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Abstract: Chitosan (CTS) is a deacetylated derivative of chitin that is involved in adaptive response
to abiotic stresses. However, the regulatory role of CTS in heat tolerance is still not fully understood
in plants, especially in grass species. The aim of this study was to investigate whether the CTS
could reduce heat-induced senescence and damage to creeping bentgrass associated with alterations
in antioxidant defense, chlorophyll (Chl) metabolism, and the heat shock pathway. Plants were
pretreated exogenously with or without CTS (0.1 g L−1) before being exposed to normal (23/18 ◦C)
or high-temperature (38/33 ◦C) conditions for 15 days. Heat stress induced detrimental effects,
including declines in leaf relative water content and photochemical efficiency, but significantly
increased reactive oxygen species (ROS) accumulation, membrane lipid peroxidation, and Chl loss in
leaves. The exogenous application of CTS significantly alleviated heat-induced damage in creeping
bentgrass leaves by ameliorating water balance, ROS scavenging, the maintenance of Chl metabolism,
and photosynthesis. Compared to untreated plants under heat stress, CTS-treated creeping bentgrass
exhibited a significantly higher transcription level of genes involved in Chl biosynthesis (AsPBGD
and AsCHLH), as well as a lower expression level of Chl degradation-related gene (AsPPH) and
senescence-associated genes (AsSAG12, AsSAG39, Asl20, and Ash36), thus reducing leaf senescence
and enhancing photosynthetic performance under heat stress. In addition, the foliar application
of CTS significantly improved antioxidant enzyme activities (SOD, CAT, POD, and APX), thereby
effectively reducing heat-induced oxidative damage. Furthermore, heat tolerance regulated by the
CTS in creeping bentgrass was also associated with the heat shock pathway, since AsHSFA-6a and
AsHSP82 were significantly up-regulated by the CTS during heat stress. The potential mechanisms of
CTS-regulated thermotolerance associated with other metabolic pathways still need to be further
studied in grass species.

Keywords: photochemical efficiency; water balance; heat shock protein; heat shock factor; gene
expression; thermotolerance; heat stress

1. Introduction

High temperatures are one of the most critical environmental factors affecting plant
growth and geographical distribution [1]. In recent years, the enormous greenhouse
gas emissions resulting from anthropogenic activities have led to a yearly increase in
global temperatures, which has drastically influenced the growth and yield of economical
plants worldwide. Between 1980 and 2008, the increase in the global average temperature
has caused a 5.5% decrease in wheat (Triticum aestivum) production [2]. Heat stress also
adversely affects turfgrass growth and management, leading to a significant decrease in
turf quality during summer as well as an increase in lawn maintenance costs [3,4]. The
exogenous application of chemical compounds can effectively improve the tolerance of
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plants to various abiotic stresses such as drought, salinity, and high temperatures. For
example, the exogenous application of spermidine and sucrose could significantly improve
tolerance to heat stress in rice (Oryza sativa), tomato (Lycopersicon esculentum), and potato
(Solanum tuberosum) by enhancing photosynthesis and antioxidant capacity [5–7]. The
application of melatonin could effectively alleviate the adverse effects of salt stress on maize
(Zea mays) [8], drought stress on creeping bentgrass (Agrostis stolonifera) [9], and heat stress
on perennial ryegrass (Lolium perenne) [10]. Heat tolerance could be improved significantly
by exogenous methyl jasmonate in perennial ryegrass associated with the altered osmotic
adjustment, antioxidant defense, and transcript levels of jasmonate-responsive genes [11].

