points, f is the FOI, * is the complex conjugate, and
imag() is the imaginary part of the complex number. Orthogonalization
was bi-directional from X to Y and Y to X. The AECs were then computed
for both orthogonalized directions using Pearson correlation analysis,
and the two resulting correlation coefficients were averaged together for
further analyses. At the end of this computation, a 72 x 72 AEC matrix
was obtained for each epoch and FOI. A single AEC matrix per FOI was
obtained by averaging across epochs, which was subjected to the Fisher
r-to-z transformation. Statistical analyses were conducted on the aver-
ages of the AEC matrices within canonical frequency bands—theta (4-7
Hz), alpha (8-13 Hz), beta (15-30 Hz) and low-gamma (25-50 Hz).

2.6. Local spectral properties

Power spectral densities of the voxelwise virtual signals were
computed using the multitaper method in MATLAB (Thomson, 1982).
The time half bandwidth (NW) was set to 3, which resulted in 5 (2*
(NW)-1) discrete prolate spheroidal or Slepian sequences for multitaper
computations. A frequency resolution of 0.3052 Hz was achieved with
FFT length of 1024 and sampling frequency of 625 Hz. Relative power
was computed for each canonical frequency band as a ratio of the sum of
power within a frequency band and the sum of total power from 1 to 80
Hz. Relative power estimates were then averaged within the AAL-
defined nodes. These estimates were entered as covariates in our sta-
tistical analysis to control for the potential contribution of local spectral
properties toward connectivity findings.

2.7. Statistical analysis

Partial Least Squares (PLS) (McIntosh et al., 1996) analyses were
conducted to compare AEC estimates in each of the frequency bands
between stroke patients and age-matched controls. Multivariate
methods such as PLS do not necessitate corrections for multiple com-
parisons because the statistical inference testing is done at the level of a
full multivariate pattern rather than at the level of individual nodes
(MclIntosh and Lobaugh, 2004). For the PLS group comparisons, the
input data matrices had n rows of participants, nested within groups
(design variables) and v columns of (vectorized) AEC estimates (brain
variables; 2556 unique connections). PLS estimates the maximal
covariance between two different types of data blocks (Misic¢ et al.,
2016), which in our case would generate saliences representing the brain
variables consisting of AEC estimates (brain saliences), and the experi-
mental design variables describing the groups (design saliences). The
output of PLS, referred to as latent variables (LV), is a composite of
singular values, which describe the maximal covariance between the
brain and the design variables, and two singular vectors with brain and
design saliences. Saliences are the weights for each input data block.
Linear combinations of brain saliences with the input data matrix pro-
vide brain scores per participants. For our group comparisons, two LVs
per comparison were produced.

Statistical inference of LVs was determined by permutation tests with
1000 iterations with a threshold of p < 0.05. These tests indicated which
LVs were significant as an entire multivariate pattern. To identify the
AECs making a significant contribution to the LV pattern, we employed
bootstrapping with 500 resamples to compute the standard errors (SE) of
brain saliences. Bootstrap ratios (BSR) were computed as a ratio of the
brain saliences and the bootstrap SEs, which provided an estimate of the
reliability of contributions of brain saliences. For significant LVs, BSR
maps were interpreted at thresholds of + 3.5 or higher (Misic et al.,
2016).

Next, behavioral PLS analyses were conducted within the stroke



P. Shah-Basak et al.

group for brain-behavior correlations between WAB subscale scores
(fluency, comprehension, repetition, naming) and AEC estimates.
Separate PLS analyses were conducted for correlations with each of the
WAB measure. The methods for determining statistical significance and
reliability of brain saliences were the same as the group PLS analysis
procedures described above. The Rotman PLS toolbox in MATLAB
(McIntosh et al., 1996) was used for both group and behavioral PLS
analyses. To visualize the number of significant connections to nodes, a
graph theory measure of node degree was computed (Figs. 2 and 3).

Finally, a graph measure of node strength was computed based on
statistically significant (or thresholded) connectivity matrices for both
group differences and within-stroke correlations with WAB subscales.
Brain Connectivity Toolbox (Rubinov and Sporns, 2010) was used to
compute undirected node strengths by taking the sum of AEC values at
each node. To evaluate how node strengths might be affected by local
spectral properties (e.g., relative power) and by the extent of lesion
within nodes, we ran node-wise, post-hoc regression analyses that were
corrected for multiple comparisons using the False Discovery Rate (FDR)
method (Benjamini and Hochberg, 1995). We controlled for relative
power within a node for verifying group differences in node strengths by
fitting a generalized linear model (GLM) with a binomial function; the
group designation was the dependent variable and the relative power
and node strength were the independent variables in this analysis
[group ~ relative power + node strength]. For correlations between
node strengths and WAB subscores, we controlled for additional vari-
ables such as age, time post stroke onset, node lesion sizes along with
relative power estimates in a linear regression analysis; the WAB sub-
score was the dependent variable and covariates and node strengths
were the independent variables [wab_score ~ age + time post onset +
node lesion size + relative power + node strength]. RStudio was used for
both types of posthoc analyses with glm (with family = binomial) or Im
functions in the stats package.

(A) Alpha

Stroke < Controls
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3. Results

The connectivity matrices and the spatial topology of connections
representing the top 2-5% of connections in each of the frequency band
of interest (theta, alpha, beta and low-gamma) are provided in Supple-
mentary Figures 2 and 3 for healthy controls and stroke patients,
respectively.

3.1. Group differences

PLS analysis revealed that the first LV was significant, indicating a
significant effect of group for the AEC estimates in the alpha (p = 0.011)
and beta (p = 0.001) frequency bands (Fig. 2). None of the LVs was
significant for theta or low-gamma AEC estimates (p > 0.05). The di-
rection of the differences pointed to hypoconnectivity in the alpha and
beta bands in stroke patients compared to controls. As would be ex-
pected, the number of connections (estimated by AEC) on the side of
stroke lesions was lower in patients. The spatial topology of reduced
connectivity was distinct between alpha and beta bands, as can be
visualized in Fig. 2, with BSR thresholds of 3.5 and 4.0, respectively.
Hypoconnectivity in the alpha band involved both left hemisphere
ventral and dorsal nodes, including the inferior occipital (I0G), fusiform
(FFG), middle and inferior temporal (MTG and ITG), parahippocampal
(PHG) gyri, and the hippocampus (HIP), calcarine (CAL) cortex, tem-
poral pole regions, the postcentral (PoCG), median (DCG) and anterior
cingulate (ACG) and inferior frontal pars opercularis (IFGoper) gyri.

The topology of beta hypoconnectivity involved primarily left dorsal
nodes including the middle frontal (MFG), precentral and postcentral
(PreCG and PoCG), superior parietal (SPG) gyri, supplementary motor
areas (SMA), inferior parietal lobule (IPL), precuneus (PCUN), as well as
the occcipital gyri, CAL, lingual gyrus (LING), and MTG, FFG and ITG.
The posthoc regression analyses fitting a GLM revealed that differences
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Fig. 2. Spatial topology of hypoconnectivity, as measured by amplitude envelope correlations, in the (A) alpha and (B) beta bands in stroke patients with aphasia
compared to age-matched healthy controls. The size of the nodes indicates a graph theory measure of node degree. The rightmost column displays the number of
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connectivity.
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Fig. 3. Spatial topology of positive correlations between alpha connectivity and (A) WAB object naming and (B) WAB fluency subscores, and between (C) beta
connectivity and WAB fluency subscores in stroke survivors with aphasia. The size of the nodes indicates node degree. The rightmost column displays the number of
intrahemispheric left (L), right (R) or interhemispheric (LR) connections. The maps are displayed for bootstrap ratio (BSR) thresholds of 4.5 for alpha and 5.0 for beta

connectivity.

in node strengths involving the left nodes remained significant after
controlling for node relative power for both the alpha and beta bands;
results are summarized in Supplementary Tables 1-2.