Chitosan (CTS), a deacetylation product of chitin, is one of the most abundant natural
polysaccharides in nature [12]. Due to its non-toxicity, cheap price, biocompatibility, and
biodegradable properties, CTS has been widely used in agriculture and biotechnology [13].
CTS is also considered to be a promising exogenous additive for the improvement of crop
yield and tolerance of abiotic stresses. It has been shown that CTS enhances leaf membrane
stability and antioxidant enzyme activities in apple (Malus domestica) seedlings under
drought stress [14]. Exogenous CTS could improve the salt tolerance of sweet pepper
(Capsicum annuum) by affecting chlorophyll fluorescence parameters and antioxidant de-
fense [15]. The maintenance of better plant growth and photosynthetic pigments could be
achieved by the exogenous application of CTS in rice suffering from osmotic stress [16]. Our
previous studies have also found that CTS application is an effective approach to regulate
the drought tolerances of white clover (Trifolium repens) and creeping bentgrass [17,18].
The study of Ibrahim and Ramadan found that the foliar spray of a combination of zinc
and CTS could alleviate heat-induced growth inhibition and malnutrition in dry bean
(Phaseolus vulgaris) [19]. However, the regulatory mechanism of CTS on heat tolerance in
plants (especially grass species) has so far remained unclear.

Creeping bentgrass is an important member of the graminae family, which is used
worldwide on golf courses, green tennis courts, and landscapes because of its fast establish-
ment rate, excellent texture, and ability to form beautiful lawns [20]. However, as a cool
season turfgrass, its low heat tolerance is often the major factor limiting its cultivation and
utilization in most countries and regions with summer temperatures above 30 ◦C [21]. In
this study, the ameliorative effect of foliar CTS application on the heat tolerance of creeping
bentgrass was investigated based on various physiological analyses. In addition, osmotic
adjustment, antioxidant defense, the heat shock pathway, and heat-induced leaf senescence
associated with changes in chlorophyll metabolism were further examined to reveal the
possible mechanisms of thermotolerance induced by CTS in creeping bentgrass.

2. Results
2.1. Effects of the CTS on Water Status, Photochemical Efficiency, and Chl Metabolism

Exogenous CTS had no significant impacts on relative water content (RWC) and
osmotic potential (OP) in leaves under normal conditions (Figure 1A,B). Compared to the
control, the RWC significantly decreased under heat stress in creeping bentgrass treated
with or without CTS. Results showed that CTS-treated plants exhibited a significantly
higher RWC than untreated plants under heat stress (Figure 1A). In addition, heat stress
significantly increased OP in both CTS-treated and untreated plants, but the CTS-treated
creeping bentgrass had a lower OP than the untreated plants (Figure 1B). Exogenous CTS
did not significantly affect photochemical efficiency (Fv/Fm) or performance index on
absorption basis (PIABS) in creeping bentgrass under normal conditions (Figure 2A,B). Heat
stress significantly decreased Fv/Fm and PIABS, but CTS-treated plants had significantly
higher Fv/Fm and PIABS than untreated plants (Figure 2A,B).
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Figure 1. Effect of chitosan on (A) relative water content (RWC) and (B) osmotic potential (OP) under
control and heat stress conditions. Vertical bars above columns indicate ± standard error (SE) of
means (n = 4) and different letters above columns indicate significant differences among treatments
(p ≤ 0.05).

Figure 2. Effect of chitosan on (A) photochemical efficiency (Fv/Fm) and (B) performance index
on absorption basis (PIABS) under control and heat stress conditions. Vertical bars above columns
indicate± standard error (SE) of means (n = 4) and different letters above columns indicate significant
differences among treatments (p ≤ 0.05).

Heat stress (15 days) induced a significant decrease in the content of total Chl, Chl a,
and Chl b, as well as in the Chl a/b ratio, but these parameters remained at significantly
higher levels in CTS-treated plants (Figure 3A–D). As shown in Figure 4, exogenous CTS
significantly increased the transcript levels of AsCHLH and AsPBGD but exhibited no
significant effect on the transcript level of AsPPH at 0 h. Heat stress significantly inhibited
AsCHLH expression but increased AsPBGD expression level in both CTS-pretreated and un-
treated plants (Figure 4A,B). On the 15th day of heat stress, the transcript levels of AsCHLH
and AsPBGD in CTS-treated plants were 4.01 times and 1.84 times higher, respectively, than
those in untreated plants (Figure 4A,B). Heat stress greatly enhanced the transcript level
of AsPPH in both CTS-treated and untreated creeping bentgrasses. However, the AsPPH
expression levels in CTS-treated plants showed a 25.5% and 54.0% decrease, respectively,
compared to those of untreated plants at the 3 h or 15 d of heat stress (Figure 4C).
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Figure 3. Effect of chitosan on (A) total chlorophyll (Chl) content, (B) Chl a content, (C) Chl b content,
and (D) Chl a/b ratio under control and heat stress conditions. Vertical bars above columns indicate
± standard error (SE) of means (n = 4) and different letters above columns indicate significant
differences among treatments (p ≤ 0.05).

Figure 4. Effect of chitosan on (A) AsCHLH, (B) AsPBGD, and (C) AsPPH relative expression in leaves
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of creeping bentgrass under control and heat stress conditions. Vertical bars above columns indicate
± standard error (SE) of means (n = 4) and different letters above columns indicate significant
differences among treatments at one particular time point (p ≤ 0.05).

2.2. Effects of the CTS on Oxidative Damage and Antioxidant Enzyme Activities

Although the hydrogen peroxide (H2O2) content, malondialdehyde (MDA) content,
and electrolyte leakage (EL) were not significantly affected by the exogenous application of
CTS under normal conditions, the use of CTS significantly reduced the generation of super-
oxide anion (O2

–) under non-stress conditions (Figure 5A–D). Heat stress caused significant
increases in H2O2, O2

–, MDA, and EL in the leaves of CTS-treated and untreated plants.
However, the exogenous application of CTS significantly decreased the H2O2, O2

–, MDA,
and EL by 50.8%, 59.3%, 21.2%, and 13.9%, respectively, when compared with untreated
plants under heat stress (Figure 5A–D). Exogenous CTS also significantly increased the
catalase (CAT) and ascorbate peroxidase (APX) activities, but had no significant effect on
the superoxide dismutase (SOD) and peroxidase (POD) activities under normal conditions
(Figure 6). Heat stress significantly increased the activities of SOD, POD, CAT, and APX in
the leaves of the CTS-untreated creeping bentgrass. These antioxidant enzyme activities
were further enhanced by exogenous CTS under heat stress. The SOD, POD, CAT, and APX
activities in CTS-treated plants increased by 25.3%, 57.8%, 60.0%, and 27.3%, respectively,
compared to untreated plants under heat stress (Figure 6).

Figure 5. Effect of chitosan on (A) hydrogen peroxide (H2O2) content, (B) superoxide anion (O2
–),

(C) malondialdehyde (MDA) content, and (D) electrolyte leakage (EL) under control and heat stress
conditions. Vertical bars above columns indicate ± standard error (SE) of means (n = 4) and different
letters above columns indicate significant differences among treatments (p ≤ 0.05).



Molecules 2021, 26, 5337 6 of 15

Figure 6. Effect of chitosan on (A) superoxide dismutase (SOD), (B) peroxidase (POD), (C) catalase
(CAT), and (D) ascorbate peroxidase (APX) activities under control and heat stress conditions.
Vertical bars above columns indicate ± standard error (SE) of means (n = 4) and different letters
above columns indicate significant differences among treatments (p ≤ 0.05).