3.2. Correlations with WAB subscores

Alpha AEC or connectivity was positively correlated with object
naming (p = 0.045; LV correlation = 0.59, 95% CIL: 0.54-0.83) and
fluency (p = 0.033; LV correlation = 0.62, 95% CI: 0.56-0.81) scores,
and beta AEC was positively correlated with fluency scores (p = 0.007;
LV correlation = 0.69, 95% CI: 0.67-0.87). PLS correlations with WAB
repetition and auditory comprehension scores were not significant. A
distinct topology of connections associated with significant correlations
was found between alpha and beta bands (Fig. 3). Stronger alpha con-
nectivity among left MTG, FFG, ITG, PHG, IPL, IFG pars triangularis
(IFGtriang), insula and temporal pole regions was correlated with better
performance on WAB naming. Stronger alpha connectivity among
bilateral dorsal and medial aspects of the superior frontal gyrus (SFGdor,
SFGmed), left PreCG, bilateral DCG, PCUN, bilateral ACG, IFGtriang and
IFG pars orbitalis (IFGorb), insula and temporal polar regions, along
with PHG and FFG was associated with better performance on the WAB
fluency measure. Finally, beta connectivity among left rolandic oper-
culum (ROL), IFGtriang, IFGorb and IFGoper, middle frontal gyrus
(MFG), PreCG, SMA, IPL, PCUN, MTG and PHG was associated with
better performance on the WAB fluency measure.

Posthoc linear regression analyses indicated that node strengths

derived from alpha and beta connectivity and WAB subscore relation-
ships remained significant after controlling for age, time post stroke
onset, node lesion sizes and node relative power estimates. The results
from these analyses are summarized in Supplementary Tables 3-5. None
of the PLS correlations between AEC and WAB subscores were signifi-
cant in the theta and low-gamma bands.

4. Discussion

In the current study, we quantified spontaneous electrophysiological
connectivity in post-stroke chronic aphasia survivors using rsMEG with
an overarching aim to examine reorganized connections between brain
regions that critically support spared language functions after stroke.
The methods included computations of amplitude envelope correlations
or AEC, a commonly used measure of oscillatory coupling during
resting-state (Brookes et al., 2011b; O’Neill et al., 2015), in frequency
bands ranging from theta to low-gamma. The analyses of AECs revealed
that the connectivity among (left) perilesional areas was greatly reduced
in the alpha (8-13 Hz) and beta (15-30 Hz) bands in stroke survivors
with aphasia compared to age-matched healthy controls. The spatial
topology of hypoconnectivity between the alpha and beta bands was
distinct, revealing a greater involvement of ventral frontal, temporal and
parietal areas in alpha, and dorsal frontal and parietal areas in beta. In
addition to the group differences, connectivity correlations with lin-
guistic subscores from a clinical aphasia battery revealed the topology of
connections that underlie preserved abilities to name pictures of objects
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and produce spontaneous speech after stroke. These results indicated
that stronger alpha connectivity was associated with better naming
performance, and stronger connectivity in both the alpha and beta bands
was associated with better speech fluency performance (Fig. 3).
Consistent with the group results, the topology was distinct between
these frequency bands, with alpha connections involving the IPL, MTG,
ATL and ventral IFG regions as related to naming, whereas beta con-
nections involving the PreCG, SMA, ROL and MFG as related to fluency.
We controlled for lesion sizes by removing MEG signals within the
lesioned tissue, assumed to be electrically-silent (Spironelli and Angrilli,
2009), in individual patients, before summarizing signals within parcels
and prior to any statistical analysis. We also included nodal lesion sizes
as a covariate in posthoc analyses with a graph theory measure of node
strength. Overall, our results suggest a critical role of coherent activity
within the alpha and beta bands, governing distinct language functions
after stroke.

The involvement of alpha and beta that we found in the current study
is consistent with multiple prior studies indicating an important role of
spontaneous coherent activity in these frequency bands in post-stroke
neuroplasticity (Dubovik et al., 2012; Westlake et al., 2012; Dubovik
etal., 2013; Nicolo et al., 2015; Petrovic et al., 2017). To our knowledge,
the findings related to the topology of alpha and beta hypoconnectivity
and positive correlations with language performance are novel and as
such contribute to our understanding of frequency-specific connectivity
profiles in aphasia. These findings provide initial evidence of residual
networks involving alpha and beta bands, underpinning linguistic abil-
ities after stroke. One clinically-relevant future goal is to verify the
repeatability of these patterns over multiple time points, and use this
knowledge to advance our understanding of connectivity profiles within
individuals and how they might change over the course of stroke re-
covery with and without targeted speech and language treatments.