2.3. Effects of the CTS on Expression Level of Genes Involved in HSF Pathway and Senescence

Exogenous CTS exhibited no significant effects on the transcription of AsHSFA-6a and
AsHSP82 under normal conditions (Figure 7). Heat stress significantly up-regulated the
expression levels of AsHSFA-6a and AsHSP82 at 3 h and 15 d; however, the peak value
was observed at 3 h (Figure 7A,B). The transcript levels of AsHSFA-6a or AsHSP82 in CTS-
treated plants were 1.8 times and 2.7 times higher, respectively, than those of the untreated
plants at 3 h of heat stress. After 15 days of heat stress, the transcript levels of AsHSFA-
6a and AsHSP82 in leaves of CTS-treated plants exhibited a 204.8% and 45.5% increase,
respectively, compared to those in untreated plants (Figure 7A,B). Heat stress significantly
up-regulated the expression of senescence-associated genes (AsSAG12, AsSAG39, Asl20,
and Ash36) in CTS-treated and untreated creeping bentgrass, but the application of CTS
significantly reduced the heat-induced increases in the expression levels of these genes
(Figure 8A–D). Compared with the untreated plants under heat stress, the transcription
of AsSAG12, AsSAG39, Asl20, or Ash36 in CTS-treated plants decreased by 34.4%, 42.3%,
29.6%, or 40.7%, respectively (Figure 8A–D). Integrative pathways regulated by CTS in the
leaves of creeping bentgrass under heat stress are shown in Figure 9.

Figure 7. Effect of chitosan on the relative expression levels of (A) AsHSFA-6a and (B) AsHSP82 under
control and heat stress conditions. Vertical bars above columns indicate ± standard error (SE) of
means (n = 4) and different letters above columns indicate significant differences among treatments
at one particular time point (p ≤ 0.05).
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Figure 8. Effect of chitosan on the relative expression levels of (A) AsSAG12, (B) AsSAG39, (C) Asl20,
and (D) Ash36 under control and heat stress conditions. Vertical bars above columns indicate
± standard error (SE) of means (n = 4) and different letters above columns indicate significant
differences among treatments (p ≤ 0.05).

Figure 9. Integrative pathways regulated by chitosan in the leaves of creeping bentgrass under
heat stress.
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3. Discussion

Heat stress causes a disruption in normal metabolic processes and damage cell mem-
brane stability and photosynthetic apparatus, resulting in increased leaf wilting and senes-
cence [22,23]. CTS is a natural biopolymer that is highly involved in a plant’s response
to abiotic stresses via secondary messenger pathways [24]. Previous studies found that
cowpea (Vigna unguiculata) leaves sprayed with 250 mg/L of CTS promoted Chl content
and carbohydrate accumulation under drought stress [25]. Salt- or drought-induced water
loss in leaves could be effectively alleviated by the exogenous application of CTS, which
is associated with the enhancement of sugar accumulation and metabolism for improved
osmotic adjustment (OA) in leaves of white clover and creeping bentgrass [17,18,26]. The
maintenance of better photosynthetic capacity could be one of the most important factors
for CTS-regulated sugar production and metabolism in creeping bentgrass under salt and
drought stress [18,26]. Similar results were found in this study. Persistent high tempera-
tures (38/33 ◦C, day/night) resulted in water loss and declines in the OA capacity of the
CTS-treated and untreated creeping bentgrass. However, exogenous CTS pretreatment
significantly prevented decreases in RWC, Fv/Fm, and PIABS induced by heat stress in
leaves. This suggested that CTS exhibited a positive regulatory effect on water homeostasis
and photosynthetic response when creeping bentgrass was subjected to a long period
(15 days) of heat stress.

Chl is the main photosynthetic pigment in chloroplasts that performs light energy
absorption and conversion. When plants are subjected to abiotic stresses such as heat stress,
Chl biosynthesis is weakened but Chl degradation is accelerated; hence, leaf chlorosis
becomes one of the most obvious symptoms of leaf senescence [27]. Chl a and Chl b
are involved in the absorption and transmission of light energy; however, Chl a is more
sensitive to ROS than Chl b and degrades more rapidly in plants exposed to stressed
conditions. It has been reported that sensitive bentgrass genotypes have shown greater
decreases in total Chl and Chl a content and lower Chl a/Chl b ratios when compared
to tolerant genotypes under heat stress [3], which is consistent with our experimental
results. Senescence-associated genes (AsSAG12, AsSAG39, Asl20, and Ash36) have also
indicated that CTS application could significantly alleviate heat-induced leaf senescence
in creeping bentgrass. The Fv/Fm reflects the main photochemical efficiency of PSII and
PIABS synthetically indicates the maximum photochemical efficiency of PSII, with the total
number of activated reactive centers functioning as a sensitive photosynthetic indicator
of photosynthetic performance, as well as for the health status of photosynthetic organs
in plants under abiotic stress [28,29]. Some studies have shown that heat stress leads
to a significant decrease in the Fv/Fm and PIABS of wheat, white clover, and creeping
bentgrass [3,30,31]. Our results showed that Fv/Fm and PIABS decreased significantly
under heat stress in the leaves of creeping bentgrass, and that exogenous CTS could
mitigate the adverse effect of heat stress on the Fv/Fm and PIABS of creeping bentgrass.

In order to further reveal the effect of exogenous CTS on Chl metabolism in creeping
bentgrass, the expression levels of key genes (AsCHLH, AsPBGD, AsPPH) involved in Chl
biosynthesis and degradation were analyzed under normal conditions and heat stress.
PBGD and CHLH are two key enzymes regulating Chl biosynthesis. PBGD can combine
four porphobilinogen subunits to form a porphyrin ring, while CHLH is responsible for the
insertion of magnesium ions into the porphyrin ring [32]. Chl anabolism is easily altered
by a variety of abiotic stresses. It has been found that temperature-related stresses, includ-
ing heat or cold stress, generated a decrease in PBGD and CHLH activities in cucumber
(Cucumis sativus), thereby inhibiting Chl anabolism [33]. PPH catalyzes pheophytin into
pheophorbide, which is the main process regulating Chl degradation [34,35]. The Chl
degradation process is positively related to leaf senescence. Previous studies have shown
that leaf senescence induced by submergence stress was associated with increased PPH
activity and PPH gene expression in perennial ryegrass [36]. In contrast, reducing PPH gene
expression significantly reduced leaf senescence in perennial ryegrass [37]. The decrease
in Chl content in creeping bentgrass under heat stress is mainly due to the accelerated
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degradation of Chl [3,38]. Our current study demonstrates that the foliar application of CTS
effectively alleviates the heat-induced decrease in Chl content. This could be related to the
fact that CTS has been proven to significantly increase AsPBGD expression, as well as effec-
tively alleviate heat-induced declines in AsCHLH expression while increasing the AsPPH
transcript levels. Our previous studies found that mannose-regulated leaf senescence was
not correlated with PBGD expression in white clover under water stress [39], but spermi-
dine significantly up-regulated the PBGD expression, contributing to less Chl degradation
occurring in the leaves of white clover during heat stress [31]. These findings indicate
that different exogenous additives cause different effects on Chl metabolism. The CTS
significantly mitigated heat-induced Chl degradation by enhancing the expression level of
AsPBGD. It also alleviated heat-induced declines in AsCHLH expression, and increased
AsPPH expression, resulting in ameliorated photosynthetic maintenance and reduced leaf
senescence in creeping bentgrass under high temperature stress. Heat-induced Chl degra-
dation and leaf senescence were also associated with the accumulation of reactive oxygen
species (ROS). ROS (O2

– or H2O2) is a by-product of various cellular redox processes [40].
Under normal conditions, the ROS content in plants is in dynamic equilibrium. Under
abiotic stresses, ROS metabolism and homeostasis is disturbed due to the imbalance in the
capacity of cellular ROS scavenging [41]. Excessive ROS accumulation causes oxidative
damage to cell membranes, proteins, and DNAs, resulting in programmed cell death and
accelerated leaf senescence [42]. Senescence is controlled by the developmental age of
plants, as well as abiotic stresses. It is a complex process involving many aspects of plant
epigenetics, metabolic changes, and gene expression [40,43,44]. Increased production of
ROS is a characteristic of senescent cells and an early response of plant cells to abiotic
stress [43,45]. ROS also plays an important role by signaling molecules in the induction of
senescence-related degradation processes [40]. The proline dehydrogenase gene (PRODH)
promoted cellular senescence in a p53-dependent manner through the production of ROS;
however, ROS scavengers could eliminate senescence induced by PRODH overexpres-
sion [46]. The accumulation of ROS such as O2