Dominant nodes depicted in the alpha connectivity correlations with
naming as well as those in beta connectivity correlations with fluency
scores are well-aligned with cognitive operations involving visual, lan-
guage, motor/articulatory and executive control processes. The network
exhibiting correlations with naming ability in alpha involved connec-
tions among the IPL, MTG, FFG, IFGtriang, ITG, temporal pole and
medial temporal nodes, which are typically associated with visual
recognition, semantic and phonological processing (Hickok and Poep-
pel, 2007; Binder et al., 2009; Price, 2012; Baldo et al., 2013; Binder,
2017). In contrast, the alpha-based fluency network involved bilateral
superior and middle frontal gyri, anterior cingulate gyrus, SMA, pre-
cuneus and lateral IFG nodes that typically form the multiple-demand
network, potentially subserving complex operations and sequential
programming (Duncan, 2010) as required during the production of
spontaneous and connected speech. The motor articulatory planning
and execution processes during speech production appear to be captured
in the beta connectivity correlations with fluency, which involve the
rolandic operculum, SMA and precentral gyrus, and MFG, along with
other frontal and parietal nodes (Knopman et al., 1983; Brown et al.,
2005; Ackermann and Riecker, 2010; Biesbroek et al., 2016; Itabashi
et al., 2016).

The WAB battery that we used for our connectivity-behavior corre-
lations is routinely used in clinical research studies for classification of
aphasia subtypes but it does not isolate component language processes.
While the nodes and connections as revealed from our analyses are
consistent with prior fMRI and EEG/MEG, we acknowledge that the use
of “multifactorial” measures such as WAB naming and fluency compli-
cates our understanding of connectivity profiles underpinning constit-
uent language processes. Naming is a complex multi-stage process that
involves visual processing of the picture stimulus, visual recognition,
access to meaning and phonological word forms, and motor planning
and execution (Deleon et al., 2007). Similarly, as described by Halai
et al. (2017), it is unclear to what extent a measure of spontaneous
speech by picture description reflects semantic or phonological skills
(Halai et al., 2017). Therefore, a central future goal of our work to fully
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characterize frequency-specific connectivity/network properties is to
identify unique correlates of constituent semantic and phonological
processes in post-stroke aphasia. This knowledge would be critical for
parsing out the effects of language treatments targeting one or more of
these processes.

Complementary to amplitude coupling, as mentioned earlier, MEG
connectivity can be depicted by examining synchronization of phases in
source time series from different brain regions (Lachaux et al., 1999;
Stam et al., 2007). While outside the scope of the current study, it would
be equally interesting to evaluate phase synchronization differences in
post-stroke aphasia, and the relationship with language outcomes after
stroke. The patterns of phase coupling, while remain to be explored in
future studies, could be reliably distinct from amplitude-based net-
works, thus revealing different aspects of neuronal dynamics (Cox et al.,
2018) supporting language functions after stroke.

5. Conclusions

In this study, we systematically characterized large-scale oscillatory
dynamics in post-stroke aphasia, comparing MEG connectivity patterns
with healthy age-matched controls, with respect to language functions,
and across a range of frequencies using an amplitude-based metric (or
AEC). Perilesional left hemispheric regions exhibited hypoconnectivity
in the alpha and beta bands. Importantly, unique connectivity profiles
underpinning preserved linguistic abilities such as naming and fluency
were identified, providing important insights into residual, frequency-
specific language networks after stroke. Our future goals are to iden-
tify frequency-specific connectivity correlates of constituent semantic
and phonological language processes, characterize how they change
over the course of spontaneous and treatment-induced recovery, and
finally apply phase-based connectivity metrics to more fully characterize
oscillatory network dynamics in post-stroke aphasia. Electrophysiolog-
ical connectivity in post-stroke aphasia remains largely unexplored, and
while our current study addresses this important gap, more dedicated
research is warranted in this field.
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