– or H2O2 was positively related to the
accelerated senescence of mung bean (Vigna radiata) cotyledons [40]. The enhanced scaveng-
ing of ROS regulated by exogenous melatonin could significantly inhibit dark-induced leaf
senescence in perennial ryegrass [47]. In the current study, the CTS application significantly
decreased the heat-induced accumulation of ROS (O2

– and H2O2) or MDA. MDA is a
membrane lipid peroxidation product produced by plants under adverse environmental
conditions and is widely used as an indicator of oxidative damage in plants. This indicated
that the CTS-regulated decrease in leaf senescence could be associated with improved ROS
scavenging in creeping bentgrass under heat stress.

To mitigate oxidative damage and leaf senescence, the activation and enhancement of
antioxidant defense system to eliminate excess ROS is an important strategy for plants to
cope with stressful environments [48]. SOD converts O2

– into H2O2, while CAT, POD, and
APX are mainly involved in H2O2 scavenging in plants [49]. The CTS has been reported to
scavenge O2

–, possibly due to the presence of a large number of hydroxyl and amino groups
in its structure, which can react with ROS [50–53]. Exogenous CTS pretreatment attenuated
salt-induced oxidative damage associated with significant increases in SOD, POD, CAT,
and APX activities in rice, maize, and ajwain (Carum copticum) [54–56]. The application
of CTS also enhanced the antioxidant defense system and mitigated oxidative damage
in apple, common bean (Phaseolus vulgaris), and potato under drought or polluted water
condition [14,57,58]. A recent field study revealed that foliar spray with CTS enhanced the
tolerance of cucumber to high temperatures above 45 ◦C in summer through activating
SOD, POD, and CAT activities, thereby reducing lipid peroxidation under heat stress [59].
Similar results were found in our study. The CTS application further increased the heat-
induced activities of antioxidant enzymes (SOD, CAT, POD, and APX) and significantly
reduced the ROS levels and MDA content, suggesting that the CTS attenuated heat-induced
leaf senescence via improvement in the antioxidant defense system in creeping bentgrass.
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In response to heat stress, plants have developed complex regulatory networks over
a long evolutionary period. HSFs are thought to play central roles in transcriptional
networks involved in the regulation of heat-responsive genes. HSFs in Arabidopsis thaliana
are classified into three groups: HSFA, HSFB, and HSFC [60]. Transcriptomics revealed
that high-temperature stress induced the upregulation of more than 65% of HSF-related
genes, including HSFA2, HSFB1, and HSFB2a in Arabidopsis [61]. Previous studies have
shown that HSFA plays a predominant regulatory role in Arabidopsis under heat stress,
and that the upregulation of heat responsive genes could be eliminated in hsfa1a/b/d/e
quadruple mutants [61,62]. HSFA6b mediated the response to ABA and heat tolerance
in Arabidopsis [63]. The overexpression of FaHSFA2a significantly reduced heat-induced
cell membrane damage and leaf senescence in tall fescue (Festuca arundinacea) [64]. Heat
shock response in plants is associated with the increased expression of heat shock proteins
(HSPs) in an HSF-dependent manner [63,65]. Abiotic stress could destroy protein structure
and function, resulting in plant senescence. Thus, protein degradation is one of the basic
features of plant senescence. HSPs exhibit a molecular chaperone role to enhance plant
resistance to heat stress by stabilizing proteins and ensuring the proper assembly and
folding of proteins under heat stress [66]. The overexpression of PIHSP70 conferred a
greater tolerance to heat stress in herbaceous peony (Paeonia lactiflora) by maintaining
better photosynthesis and mitigating oxidative damage [67]. The application of exogenous
GABA enhanced transcript levels of HSP genes including HSP70 and HSP82, thereby
maintaining water and metabolic balance in creeping bentgrass under heat stress [68].
Up to now, the effect of CTS on regulating the HSF pathway for heat tolerance has not
been well-elucidated in plants. The transcriptional analysis in the current study found
that heat stress significantly increased the transcript levels of AsHSFA-6a and AsHSP82,
while exogenous CTS treatment further increased the expression levels of these two genes
during heat stress. These findings suggest that the CTS mitigated heat-induced damage
and senescence in the leaves of creeping bentgrass in relation to the HSF pathway, but that
the potential mechanisms involved need to be further investigated in our future study.

4. Materials and Methods
4.1. Plant Material and Treatment

Creeping bentgrass (cv. Penn A-4) was used as an experimental material. Seeds were
sterilized with 0.1% potassium permanganate solution for 10 min and then washed three
times with distilled water. The sterilized seeds (8 g/m2) were evenly sowed in containers
(23 cm length, 15 cm width, 10 cm height) containing quartz sand and appropriate distilled
water. All the containers were randomly placed in growth chambers (23/18 ◦C (day/night),
65% relative humidity, and 700 µmol m−2·s−1 PAR) for 10 days of germination. Later,
seedlings were cultivated in Hoagland’s solution [69] for another 23 days. During this
period of cultivation, the Hoagland’s solution was renewed at intervals of every two days
to avoid the changes in the pH value and solution concentration.

For foliar CTS pretreatment, plants were sprayed twice a day with 10 mL of 0.1 g L−1

CTS (Sigma-Aldrich, Saint Louis, MO, USA) solution or distilled water (Control) for 3 days
before being exposed to heat stress. For heat stress treatment, the CTS-pretreated and
untreated plants were grown in a high-temperature growth chamber (38/33 ◦C (day/night),
65% relative humidity, and 700 µmol m−2·s−1 PAR) for 15 days. Non-stressed controls
(the CTS-pretreated and unpretreated plants) were grown under optimal temperature
conditions at 23/18 ◦C (day/night), 65% relative humidity, and 700 µmol m−2·s−1 PAR
for 15 days. A total of four treatments, including C (the CTS-untreated control plants
grown under normal condition), CTS (the CTS-pretreated control plants grown under
normal condition), H (the CTS-untreated plants grown under heat stress), and H + CTS
(the CTS-pretreated plants grown under heat stress), were utilized for the experiment.
The plastic containers were laid out in growth chambers under a completely randomized
design (CRD) with four independent biological replicates for each treatment. Leaf samples
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were collected after 15 days of heat stress and utilized for subsequent physiological and
gene expression analyses.

4.2. Determination of Water Status and Photosynthetic Parameters

The RWC was determined by the drying method [70]. OP was estimated by following
Blum’s method [71]. Chl content was measured by using the acetone-ethanol mixture
method [72]. The Fv/Fm and PIABS were recorded with a Chl fluorescence system (Pocket
PEA, Hansatech Instruments Ltd., King’s Lynn, UK).

4.3. Determination of Oxidative Damage and Antioxidant Enzyme Activities

O2
– was determined using the method of Elstner [73]. H2O2 was measured by follow-

ing the procedure of Velikova [74]. MDA content was estimated by the thiobarbituric acid
method [75]. EL was determined by the conventional conductivity meter method [76]. SOD
activity was estimated using the riboflavin-NBT method [77]. CAT activity was measured
using the UV absorption method [78]. POD activity was determined using the guaiacol
colorimetric method [78]. APX activity was estimated using the protocols of Nakano and
Asada [79].

4.4. Genes Expression Analyses

Gene transcription levels were detected by real-time quantitative polymerase chain
reaction (qRT-PCR). Total RNA was extracted from 0.1 g of fresh leaves using the RNAprep
Pure Plant Kit (Tiangen, China). The RNA was reverse-transcribed to the cDNA using
the PrimeScript™ RT reagent Kit with gDNA Eraser (TaKaRa, Japan). Primer sequences
of Chl synthesis genes (AsCHLH, Mg-chelatase; AsPBGD, porphobilinogen deaminase), a Chl
degradation gene (AsPPH, pheophytinase), a heat shock factor gene (AsHSFA-6a), a heat
shock protein gene (AsHSP82), and senescence-associated genes (AsSAG12, AsSAG39,
Asl20, Ash36) are shown in Table 1 [3]. The PCR protocol conditions for all genes were
as follows; 5 min at 94 ◦C and 30 s at 95 ◦C (40 repeats of denaturation), annealing 45 s
at 58–64 ◦C, and amplification from 60 to 95 ◦C. The transcript levels of all genes were
calculated according to the formula 2−∆∆Ct [80].

Table 1. Primer sequences and annealing temperature of the analyzed genes.

Target Gene Forward Primer (5′–3′) Reverse Primer (5′–3′) Tm (◦C)

β-Actin CCTTTTCCAGCCATCTTTCA GAGGTCCTTCCTGATATCCA 58
AsPBGD TAGCGCTGCGGATTAGAACT GAAGGATAACGAACCGCTGA 55
AsCHLH CATCAGGGCGGATAGAGAGA TCTGCCACAATCAGCTTCAG 56
AsPPH GAATGTCATTGCCGTCTGAA CAATGAAATGCTGGACCTGA 53

AsHSFA-6a CACCTTCGAGGAGCTGGCATTG TGTCTATCTCCGCCTGCTCATCC 62
AsHSP82 GAGCCTGACGGACAAGAGCAAG GGAGTGAAGCAGAGTAACGAGACG 64
AsSAG12 CCCAGCAGTTTACTGGCTTT AAGCAGGTGCCTTGAAACTT 54
AsSAG39 CCTCGCTGTTCTTGCCGTGAG CGTGCTCAGCCATCCACTTCTC 63

Asl20 GGGTAGACGGCAACGATACT TACTTGGTTGAATCGTCGGA 60
Ash36 TGGGAATGTGTTCAGGGTAA TCACCTCGATGAGGTAGTCG 55

4.5. Statistical Analysis

The data were analyzed by one-way ANOVA using SPSS 20 (IBM, Armonk, NY, USA).
The significant differences among treatments were tested based on the least significant
difference (LSD) at p ≤ 0.05.
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5. Conclusions

Under high-temperature conditions, detrimental effects including declines in RWC
and photochemical efficiency and significant increases in ROS accumulation, membrane
lipid peroxidation, and Chl degradation were detected in the leaves of creeping bentgrass.
The exogenous application of an optimal dose of CTS significantly alleviated heat-induced
stress damage to creeping bentgrass associated with an improvement in water balance,
ROS scavenging, and the maintenance of Chl metabolism and photosynthesis. In response
to heat stress, CTS-treated creeping bentgrass significantly enhanced the transcript levels
of genes involved in Chl biosynthesis (AsPBGD and AsCHLH) and reduced the expression
level of a Chl degradation-related gene (AsPPH), as well as senescence-associated genes
(AsSAG12, AsSAG39, Asl20, and Ash36) compared with untreated plants, thus reducing leaf
senescence and ameliorating photosynthetic maintenance. In addition, the foliar spray of
CTS activated antioxidant enzyme activities (SOD, CAT, POD, and APX), thereby effectively
mitigating heat-induced oxidative damage and leaf senescence. Heat tolerance regulated
by the CTS in creeping bentgrass was also associated with the improved transcription of
AsHSFA-6a and AsHSP82, but the mechanism involved still needs to be further studied.
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